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Abstract: Emerging evidence points to several fundamental contributions that copper (Cu) has
to promote the development of human pathologies such as cancer. These recent and increasing
identification of the roles of Cu in cancer biology highlights a promising field in the development
of novel strategies against cancer. Cu and its network of regulatory proteins are involved in many
different contextual aspects of cancer from driving cell signaling, modulating cell cycle progression,
establishing the epithelial-mesenchymal transition, and promoting tumor growth and metastasis.
Human cancer research in general requires refined models to bridge the gap between basic science
research and meaningful clinical trials. Classic studies in cultured cancer cell lines and animal
models such as mice and rats often present caveats when extended to humans due to inherent genetic
and physiological differences. However, larger animal models such as pigs are emerging as more
appropriate tools for translational research as they present more similarities with humans in terms of
genetics, anatomical structures, organ sizes, and pathological manifestations of diseases like cancer.
These similarities make porcine models well-suited for addressing long standing questions in cancer
biology as well as in the arena of novel drug and therapeutic development against human cancers.
With the emergent roles of Cu in human health and pathology, the pig presents an emerging and
valuable model to further investigate the contributions of this metal to human cancers. The Oncopig
Cancer Model is a transgenic swine model that recapitulates human cancer through development
of site and cell specific tumors. In this review, we briefly outline the relationship between Cu and
cancer, and how the novel Oncopig Cancer Model may be used to provide a better understanding of
the mechanisms and causal relationships between Cu and molecular targets involved in cancer.

Keywords: copper; Oncopig; homeostasis; metal transport; cuproproteins

1. Introduction

Copper (Cu) is a trace element essential to the development of mammalian cells and
tissues due to its chemical properties and redox potential. Cu is necessary for many vital and
diverse biological processes, such as cellular respiration, maintenance of redox homeostasis,
maturation of collagens and elastins, synthesis of melanin and catecholamine, processing of
neuro-hypophyseal hormones, and transcriptional regulation [1–5]. Despite its importance,
Cu can also be toxic in greater quantities. This potential toxicity requires that Cu levels be
highly regulated on both a cellular and systemic level. Mammalian cells have developed a
complex network of transporters, chaperones, and transcriptional regulators to preserve Cu
homeostasis [6–11]. Physiologically, the ion exists as Cu+ and Cu2+. While the monovalent
form is the principal state found in the cytosol, some cuproenzymes take advantage of the
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redox potential of the metal to function. Classic examples of redox active cuproenzymes are
cytochrome c oxidase (COX), the final electron acceptor metalloenzyme of the respiratory
chain [12], and superoxide dismutase (SOD1 and SOD3), which scavenge toxic radicals to
maintain cellular redox homeostasis both within the cell and in the extracellular matrix
(ECM) [13].

Cu is part of numerous biological processes, some of which may lead to enhanced
cell proliferation, energy production, and fitness to survive [14,15]. These events can
contribute to the onset, development, and progression of pathological conditions such
as cancer. Research demonstrates that Cu plays an important and yet underappreciated
role in carcinogenic processes. A recent publication by Ge and collaborators coined the
novel term “cuproplasia” to represent the exacerbated growth and proliferation of cells or
tissues in the body in a Cu-dependent manner [16]. Cuproplasia defines both the direct
and indirect effects that Cu triggers in carcinogenic signaling pathways, which may include
enzymatic and non-enzymatic Cu-dependent processes [16]. Previous studies corroborate
this result. Proliferating cancer cells were found to have a higher requirement for Cu than
non-cancerous cells [17]. Restricting Cu availability to cancer cells has been shown to reduce
the progression of the disease [18]. An early study by Ishida and collaborators showed that
chronic exposure to elevated levels of Cu in drinking water promoted the proliferation of
cancer cells and development of pancreatic tumors in mice [19]. Furthermore, the authors
showed that limiting bioavailable Cu on the systemic level with chelating agents impaired
these carcinogenic processes due to a decrease in the activity of COX, and by consequence,
less ATP for the cells to utilize [19]. Due to the importance of Cu in the regulation of cellular
processes relevant to cancer, there is an increased scientific interest in understanding the
molecular link between Cu homeostasis and cancer development, as well as the potential
manipulation of this metal as part of anti-cancer therapies [20].

2. The Regulatory Machinery for Cu Homeostasis

Cellular Cu homeostasis is regulated by a complex network of transmembrane trans-
porters, storage proteins, metallochaperones, and transcription factors (Figure 1). In plasma,
Cu is transported primarily by ceruloplasmin (CP) to reach tissues and organs where
the metal ion is required. CP, a Cu-dependent iron (Fe) oxidase, binds Cu2+ and sys-
temically delivers the ion to individual cells [21]. At the cell surface, CP interacts with
six-transmembrane epithelial antigen of the prostate (STEAP) proteins, a family of metal-
loreductases that reduces divalent Cu2+ to its monovalent form [22] and allows its inter-
nalization by copper transporter 1 (CTR1) [23]. Within the cell, various metallochaperones
control the distribution and delivery of cytosolic and mitochondrial Cu to their subcellular
compartments and final acceptors. Antioxidant protein 1 (ATOX1) mediates Cu secretion
by interacting with the Cu+-ATPases ATP7A and ATP7B in the trans Golgi network, but
also potentially with additional, yet unknown, cellular components [24–29]. ATOX1 can
also interact with and deliver Cu to the Cu chaperone for superoxide dismutase (CCS),
which ultimately delivers the ion to superoxide dismutase (SOD1 and SOD3) to control
oxidative stress induced by hydroxyl radicals [13,30–33]. COX17 mobilizes the metal into
the mitochondria, where other chaperones and reductases SCO1, SCO2, and COX11 ensures
delivery to the COX complex [8,34–40]. The metallothioneins (MT1-4) are tasked with the
storage of the metal ion within the cell, regulating its availability [41–43]. The Cu+-ATPases
ATP7A and ATP7B export the ion to the ECM and blood, bound to secreted cuproproteins
containing methionine, cysteine, histidine, aspartic acid, and glutamic acid residues and
soluble carriers such as CP and albumin, [44,45]. Finally, transcription factors like MTF1
and nuclear ATOX1 control the expression of these Cu+ transporters and chaperones to
ensure that cells maintain their fundamental Cu needs [1,5,46–49].
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Figure 1. The copper (Cu) network in cancer. Carcinogenic cellular pathways like cell proliferation,
survival, migration, invasion, metastasis, and drug resistance are enhanced by Cu bioavailability.
Cu-responsive molecules are involved in cell cycle, angiogenesis, remodeling of the extracellular
matrix, and autophagy. Figure created with BioRender.com (accessed on 10 October 2022).

3. Copper in Cancer

Excessive proliferation, migration, invasion, and evasion of apoptotic pathways are
central hallmarks of cancer and are mediated by dysregulated signaling and transcrip-
tional modulation that changes the fundamental biology of cells [50,51]. These pathways
have a strong connection with Cu biology and homeostasis, making this ion and its reg-
ulatory network potential targets for treatments that mitigate cancer development and
progression [15,16,52–58]. Cancer cells have increased requirements for Cu, as the ion plays
a role in the establishment of the carcinogenic phenotype. For instance, the increased de-
mand for Cu by cancer cells is partially due to the increased COX activity that helps sustain
the increase in cell proliferation [58]. Other hallmarks of cancer, such as ECM remodeling,
autophagy, migration, and angiogenesis, also require activation of cuproenzymes and
Cu-dependent pathways to facilitate Cu import, cuproprotein synthesis, and cuproenzyme
catalytic activity [55,59]. This is corroborated by the detection of increased Cu levels in
the tissues and serum of cancer patients (Reviewed in [16,17]). In addition, an increased
occurrence of cancer in Wilson Disease patients has been reported. Wilson Disease patients
have an impaired ability to excrete excess systemic Cu, which establishes an environment
that is favorable for the onset and progression of cancer [16].

Other Cu-driven effects in signaling pathways involved in cancer progression are
starting to be uncovered. For instance, Cu modulates cyclic AMP (cAMP) metabolism,
thereby regulating G-protein-coupled receptor (GPCR) signaling, in a lineage-specific
manner [60,61]. A study in Chinese hamster ovary fibroblasts evaluating activity of
Melanocortin-4 receptors (MC4R) showed that Cu is a negative allosteric modulator of
ligand binding to this receptor [60]. Additionally, in white adipocyte cells, Cu potentiates
the activity of GPCRs and inhibits cAMP degradation by binding the cAMP degrading
enzyme phosphodiesterase 3B (PDE3B), resulting in an increase in cAMP levels [61]. The
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AKT signaling pathway, which mediates cell growth and survival, has also been shown to
be activated by Cu transport via CTR1 modifying the upstream effector phosphoinositide-
dependent kinase-1 (PDK1) [62]. Cu also serves as an activator of the Mitogen-activated
protein kinase kinase 1 and 2 (MEK1 and MEK2, respectively), key intermediaries in the
RAF (rapidly accelerated fibrosarcoma) protein kinase signaling pathway [15,57]. In vitro
studies have shown that Cu supplementation activates additional mitogen-activated pro-
tein kinase (MAPK) pathway members—e.g., Tropomyosin receptor kinase B (TRKB),
epidermal growth factor receptor (EGFR), and mesenchymal–epithelial transition factor
(MET)—in cortical neurons and in the human epithelial and lung cell lines DU145 and
A549, respectively, even in the absence of their ligands [63,64]. Cu activates the Unc-51
like autophagy activating kinases 1 and 2 (ULK1 and ULK2, respectively), which favor
the breakdown of various subcellular components as a means of providing energy to
cells. The activation of ULK1 and ULK2 by Cu enhances energy production in cancer
cells, which sustains the energetic cost of continuous cell growth and division [55]. These
non-redundant kinases may also provide energy to cells under nutrient-deficient condi-
tions, as is found in the center of a tumor, further aiding the survival of cancer cells, and
allowing for their continual proliferation [65]. All these pathways are major drivers of cell
cycle progression and proliferation, which highlights the impact of Cu on critical processes
during cancer development.

Although elevated intracellular Cu levels do not appear to be a direct cause of cancer,
excessive Cu plays a key role in driving epithelial-mesenchymal transition (EMT), ECM
remodeling and carcinogenesis. EMT is a reversible trans-differentiation program where
epithelial cells acquire a mesenchymal phenotype with more plasticity and dynamism [66].
EMT is a normal process essential for embryonic development, wound healing and tissue
regeneration; however, it is also observed in the development of cancer [66]. EMT is marked
by the loss of epithelial markers (E-cadherin, Zonula occludens-1 and claudins) and the
expression of mesenchymal proteins (N-cadherin, vimentin and matrix metalloproteases
(MMPs)). This is caused by the dysregulation of the expression and activity of transcription
factors such as Snail, Slug, Zeb and Twist mediated by a number of upstream signaling
cascades [66], some of which are activated by Cu, as discussed above. Therefore, the
resulting phenotype is characterized by the alteration of the expression of genes required
for maintenance of adhesion, polarity and cytoskeleton reorganization [67].

In addition, Cu contributes to the modification of ECM, as this ion serves as an ac-
tivator for lysyl oxidases (LOX) and lysyl-oxidase like proteins (LOXL). These proteins
are prevalent in invasive cancer cells as they are required for remodeling the surrounding
ECM [59,68–82]. The formation of the tumor stroma requires remodeling and stiffening of
the ECM [83,84]. ECM stiffness promotes cell proliferation, survival, and migration; this
rigidity disrupts formation of tissue morphogenesis due to increased cell tension [85,86].
There are still gaps on the knowledge on the mechanisms underlying ECM stiffening and
changes in tension promote tumor progression. Among the most relevant ECM proteins is
collagen as it provides strength and tension to the tissues [87]. In cancer, the metabolism of
collagen is altered in cancer, and is characterized by increased collagen synthesis, accumu-
lation, organization. Increased activity of zinc dependent MMPs and a consequent collagen
remodeling may also favor migration of metastatic cells accelerating tumor progression [88].
Moreover, the secreted Cu-activated LOX and LOXL oxidases catalyze lysine oxidation in
elastins and collagens which results in crosslinking that provides structure, stability, and
stiffness to the ECM scaffolding [71,89]. Increased LOX expression and enhanced stiffness
in the tumor microenvironment are both associated with cancer progression and metastasis
in solid tumors such as breast, colorectal, and prostate cancers [69,71]. To form secondary
tumor sites, ECM remodeling events are necessary to induce EMT. LOX and LOXL proteins
are proposed to promote EMT in cancer cells, and given Cu is a co-factor for their activity,
this suggests that elevated Cu levels could serve as a driver of carcinogenesis [59]. Cu
may also be an allosteric modulator of the activity of the ubiquitin-conjugating enzyme E2
D (UBE2D). A conserved CXXXC motif in this protein acts as a Cu+-binding motif with
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sub-femtomolar-affinity. Variations in cytoplasmic concentrations of Cu+ may promote
the degradation of UBE2D targets, such as p53 [90]. This is supported by data showing
that a Cu-rich environment supports the degradation of p53, removing this key checkpoint
player in regulating cell division and preventing the accumulation of mutations, which can
greatly increase the risk of cancer [90].

Angiogenesis is another crucial aspect in tumor development, and Cu has been associ-
ated with blood vessel formation and endothelial cell migration [19,91–94]. These processes
are fundamental for metastasis to occur, as the formation of new blood vessels is often
followed by cancer cell migration to establish secondary tumor sites. Cu stimulates tran-
scription factors involved in vessel formation and maturation, such as the hypoxia-inducible
factor-1 (HIF-1). HIF-1 regulates the expression of the vascular endothelial growth factor
(VEGF), which is a main driver of angiogenesis. Cu has been proposed to be transported
into nucleus by a CCS, and potentially delivered to HIF-1. Metallated HIF-1 interacts with
the hypoxia-responsive element of the target genes and enables transcription, including
that of VEGF. Furthermore, Cu stabilizes and promotes accumulation of the HIF-1α subunit,
favoring HIF-1 activation [95,96]. In addition, the angiogenic growth factor, angiogenin
(ANG) also binds and is activated by Cu, and positively regulates Fibroblast Growth Factor
(FGF) and interleukin 1α (IL-1α) secretion and further promotes the formation of new
blood vessels. Another mechanism by which Cu enhances angiogenesis is through the
activation of the NF-κB signaling pathway, which induces the expression of pro-angiogenic
factors such as VEGF, bFGF, IL-1α, IL-6, and IL-8 [94,95,97–102] facilitating the formation
of secondary tumors, and is a notable effect of this metal ion.

The ability of Cu to facilitate cellular respiration through COX function and promotion
of autophagy through ULK1 and ULK2 activation enhances cancer cell survival. Cu plays
an indirect role in the promotion of cell proliferation by inhibiting the degradation of cAMP,
effectively activating GPCR pathways. However, Cu also contributes to the dysregulation of
cell cycle progression by activating the MEK1 and MEK2 proliferative signaling pathways.
The role of Cu as a regulator of UBE2D1-4 also promotes the degradation of p53, which
can result in the accumulation of carcinogenic mutations through removing a key cell
cycle checkpoint. Finally, Cu serves as an activator of ECM remodelers, allowing the
establishment of the EMT, angiogenesis, and the consequent spread of cancer throughout
the body at later stages of disease. Thus, various elements of the Cu network serve as
emerging targets for cancer drugs and therapies that reduce the intracellular concentration
and bioavailability of the ion in cancer cells. To this end, Cu chelators have been utilized to
reduce Cu bioavailability, resulting in a decrease in cell proliferation and, by consequence,
the progression of cancer. Chelating agents (e.g., tetrathiomolybdate and D-penicillamine),
as well as Cu ionophores (e.g., disulfiram and Elesclomol), are used in combination with
other anti-cancer drugs to either reduce systemic Cu levels or induce cuproptosis (copper-
induced cell death [103]) as novel therapies against various types of carcinomas. Their
effects and mechanisms of action have been reviewed elsewhere [10,16].

4. Investigating Cu Regulators in a Porcine “Oncopig” Cancer Model

Cumulative evidence highlights novel roles for several cuproproteins in cancer pro-
gression and metastasis. However, more translational studies are required to elucidate the
fine mechanisms of action of these molecules in the context of human cancers. Animal
models are important tools for investigating molecular mechanisms and testing therapeutic
strategies against cancer. The development of an inducible porcine model for human cancer,
known as the “Oncopig Cancer Model” (OCM) offers a novel and favorable platform for
studying human cancer in a large animal model [104–108]. Due to the pig’s high similarity
to humans regarding size, genetic homology, metabolism, physiology, and pathology, the
Oncopig likely offers more accurate representation of human cancers than other animal
models [105,109–115]. The use of this porcine model to investigate cancer may provide
more predictive health outcomes and clinical advantages through optimized screening of
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potential cancer treatments, thus providing a higher predictability of how therapeutics will
perform in human oncological clinical trials [116–118].

The Oncopig harbors a Cre recombinase inducible expression construct for porcine
KRASG12D, which is a constitutively active KRAS, as well as TP53R167H, a dominant
negative TP53 mutant [107,108]. Exposure to adenoviral vectors encoding Cre recombinase
(AdCre) drives the inducible expression of the two oncogenic transgenes, which allows
for reproducible in vitro and in vivo transformation of Oncopig cells. The Oncopig can-
cer model has been shown to recapitulate several human cancers including soft tissue
sarcomas (STS) of mesenchymal origin developing from intramuscular regions, hepato-
cellular carcinoma (HCC), and others. These tumors developed in Oncopigs emulate
human cancers in terms of transcriptional hallmarks, cytological features, and histology
(Figure 2; [104,106–108]). Additional Oncopig cancer cell lines and refined in vivo models
have been generated since the original development of this transgenic animal. However,
despite the advances in the research derived from this model, its usefulness as a tool to
investigate a variety of pathogenic processes that occur in cancer remain unexplored.
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Given that tumors developed in Oncopigs recapitulate human cancers, the Oncopig
is an excellent model to investigate the contributions of Cu and its related proteins in the
development of cancer. We performed a review and bioinformatics analysis of published
transcriptomic datasets obtained from Oncopig STS tumors that were compared to bulk
skeletal muscle tissue (ArrayExpress accession number E-MTAB-3382), as well as data from
Oncopig HCC cells which were compared with normal porcine primary hepatocytes (Euro-
pean Nucleotide Archive accession number PRJEB8646). We focused our transcriptional
analysis to known Cu-binding proteins [107,108] and identified cuproproteins demon-
strating differential expression in Oncopig-derived STS and HCC as compared to their
respective controls. The Oncopig is a novel and unexplored model that has a remark-
able potential to contribute to our knowledge on the emerging mechanisms by which Cu
contributes to cancer progression.

5. Differential Expression of Cu-Related Genes in Oncopig Soft Tissue Sarcoma

Oncopig STS tumors were generated by intramuscular injection of AdCre into the
hind limb skeletal muscle which resulted in the formation of tumors that resemble human
STS characteristics [108]. The published RNA-seq datasets for STS tissues from the OCM
showed that nineteen Cu-binding genes were differentially expressed. Of these, seven genes
were significantly upregulated and eleven were downregulated. Out of these differentially
regulated genes, STEAP1 had the highest level of upregulation (Figure 3). This Fe/Cu
metalloreductase is implicated in the metabolism of reactive oxygen species (ROS) and
reduces extracellular Cu2+ to Cu+ to enable Cu import into the cell via CTR1 [119]. Interest-
ingly, STEAP1 expression is known to be upregulated in Ewing sarcoma, prostate cancer,
and breast cancer [120–122]. In human Ewing sarcoma cell lines, STEAP1 knockdown
decreases proliferation, invasion, growth, and metastatic potential, suggesting a crucial role
for STEAP1 in tumorigenic properties in patient-derived Ewing sarcoma cell lines [122].
MEK1, a Cu-binding kinase that is part of the MAPK and ERK signaling pathways, is also
upregulated in STS tumors [54]. In BRAFV600E-positive melanomas, the mutated BRAF
kinase drives the activation of MEK1/2 and subsequently ERK1/2 which stimulates the
MAPK pathway [54]. MEK1/2 and BRAFV600E inhibitors have risen as widely used thera-
peutic options to reduce tumorigenesis in these melanomas [54]. ECM remodeling genes
LOX and LOXL2 were also highly upregulated in the Oncopig STS model (Figure 3). As dis-
cussed above, LOX and LOXL2 encode homologous secreted Cu-dependent amine oxidase
proteins that are metalated by ATP7A and are required for ECM remodeling [59]. MTF1
is another upregulated gene as well, which encodes a transcription factor that regulates
the expression of numerous genes including Cu+-transporters and chaperones required to
maintain metal and redox homeostasis and is also required for skeletal muscle differentia-
tion [1,5,123]. Other significantly upregulated genes encoding cuproproteins in the Oncopig
STS model include CTR1 and ATOX1, further implicating enhanced Cu internalization
and cytosolic transport in this type of cancer. CCS, which is metalated by ATOX1 and is a
Cu chaperone for SOD1 was upregulated as well [30,32]. Furthermore, an in vitro study
showed that CCS may promote proliferation and migration in breast cancer cells [124].
SCO1 was also among the upregulated genes, and its role as a mitochondrial Cu chaperone
and COX assembly protein suggests Cu plays a potential role in mitochondrial function
in cancer. Eight Cu-binding genes were significantly downregulated in the STS model,
and among these were the systemic Cu carrier CP and the autophagy kinases ULK1, and
ULK2. Mitochondrial genes that were downregulated include COX2, COX10, COX17, and
SLC25A3 (PiC2). Additionally, MEMO1 a Cu-dependent cell motility mediator was also
downregulated (Figure 3). The numerous changes in the expression of Cu-binding proteins
in the Oncopig STS model strongly argues in favor of the need for more experimental
studies characterizing the role of Cu in human cancers.



Int. J. Mol. Sci. 2022, 23, 14012 8 of 16

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 16 
 

 

STS model strongly argues in favor of the need for more experimental studies 
characterizing the role of Cu in human cancers. 

 
Figure 3. Differential expression of Cu-related genes in Oncopig-derived STS Cells. (A) Process to 
induce Oncopig STS tumors. (B) Volcano plot of genes encoding cuproproteins in Oncopig STS cells, 
plotting magnitude expression difference by significance. The horizontal line represents q-value = 
0.05. Red indicates significant upregulation, blue denotes significant downregulation, and grey 
represents non-significant changes in expression. STS Accession codes: The data sets supporting the 
results of this review article are available in ArrayExpress accession number: E-MTAB-3382. Figure 
created in BioRender.com and R software (version 4.0.3) [125]. 

6. Differential Expression of Cu-Related Genes in Oncopig Hepatocellular Carcinoma 
Porcine HCC cell lines were developed by isolating Oncopig primary hepatocytes 

and inducing oncogenic transgene expression by AdCre exposure resulting in HCC cells 
that recapitulated human HCC phenotypes [106,107]. Autologous injection of these 
transformed cells into Oncopig livers resulted in intrahepatic liver tumor development 
[106,126]. By transcriptional analysis of Oncopig HCC cells as compared to normal 
Oncopig primary hepatocytes, we identified nineteen genes encoding for cuproenzymes 
that were differentially expressed. Among these, eight genes were significantly 
upregulated and eleven were downregulated (Figure 4). Similar to STS, the Cu-dependent 
collagen and elastin remodeling oxidases LOX and LOXL2 were among the genes with 
the largest induction in expression in the Oncopig-derived transformed HCC cells 
compared to untransformed Oncopig hepatocyte controls. This corroborates another 
study that reports increased expression of LOXL2 in human HCC tumors [77]. 
Functionally, LOX and LOXL2-dependent cross-linking of collagen and elastin has many 
roles, including increasing tissue stiffness and strength, promotion of cancer cell 
organization, activation of growth factors, and facilitation of matrix metalloprotease 
activity. These processes are well-known to participate in the establishment of pre-
metastatic niches in areas outside of the primary tumor site, as observed in numerous 
human cancers such as HCC, colorectal cancer, breast cancer, and gastric cancer 
[68,75,77,79,81,82]. Relatedly, ATP7A expression was induced, and given it functions in 
the regulation of Cu transport across membranes, this suggests an exacerbated and 
potentially more aggressive mechanism to metallate and promote Cu-mediated LOX 
activation. SOD3 is another upregulated gene in Oncopig-derived HCC cells. SOD3 binds 
Cu and Zn to catalyze extracellular detoxification of ROS to protect cells from oxidative 
stress [127]. Other significantly upregulated genes encoding Cu-binding proteins include 

Figure 3. Differential expression of Cu-related genes in Oncopig-derived STS Cells. (A) Process to
induce Oncopig STS tumors. (B) Volcano plot of genes encoding cuproproteins in Oncopig STS cells,
plotting magnitude expression difference by significance. The horizontal line represents q-value
= 0.05. Red indicates significant upregulation, blue denotes significant downregulation, and grey
represents non-significant changes in expression. STS Accession codes: The data sets supporting the
results of this review article are available in ArrayExpress accession number: E-MTAB-3382. Figure
created in BioRender.com and R software (version 4.0.3) [125].

6. Differential Expression of Cu-Related Genes in Oncopig Hepatocellular Carcinoma

Porcine HCC cell lines were developed by isolating Oncopig primary hepatocytes and
inducing oncogenic transgene expression by AdCre exposure resulting in HCC cells that re-
capitulated human HCC phenotypes [106,107]. Autologous injection of these transformed
cells into Oncopig livers resulted in intrahepatic liver tumor development [106,126]. By
transcriptional analysis of Oncopig HCC cells as compared to normal Oncopig primary
hepatocytes, we identified nineteen genes encoding for cuproenzymes that were differ-
entially expressed. Among these, eight genes were significantly upregulated and eleven
were downregulated (Figure 4). Similar to STS, the Cu-dependent collagen and elastin
remodeling oxidases LOX and LOXL2 were among the genes with the largest induction
in expression in the Oncopig-derived transformed HCC cells compared to untransformed
Oncopig hepatocyte controls. This corroborates another study that reports increased ex-
pression of LOXL2 in human HCC tumors [77]. Functionally, LOX and LOXL2-dependent
cross-linking of collagen and elastin has many roles, including increasing tissue stiffness
and strength, promotion of cancer cell organization, activation of growth factors, and facili-
tation of matrix metalloprotease activity. These processes are well-known to participate in
the establishment of pre-metastatic niches in areas outside of the primary tumor site, as
observed in numerous human cancers such as HCC, colorectal cancer, breast cancer, and
gastric cancer [68,75,77,79,81,82]. Relatedly, ATP7A expression was induced, and given it
functions in the regulation of Cu transport across membranes, this suggests an exacerbated
and potentially more aggressive mechanism to metallate and promote Cu-mediated LOX
activation. SOD3 is another upregulated gene in Oncopig-derived HCC cells. SOD3 binds
Cu and Zn to catalyze extracellular detoxification of ROS to protect cells from oxidative
stress [127]. Other significantly upregulated genes encoding Cu-binding proteins include
STEAP1, ULK2, and MEK1. Among the mitochondrial genes upregulated was the Cu+

transporter SLC25A3 (PiC2).

BioRender.com


Int. J. Mol. Sci. 2022, 23, 14012 9 of 16

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 16 
 

 

STEAP1, ULK2, and MEK1. Among the mitochondrial genes upregulated was the Cu+ 
transporter SLC25A3 (PiC2). 

Conversely, downregulated cuproprotein genes in the Oncopig HCC cell line 
included the Cu/Fe metalloreductase STEAP4 (Figure 4), which is involved in adipocyte, 
hepatocyte, and pancreatic cell development and metabolism and has been implicated to 
play a role in inflammatory stress response [128]. The decrease of STEAP4 in Oncopig 
HCC cells is consistent with studies in human HCC tumors showing that the STEAP4 
promoter is silenced via methylation [129]. CP, a Cu carrier protein that is synthesized in 
the liver, was down-regulated in the Oncopig HCC (Figure 4A,B). This contradicts 
serological studies in a murine transgenic model for HCC expressing viral oncogene SV40-
Tag that reported an increased level of CP in serum [130], as well as observations in the 
serum of patients with solid tumors of the lung, breast, head/neck, and gastrointestinal 
tract [131]. However, low CP levels in the serum have been reported in human patients 
with viral hepatitis-associated liver disease, drug and alcohol-induced liver disease, and 
Wilson disease [132–134], suggesting a specific regulation of this gene in the liver, which 
correlates with the maturation state of the HCC cells used in the original study. Additional 
significantly downregulated Cu-binding genes in Oncopig HCC include CTR1, CCS, 
ATOX1, COX2, COX17, COX10, and MTF1. 

 

 
Figure 4. Differential expression of Cu-related genes in Oncopig-derived HCC cells. (A) Process to 
obtain Oncopig HCC cell lines. (B) Volcano plot of genes encoding for cuproproteins in Oncopig 
HCC cells plotting magnitude expression difference by significance. The horizontal line represents 
q-value = 0.05. Red indicates significant upregulation, blue denotes significant downregulation, and 
grey represents non-significant changes in expression. HCC Accession codes: The datasets are 
available in the European Nucleotide Archive accession number: PRJEB8646. Figure created in 
BioRender.com and R software (version 4.0.3) [125]. 

The variations observed in the gene expression profiles of these two different 
Oncopig-derived cancer models, HCC and STS, suggest differential contributions from 
components of the Cu regulatory network in the establishment and development of 
different carcinogenic phenotypes. Overall, our review of published Oncopig RNA-seq 
datasets and bioinformatic analyses showed consistencies in the variability of expression 
of cuproenzymes in human cancer, highlighting the importance of this novel porcine 
model in the study of cancer and metals in the pathophysiology of disease. However, 
some discrepancies were found between STS and HCC cuproenzymes, including ULK2, 
CTR1, CCS, ATOX1, MTF1, and SLC25A3 (PiC2). The differential expression of these 
proteins and downstream targets may be also a consequence of the different nature of the 

Figure 4. Differential expression of Cu-related genes in Oncopig-derived HCC cells. (A) Process to
obtain Oncopig HCC cell lines. (B) Volcano plot of genes encoding for cuproproteins in Oncopig
HCC cells plotting magnitude expression difference by significance. The horizontal line represents
q-value = 0.05. Red indicates significant upregulation, blue denotes significant downregulation,
and grey represents non-significant changes in expression. HCC Accession codes: The datasets
are available in the European Nucleotide Archive accession number: PRJEB8646. Figure created in
BioRender.com and R software (version 4.0.3) [125].

Conversely, downregulated cuproprotein genes in the Oncopig HCC cell line included
the Cu/Fe metalloreductase STEAP4 (Figure 4), which is involved in adipocyte, hepato-
cyte, and pancreatic cell development and metabolism and has been implicated to play
a role in inflammatory stress response [128]. The decrease of STEAP4 in Oncopig HCC
cells is consistent with studies in human HCC tumors showing that the STEAP4 pro-
moter is silenced via methylation [129]. CP, a Cu carrier protein that is synthesized in the
liver, was down-regulated in the Oncopig HCC (Figure 4A,B). This contradicts serological
studies in a murine transgenic model for HCC expressing viral oncogene SV40-Tag that
reported an increased level of CP in serum [130], as well as observations in the serum of
patients with solid tumors of the lung, breast, head/neck, and gastrointestinal tract [131].
However, low CP levels in the serum have been reported in human patients with viral
hepatitis-associated liver disease, drug and alcohol-induced liver disease, and Wilson
disease [132–134], suggesting a specific regulation of this gene in the liver, which correlates
with the maturation state of the HCC cells used in the original study. Additional signif-
icantly downregulated Cu-binding genes in Oncopig HCC include CTR1, CCS, ATOX1,
COX2, COX17, COX10, and MTF1.

The variations observed in the gene expression profiles of these two different Oncopig-
derived cancer models, HCC and STS, suggest differential contributions from components
of the Cu regulatory network in the establishment and development of different carcino-
genic phenotypes. Overall, our review of published Oncopig RNA-seq datasets and bioin-
formatic analyses showed consistencies in the variability of expression of cuproenzymes
in human cancer, highlighting the importance of this novel porcine model in the study of
cancer and metals in the pathophysiology of disease. However, some discrepancies were
found between STS and HCC cuproenzymes, including ULK2, CTR1, CCS, ATOX1, MTF1,
and SLC25A3 (PiC2). The differential expression of these proteins and downstream targets
may be also a consequence of the different nature of the carcinomas and sarcomas as well
as differences between in vivo and in vitro cancer models. The Oncopig HCC results rep-
resent analyses of in vitro primary HCC cell line expression, compared to in vitro normal
hepatocytes, both derived from the Oncopig liver. The STS data corresponds to in vivo

BioRender.com


Int. J. Mol. Sci. 2022, 23, 14012 10 of 16

sarcoma tumors compared to in vivo normal skeletal muscle, both harvested directly from
the animal. Therefore, in addition to representing two different cancer types, the HCC cell
line data represents expression of “pure tumor cells”, whereas the STS tumor expression
results may represent a combination of tumor and non-tumor (stroma) cell populations.
Furthermore, in terms of the genes that showed opposite differential expression between
the two cancer types, there is also controversial or limited evidence available. For example,
there is no clear evidence of the contributions of ULK2 to STS progression, thus the role for
this protein in STS patients remains unknown, as limited information in general is available
for this cancer type. On the other hand, the enhanced expression of ULK2 observed in HCC
Oncopig samples are comparable to published analyses of HCC patients datasets obtained
from The Cancer Genome Atlas Program (TCGA; GSE54236 dataset) [135]. This study
showed that patients from low-risk HCC groups have a significantly higher expression
of ULK2, suggesting that autophagy may play a protective role in the low-risk group
compared to high-risk individuals [136]. The role for this protein in STS patients remains
unknown, as limited information is available for this cancer type. Thus, the analyses
presented here further supports the Oncopig model as an excellent tool to answer these
questions when patient information is not accessible. Hence, systematic studies of these
and other tissues will shed light on the contributions of the various members of the Cu
network in the onset and development of cancer. The biological similarities encountered
between porcine models and human biology confers the Oncopig a number of potential
applications for research oriented towards understanding the biological function of Cu and
establishes it as a powerful tool for the development of potential therapies, including Cu
chelating drugs, in the treatment of human cancer.

7. Conclusions

Cu is a trace metal fundamental for cellular respiration, cell signaling, cell cycle
progression, remodeling of the ECM, and promotion of angiogenesis. Increasing evidence
points to the sophisticated strategies that cancer cells have developed to acquire and use
this metal ion at levels that favor cell division, metastasis, and other carcinogenic features.
Cu metabolism in cancer cells is an emerging field of research that could shed light onto
novel strategies to combat this complex disease. Research shows that Cu signaling can be
regulated by using specific chelators and ionophores, as well as by genetic manipulation of
the proteins controlling Cu homeostasis. The Oncopig presents a well-suited model for the
study of human cancer, including the contributions of Cu in malignant transformation. Our
transcriptomic analysis suggests many Cu-related molecular changes in an Oncopig model
of STS and HCC. Research should be directed to utilize novel and powerful animal models
like the Oncopig, as this confers higher accuracy to human cancer and its connection to
copper biology. Considering that the only work done in this area is the gene expression
analysis presented in this review, there is great potential to elucidate novel paradigms
related to cuproplasia using the Oncopig model. In conclusion, the biological similarities
with human pathology place the Oncopig model as a powerful tool for advancing our
understanding the mechanisms and causal relationships between Cu and molecular targets
involved in cancer.
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