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Abstract: As important pollinators, bees play a critical role in maintaining the balance of the ecosystem
and improving the yield and quality of crops. However, in recent years, the bee population has
significantly declined due to various pathogens and environmental stressors including viruses,
bacteria, parasites, and increased pesticide application. The above threats trigger or suppress the
innate immunity of bees, their only immune defense system, which is essential to maintaining
individual health and that of the colony. In addition, bees can be divided into solitary and eusocial
bees based on their life traits, and eusocial bees possess special social immunities, such as grooming
behavior, which cooperate with innate immunity to maintain the health of the colony. The omics
approach gives us an opportunity to recognize the distinctive innate immunity of bees. In this regard,
we summarize innate bee immunity from a genomic and transcriptomic perspective. The genetic
characteristics of innate immunity were revealed by the multiple genomes of bees with different kinds
of sociality, including honeybees, bumblebees, wasps, leaf-cutter bees, and so on. Further substantial
transcriptomic data of different tissues from diverse bees directly present the activation or suppression
of immune genes under the infestation of pathogens or toxicity of pesticides.
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1. Introduction

While the demand for crop pollination by insects has tripled over the past 50 years,
the pollinator-bee population has drastically declined due to climate change, habitat loss,
emerging parasites and pathogens, and increased pesticide application [1–6]. Due to these
challenges and environmental stresses such as poor nutrition and pesticide residues, polli-
nator bees use their innate immune system, which is their only defense, to maintain their
individual health and that of the colony. The emergence and development of genomic
and transcriptomic technology provide an opportunity to understand the mysteries of life
sciences [7,8]. Similarly, genomic and transcriptomic research on bees have helped identify
and understand the genetic traits of immunity and the immune response to environmen-
tal stressors and pathogens, both primordial aspects of the colony’s health [9,10]. This
review focuses on the genetic characteristics of innate immunity and immune response to
pathogens and pesticides in bees from a genomic and transcriptomic perspective (Figure 1).
The present review outlines the uniqueness of innate bee immunity and immune genes in
response to single or multiple threats to facilitate intensive study of the bee immune system.
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Figure 1. Overview of the innate immunity of bees from the genome and transcriptome perspectives. 

2. Genomic Perspective of Innate Bee Immunity 
The first complete bee genome, the Apis mellifera genome, was assembled and anno-

tated in 2006 [11], and it was updated in 2014 and 2016 [12,13]. Compared to known ge-
nomes of model organisms such as Drosophila melanogaster and Anopheles gambiae, the A. 
mellifera genome encodes fewer immune proteins involved in the immune response pro-
cess, starting from pathogen recognition to immune effectors. In fact, nearly two-thirds of 
the immune genes are reduced, but a small number of genes encode the components of 
the insect’s classical immune pathways, such as Toll, IMD, and JAK/STAT pathways 
[11,12,14]. Based on the genomic and transcriptomic analyses, Apis cerana, a species similar 
to A. mellifera, also possesses a small amount of innate immune genes and similar classical 
immune pathways compared to those of flies and mosquitoes, and most of its immune 
genes are similar to those of A. mellifera [15,16]. Recently, de novo genome assembly of 
Chinese plateau A. cerana has shown that the gene number of this genome is different from 
that of known A. cerana genomes [17]. As a representative of primary eusocial bees, bum-
blebee genomes from 17 species show that the major immune repertoire and immune gene 
number are both similar to those of A. mellifera, which is significantly lower compared 
with that of Dipteran models [18,19]. Moreover, another important Asian honeybee (Apis 
dorsata) genome also exhibits an immune repertoire similar to that of known bee genomes 
[20]. A reduced number of immune proteins might be seen as a result of the social immun-
ity of social bees; eusocial and primary eusocial bees can cooperate to reduce disease trans-
mission risk through their behavior, known as social immunity, which can be prophylactic 
or activated on demand [21]. However, expressed sequence tag (EST) databases of healthy 
and pathogen-challenged alfalfa leaf-cutting bee larvae have identified 104 putative im-
munity-related genes, including innate immune response genes that are highly conserved 
with honey bee genes, such as those involved in pathogen recognition, phagocytosis, pro-
phenoloxidase cascade, melanization, coagulation, and several signaling pathways [22]. 
Similar smaller immune repertoires have been discovered in other available solitary or 
eusocial bee genomes, including those of A. florea, Bombus terrestris, B. impatiens, Eufriesea 
Mexicana, Melipona quadrifasciata, Habropoda laboriosa, Megachile rotundata, Lasioglossum al-
bipes, and Dufourea novaeangliae [19,23]. Additionally, genomes of three parasitoid Nasonia 
species (N. vitripennis, N. giraulti, and N. longicornis) show an immune repertoire similar to 
that of A. mellifera but with a slightly higher gene count than that of the latter, although 
several immune genes are not yet identified [24]. Furthermore, a fig wasp (Ceratosolen 
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2. Genomic Perspective of Innate Bee Immunity

The first complete bee genome, the Apis mellifera genome, was assembled and an-
notated in 2006 [11], and it was updated in 2014 and 2016 [12,13]. Compared to known
genomes of model organisms such as Drosophila melanogaster and Anopheles gambiae, the
A. mellifera genome encodes fewer immune proteins involved in the immune response pro-
cess, starting from pathogen recognition to immune effectors. In fact, nearly two-thirds of
the immune genes are reduced, but a small number of genes encode the components of the
insect’s classical immune pathways, such as Toll, IMD, and JAK/STAT pathways [11,12,14].
Based on the genomic and transcriptomic analyses, Apis cerana, a species similar to
A. mellifera, also possesses a small amount of innate immune genes and similar classi-
cal immune pathways compared to those of flies and mosquitoes, and most of its immune
genes are similar to those of A. mellifera [15,16]. Recently, de novo genome assembly of
Chinese plateau A. cerana has shown that the gene number of this genome is different
from that of known A. cerana genomes [17]. As a representative of primary eusocial bees,
bumblebee genomes from 17 species show that the major immune repertoire and immune
gene number are both similar to those of A. mellifera, which is significantly lower com-
pared with that of Dipteran models [18,19]. Moreover, another important Asian honeybee
(Apis dorsata) genome also exhibits an immune repertoire similar to that of known bee
genomes [20]. A reduced number of immune proteins might be seen as a result of the
social immunity of social bees; eusocial and primary eusocial bees can cooperate to reduce
disease transmission risk through their behavior, known as social immunity, which can
be prophylactic or activated on demand [21]. However, expressed sequence tag (EST)
databases of healthy and pathogen-challenged alfalfa leaf-cutting bee larvae have identified
104 putative immunity-related genes, including innate immune response genes that are
highly conserved with honey bee genes, such as those involved in pathogen recognition,
phagocytosis, prophenoloxidase cascade, melanization, coagulation, and several signal-
ing pathways [22]. Similar smaller immune repertoires have been discovered in other
available solitary or eusocial bee genomes, including those of A. florea, Bombus terrestris,
B. impatiens, Eufriesea Mexicana, Melipona quadrifasciata, Habropoda laboriosa, Megachile rotundata,
Lasioglossum albipes, and Dufourea novaeangliae [19,23]. Additionally, genomes of three par-
asitoid Nasonia species (N. vitripennis, N. giraulti, and N. longicornis) show an immune
repertoire similar to that of A. mellifera but with a slightly higher gene count than that of
the latter, although several immune genes are not yet identified [24]. Furthermore, a fig
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wasp (Ceratosolen solmsi) genome exhibits an immune repertoire and gene counts similar to
those of A. mellifera [25]. Therefore, although different bee species possess slightly different
immune gene counts, their innate immune system is characterized by integral immune
pathways, and the reduced immune gene number is interestingly not related to the bees’
sociality [26]. Thus, genomic analysis is a powerful tool for exploring the innate immune
components of both solitary and eusocial bees. Until now, several genomes of different
bees have been determined, but the immune repertoire of these bees has to be further
analyzed [27–39].

3. Transcriptomic Perspective of Innate Bee Immune Response

Transcriptomic analysis in bees indicates gene expression changes under certain
conditions. For instance, the expression profile of the immune genes is mainly influenced
by invasion by pathogens, such as viruses, bacteria, and parasites, as well as exposure to
pesticides and other hazardous substances, as well as poor nutrition [40]. While nutrient
status is key to an individual’s immune response, the relationship between nutrition
and innate immunity is driven by energy consumption [41]. Pathogens adversely affect
the health of wild and managed bees [42], and their infestation can trigger the innate
immune response, thus blocking the infection and eliminating the pathogens [43]. In
contrast, pesticides inhibit the innate immune response and promote pathogen spread
and virulence, contributing to bee colony loss [3]. Hazardous substances such as nano-
and micro-polystyrene plastics can disturb gut microbiota and inhibit intestinal immune
response [44]. Regardless of the suppression or triggering of immune gene expression,
transcriptomic analysis can directly reveal gene expression profile changes in different
tissues of managed and wild bees infected by various pathogens and exposed to pesticides.

3.1. Immune Responses to Viruses

Bees can be infected by more than 20 viruses worldwide, most commonly by deformed
wing virus (DWV), black queen cell virus (BQCV), Israeli acute paralysis virus (IAPV), and
Sacbrood virus (SBV) [45–47]. Following an IAPV infection in A. mellifera, two immune
genes involved in RNAi pathways Ago2 and Dicer, as well as other immune genes, were
identified to be implicated in Toll and JAK/STAT pathways, and these findings overlap
with those on immune gene response following other viral infections based on transcrip-
tome analysis [48]. This analysis also demonstrated the dynamic changes in immune gene
expression in the hours following an IAPV infection [49], and it has shown that BQCV
infection triggers significant upregulation of immune genes such as those encoding an-
timicrobial peptides (abaecin, apidaecin, and hymenoptaecin), peptidoglycan recognition
protein S2 (PGRP-S2), Ago2, and Dicer, (the latter two both implicated in RNAi pathways in
A. mellifera brains [50]). A transcriptomic analysis of larvae and pupae has revealed changes
in immune genes involved in antimicrobial peptides (AMPs) and melanization pathways
following DWV and SBV infection in A. mellifera; both are positive-strand RNA viruses
and members of the iflavirus group [51]. In SBV-carrying A. mellifera larvae, approximately
20 differentially expressed immune-related genes have been identified [52]. In A. cerana
larvae naturally infected with CSBV, small interfering RNA-targeting serine proteases that
are involved in the immune response are upregulated [53]. Moreover, transcriptomic analy-
sis has revealed that the sirtuin signaling pathway may be a novel mechanism of immune
response to CSBV infection in honeybees [54] and that the immune genes for AMPs, Ago2,
and Dicer are involved in the innate immune response to DWV infection in A. mellifera
brains [55]. The transcriptome profile of A. mellifera eggs shows the trans-generational
effects of SBV and DWV on several gene expression levels, indicating the different viru-
lence of DWV and SBV during vertical transmission [56]. Bee viruses can be transmitted
by Varroa destructor mites, which drives changes in virus distribution, prevalence, and
virulence [57]. Transcriptomic analysis shows that varroa-induced viral replication is closely
related to the expression of immune genes PGRP-S2, NimC2, and Eater-like as well as serine
protease levels in A. mellifera adults [58]. Furthermore, transcriptomic analysis revealed
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that the Varroa mite alone and the DWV coupled with the mite could induce upregulation
of different immune genes involved in the Toll and JNK pathways, respectively [59]. In
addition, multiple transcriptome data have shown that hymenoptaecin, defensin-2, PGRP-S1,
and B-gluc1 are common host immune genes that respond to the major pathogens and
parasites such as RNA viruses, V. destructor, N. apis, and N. ceranae in A. mellifera [60]. Mean-
while, despite the fact that some common genes are identified above, important differences
in the transcription responses of honey bees to various pathogens were revealed [60].

3.2. Immune Response to Parasites

Along with acting as a virus vector, the parasitic Varroa destructor also reduces nutrient
levels and suppresses individual immune function, and is an underestimated parasite
threatening the health of bee colonies [41,61]. Transcriptomic analysis has shown that
immune gene expression levels change as a response to the mite V. destructor (e.g., PGRP-S3,
GNBP1, Toll receptors, and serine protease) [62]. Updated transcriptomic analysis of newly
emerged A. mellifera has identified three immune genes encoding PGRP-2, hymenoptaecin,
and glucan recognition protein, which could be good candidates as markers for immune
response to Varroa infestation [63]. Moreover, Varroa parasitism could also cause down-
regulation of autophagic-specific gene 18 and poly (U) binding factor 68 Kd (pUf68), and
Rab7 upregulation in A. mellifera [64]. A set of genes related to social immunity has been
identified in A. mellifera by analyzing the comparative transcriptome of varroa-hygienic
bees [65]. Nutrigenomics shows that pollen and sugar supplements positively affect the
production of some AMPs but cannot reverse the harmful effects of varroa parasitism [66].

Additionally, based on the transcriptomic data, the expression of immune genes en-
coding serine protease, lysozyme 1, and hymenoptaecin is found to be suppressed by
Nosema ceranae infection in A. mellifera [67]. Serine proteases, peptidoglycan recognition
proteins, and antimicrobial peptides are downregulated following N. ceranae infection in
A. mellifera [68]. Besides the differently expressed immune genes, the whole transcriptome
has also identified the N. ceranae infection-related long non-coding RNAs (lncRNAs) that
may participate in the A. mellifera immune response [69]. Comparative transcriptome
analysis has identified the genes involved in cellular immune pathways, such as ubiquitin-
mediated proteolysis, endocytosis, lysosomes, phagosomes, autophagy, and melanogenesis,
and in humoral immune pathways, such as MAPK, JAK/STAT, and Toll/IMD signal-
ing pathways, in N. ceranae-infected A. cerana [70]. Moreover, transcriptome analysis
has identified CircRNAs targeting mRNAs that were annotated to cellular immunity
pathways, including endocytosis, lysosomes, and phagosomes in the gut of N. ceranae-
infested A. cerana [71]. Except for honeybee, many genes, including those encoding re-
ceptors (GNBPs), signaling pathway components, and AMPs, have been identified in
Bombus terrestris infested by Crithidia bombi, and these genes are closely related to canonical
immune pathways [72]. Transcriptomic analysis of Sphaerularia bombi-infected B. terrestris
queens during and after diapause showed that increased expression of immune genes
(e.g., genes encoding scavenger receptors, Toll-like receptors, domeless, C-type lectin, and
draper) is mainly induced by S. bombi after diapause [73]. Interestingly, the transcriptome
has been used to evaluate the role of pathogens and pesticides in reducing the B. terricola
population by detecting immune and detoxification genes [74].

3.3. Immune Response to Bacteria

Genome microarrays demonstrate that immunostimulants such as bacterial infection
and wounds could induce hundreds of significantly differentially expressed genes, includ-
ing the previously identified canonical immune genes and other major unidentified new
genes [75]. Transcriptomic analysis showed that the expression levels of hymenoptaecin,
apidaecin, and defensin-1 are significantly upregulated in A. mellifera larvae infested with
the bacterial pathogen Paenibacillus [76]. Transcriptome profiling has revealed an upreg-
ulation of immune-related genes, such as those encoding Toll-like receptors, integrin,
and antimicrobial peptides, in Ascosphaera apis-infected A. mellifera larvae [77]. Moreover,
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13 differently expressed immune genes involved in humoral and cellular immunity were
identified in the A. mellifera gut following A. apis infestation [78]. Transcriptomic analysis
of the A. cerana larval gut showed upregulation of immune genes such as humoral and
cellular immune genes following A. apis infestation [79]. In addition to the pathogenic
bacteria, the beneficial gut microbe Frischella perrara can strongly activate the host immune
response and upregulate important immune genes, including those encoding pattern-
recognition receptors, antimicrobial peptides, transporter genes, and melanization cascade
in A. mellifera [80]. Interestingly, transcriptome analysis has shown that the gut microbe
Lactobacillus apis triggers the expression of PGRP-S3, Spätzle, and antibacterial proteins,
which can inhibit infection by Hafnia alvei; further genomic analysis suggested that the
S-layer proteins of L. apis are potentially involved in honeybee Toll signaling and in the
activation of antibacterial protein production in honeybees [81]. The gut microbiota can be
altered by polystyrene microplastic exposure and might influence the expression of gut
immune genes; for instance, it can cause an upregulation of apidaecin and abaecin and dose-
dependent downregulation of domeless, hopscotch, and symplekin in A. mellifera [82]. Another
A. mellifera gut transcriptome has shown that microplastic polystyrene ingestion triggers
upregulation of PGRP-S3, defensin-2, and dose-dependent differently expressed genes
encoding Toll-like receptors, PGRP-S2, defensin-1, hymenoptaecin, and apidemins [83].
Additionally, as a parasitoid wasp differing from honeybees [84], transcriptomic analysis
suggests that Nasonia vitripennis may possess novel immune components against bacterial
infection [85]. As an important model system, the transcriptome of N. vitripennis will
contribute to our comprehensive understanding of innate bee immunity.

3.4. Immune Suppression Due to Pesticides

Based on a transcriptomic analysis, five differently expressed immune genes encod-
ing hymenoptaecin, abaecin, apidaecin, apisimin, and lysozyme are found in A. mellifera
larvae exposed to sublethal levels of imidacloprid [86]. Another transcriptome analy-
sis has identified immune-related genes (abaecin, eater, hymenoptaecin, defensin1, defensin2,
vitellogenin, and apidaecin) involved in the immune response against neonicotinoids such as
imidacloprid and clothianidin in honeybees; it has also shown that abaecin and hymenoptaecin
expression levels are significantly higher in neonicotinoid-exposed A. cerana than in
neonicotinoid-exposed A. mellifera [87]. Moreover, a transcriptomic analysis also demon-
strated that imidacloprid could alter the innate immune gene expression of brain tissue
in the bumblebee B. terrestris [88]. Meanwhile, following exposure to sublethal doses of
imidacloprid and deltamethrin, detoxification genes are upregulated, and immune genes
encoding apidaecin and hymenoptaecin are significantly downregulated in the brain tissue
of A. mellifera [89]. Another transcriptomic analysis has indicated that environmentally
relevant concentrations of the neonicotinoid clothianidin can induce the downregulation
of scavenger receptor class B member 1 and upregulation of hymenoptaecin and api-
daecin, while imidacloprid can cause hymenoptaecin upregulation in the brain tissue of
A. mellifera [90]. Chronic oral exposure to the neonicotinoid clothianidin may alter the
expression of immune defense-related genes by upregulating exosome complex component
RRP46 and downregulating C-Maf-inducing protein-like in worker bees but not in male
B. impatiens [91]. Moreover, immune gene expression following V. destructor mite infestation
differs from that following exposure to the neonicotinoid insecticide clothianidin in a single
A. mellifera colony [92].

Transcriptome analysis has also helped identify the impacts of various pesticides on
bee immunity. For instance, immune genes encoding defensin1, vitellogenin, and scav-
enger receptor class B member 1 are shown to be downregulated in thiamethoxam-treated
A. mellifera brain tissues [90,93], while innate immunity-related proteins like apolipophorin-
III-like proteins are significantly upregulated in the brains of A. mellifera exposed to envi-
ronmental concentrations of the neonicotinoid thiacloprid [94]. Additionally, dinotefuran
treatment significantly affects the expression of immune-related genes such as those en-
coding glutathione S-transferase S4, prolactin-releasing peptide receptor, defensin 2 (Def2),
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and vesicle-associated membrane protein 2 in the brains of A. mellifera [95]. The immune
genes and expression levels of that in response to four insecticides, namely chlorpyri-
fos, malathion, cypermethrin, and chlorantraniliprole, are different but the differently
expressed immune genes are all involved in the IMD pathway and production of AMPs
in A. mellifera [96]. Transcriptome analysis of midguts also identified differentially ex-
pressed genes involved in immunity in nitenpyram-treated A. mellifera [97]. Dimethoate,
an insecticide, can cause apisimin and Toll downregulation, and flupyradifurone or chlo-
rantraniliprole may induce defensin1 and processing enzyme downregulation in the larvae
of A. mellifera [98]. Differently expressed immune genes are identified in A. mellifera under
benomyl stress [99]. Transcriptomic analysis has revealed that several immune genes such
as those encoding abaecin, Def1, SP28, Toll-1, Toll-6, Toll-8, Toll-10, and MyD88 are upreg-
ulated in benomyl-treated A. mellifera [100]. Additionally, pesticides (acaricides) used to
treat varroa mites in bee colonies can also induce Dscam downregulation, an immune gene
important to cellular immunity, and basket downregulation, an orthologue of JNK signaling,
in A. mellifera [101]. Interestingly, transcriptomic analysis of different tissues suggests that
AMPs (e.g., apisimin and defensin) are simultaneously expressed with nectar processing
enzymes in the hypopharyngeal and mandibular glands of foragers but not in the nurses
of A. mellifera as a response to potential environmental threats during nectar and pollen
collection [102].

4. Conclusions

Advances in genomic and transcriptomic analyses permit recognizing the fundamental
genetic characteristics of bees and help understanding of gene expression changes as part
of the response to various pathogens and/or internal or external environmental stressors.
Multiple bee genomes have revealed that a small number of immune genes are involved in
classical insect immune pathways in the bee’s innate immunity system. Based on genomes,
the transcriptomic analysis has revealed some of the immune genes acting as a response
to various pathogens such as viruses, bacteria, and parasites; these genes are suppressed
by hazardous pesticides. However, more in-depth studies are needed to identify more
immune genes critical to the immune response against threatening factors and maintain
the bee colony’s health. Indeed, recognizing these immune genes provides a basis for the
subsequent elaboration of the function and structure of these genes by other molecular
biological methods. Moreover, further research is needed for a more comprehensive
understanding of innate bee immunity. Future genomic analysis of different species and
transcriptomic analysis of different tissues following various internal and/or external
environment stressors could help identify related immune genes.
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