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Abstract: Periodontal diseases are predisposing factors to the development of many systemic disor-
ders, which is often initiated via leukocyte infiltration and vascular inflammation. These diseases
could significantly affect human health and quality of life. Hence, it is vital to explore effective
therapies to prevent disease progression. Periodontitis, which is characterized by gingival bleeding,
disruption of the gingival capillary’s integrity, and irreversible destruction of the periodontal support-
ing bone, appears to be caused by overexpression of selectins in periodontal tissues. Selectins (P-, L-,
and E-selectins) are vital members of adhesion molecules regulating inflammatory and immune re-
sponses. They are mainly located in platelets, leukocytes, and endothelial cells. Furthermore, selectins
are involved in the immunopathogenesis of vascular inflammatory diseases, such as cardiovascular
disease, diabetes, cancers, and so on, by mediating leukocyte recruitment, platelet activation, and
alteration of endothelial barrier permeability. Therefore, selectins could be new immunotherapeutic
targets for periodontal disorders and their associated systemic diseases since they play a crucial role
in immune regulation and endothelium dysfunction. However, the research on selectins and their
association with periodontal and systemic diseases remains limited. This review aims to discuss
the critical roles of selectins in periodontitis and associated systemic disorders and highlights the
potential of selectins as therapeutic targets.

Keywords: periodontal disease; selectin; systemic disease; diabetes; cardiovascular disease; host
immune response; therapeutic target

1. Introduction

Periodontal diseases (PD), such as gingivitis and periodontitis, are a global public
health problem with a prevalence up to 50% of the reported oral health cases [1]. The
growing global perception is that periodontal health improvements will contribute to
better health [2]. Periodontal diseases comprise inflammatory pathologies and microbiome
dysbiotic events in the host that lead to tooth loss, edentulism, and occlusal dysfunction.
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Additionally, they can trigger several chronic systemic diseases [3], negatively impact-
ing an individual’s health and well-being [4]. During periodontal infections, periodontal
pathogens may play a crucial role in driving leukocytes to extravasate into the whole
circulatory system through the ulcerated and inflamed surface of the gingival [5]. The vas-
cular endothelium permeability is generally influenced by pathogen-associated molecules,
host-derived proinflammatory cytokines, and adhesion molecules, which cause the barrier
to disintegrate. These events then initiate the inflammatory process through mediating
firm adhesion and transmigration of leukocytes [6,7]. The capture and rolling of leukocytes
on platelets and vascular endothelium are essential for the onset of inflammation [8].

Selectins are an important component of adhesion molecules, and they are cell mem-
brane glycoproteins expressed on leukocytes, platelets, and endothelial cells in the blood-
stream that mediate host immune response [9,10]. There are three selectin subfamily
members: Leukocyte-selectin (L-selectin, CD62L), Platelet-selectin (P-selectin, CD62P), and
Endothelial-selectin (E-selectin, CD62E) [10]. Their primary ligand (P-selectin glycoprotein
ligand-1(PSGL-1, SELPLG)) on the surface of leukocytes interacts with P-, L-, and E-selectin,
each with varying affinity to mediate adhesion and rolling of leukocytes on endothelium,
and other signal transduction in the immune response to inflammation [11]. The selectin
family has been well-studied as an adhesion molecule in inflammatory diseases [12].

In recent years, selectins and their ligands have been discovered as one of the important
factors connecting periodontal inflammation and the development of other systemic disor-
ders, including chronic inflammatory diseases such as cardiovascular diseases (CVD) [13],
diabetes [14], atherosclerosis [15], certain cancers, and others [16,17]. The expressions of
selectins and PSGL-1 could vary according to the severity of periodontitis. Furthermore,
clinical evidence has indicated that, after reducing the adhesion of periodontal pathogens
in periodontal diseases by various non-surgical and surgical treatments, systemic inflam-
mation is subsequently reduced with changes in circulating levels of selectins [18,19].
Therefore, selectins could be a potential novel therapeutic target for the prevention or symp-
tom alleviation of periodontal and associated systemic diseases. However, it is essential to
acknowledge that the research on selectins’ roles and regulatory mechanisms in periodontal
diseases, and related systemic inflammation is still limited.

Hence, this review aims to shed light on the current immune mechanisms of selectins
and their biological role and function in periodontal diseases and associated systemic
diseases, especially looking into endothelial function, leukocyte adhesion, and immune
regulation. In order to collect the information for this review, the literature search was
conducted using three databases (OVID Medicine, Scopus, Pubmed). The terms ‘periodon-
titis’ OR ‘periodontal disease’ OR ‘periodontal pathogen’ AND ‘selectin’ AND ‘systemic
disease’ OR ‘systemic disorder’ OR ‘diabetes’ OR ‘cardiovascular disease’ were used in the
search. Thirty-nine studies, including animal studies and clinical trials, were selected for
qualitative analysis based on their relevance to the main content of this review.

2. The Functions and Biological Role of Selectins

Selectins are a crucial component of adhesion molecules [20,21]. They are cell trans-
membrane glycoproteins composed of a C-type lectin domain, an epidermal growth factor
(EGF)-like domain, and extracellular domains of short cytoplasmic tail [22], which effec-
tively mediate cell-to-cell adhesion by recognizing the cell surface’s carbohydrates [23,24].
These adhesion processes are pivotal in chronic and acute inflammatory diseases, infection,
cancer, homing of bone marrow stem cells and lymphocytes, and immune cell surveil-
lance [12]. The selectin family consists of L-selectin, P-selectin, and E-selectin, each of which
has distinct roles and cell adhesion characteristics [22]. P-selectin is selectively expressed on
activated platelets, which contributes to the adhesion of platelets to leukocytes, such as neu-
trophils, monocytes, and natural killer (NK) cells, driving immune cells to the inflammatory
sites [25,26]. P-selectin and E-selectin are typically located on endothelial cells that trigger
proinflammatory cytokines like tumor necrosis factor (TNF)-α, interleukin -1β (IL-1β),
and so forth [27]. L-selectin is predominantly expressed on naive T- and B cells, myeloid



Int. J. Mol. Sci. 2022, 23, 14280 3 of 15

cells, and leukocytes, which can mediate the recirculation of lymphoid cells and leukocyte
adhesion [28]. Additionally, PSGL-1, a homodimeric type I mucin-like transmembrane
protein with disulfide bonds, has been identified as a principal common ligand binding P-,
L-, and E-selectin, and it can be expressed on platelets, neutrophils, monocytes, and most
peripheral B cells and T cells [29]. PSGL-1, interacting with endothelial P- and E-selectin,
can mediate the initial interactions of tethering and roll of leukocytes. Subsequently, it
binds L-selectin to increase recruiting leukocytes at the inflammation site [30–32].

Previous studies have revealed the significant role of selectins and PSGL-1 in many nor-
mal physiological functions. Nonetheless, studies also have reported on a series of impor-
tant adhesion processes that occur in several inflammatory diseases and cancers [10,33,34].
As a result, elevated levels of selectins often participate in the process of human diseases,
including cardiovascular diseases (CVD) [13], psoriasis [35,36], kidney disease [37], asthma,
chronic obstructive pulmonary disease (COPD) [38], thrombosis [39], arthritis [40], and
cancer disease [16,17]. P- and E-selectins are found on activated endothelial cells, mediating
leukocyte homing and trafficking [41–45]. Therefore, they may serve as a biomarker for
endothelial activation in CVD (e.g., coronary heart disease, atherosclerosis, hypercholes-
terolemia, and hypertension) [46–49]. It is noteworthy that upregulated P- and E-selectin
expression has been observed in gingival crevicular fluid and peripheral blood of psoriasis,
rheumatoid arthritis, and many other inflammatory and infective diseases [12,50–53].

In addition, selectins may contribute to various aspects of tumor progression and
migration [54–56]. Studies have reported the functions of selectins in the interaction
of activated platelets, leukocytes, and endothelial cells with cancer cells [57,58], thus
promoting the spread of cancer cells in the blood flow by exploiting the tethering and
rolling adhesion cascade of leukocytes [16,17,59]. Selectins and their ligands are potent
mediators of leukocyte–endothelium interaction under inflammatory conditions since they
facilitate leukocyte rolling and extravasation at inflammation sites of the endothelium in
postcapillary venules and platelet activation of inflammatory periodontal tissues [60–62].
Hence, the overexpression of selectins and secretion of proinflammatory cytokines are
important factors initiating inflammatory responses.

3. The Role of Selectins in Periodontal Diseases and Associated Systemic Diseases

Periodontitis is a chronic inflammatory illness that progressively deteriorates the
integrity of the supporting periodontal tissues due to the subgingival biofilm matrix on the
tooth surface [63]. Disruption of periodontal pocket epithelial integrity usually facilitates
the entry of bacteria, bacterial products, and cytokines into the bloodstream, resulting in
bacteremia and systemic inflammation [64,65]. Periodontal diseases are closely associated
with systemic diseases through leukocyte accumulation caused by periodontal bacteria,
resulting in endothelial dysfunction and causing inflammation of the distal organs [66–68].
Generally, the systemic inflammatory state caused by severe periodontitis is characterized
by the release of proinflammatory cytokines, leukocytosis, and changes in the status of
endothelial cells and platelets in the circulatory system. These events further exacerbate
periodontitis via a positive feedback mechanism [69,70].

Selectins and their ligands are located in essential sites where the leukocyte per-
forms functions associated with platelet activation and endothelial dysfunction. Thus,
their overexpression could trigger inflammatory and cell-mediated host immunological
responses [71–74]. Several studies have demonstrated the high expression levels of E-
selectin and P-selectin on gingival endothelial cells of patients with adult periodontitis. The
severity of periodontal damage is also correlated to high levels of TNF-α and IL-1 found
in sites of gingival inflammation [75–77]. On the contrary, total P/E-selectin deficiency
may not be beneficial, as it could increase the susceptibility to early-onset periodontal
disease caused by infection. Niederman et al. created engineered P/E-selectin-deficient
mice (P/E−/−) to test this hypothesis, and the results of the study demonstrated that a
significantly earlier onset of alveolar bone loss was observed in P/E−/− mice than that in
the wild-type mice [78].
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Henceforth, this section will provide an overview of the potential mechanisms in the
connection between periodontitis and several common systemic diseases, followed by in-
sights into the selectins’ expression and biological function in association with periodontitis
and systemic diseases.

3.1. Periodontitis–Diabetes Linkage

The relationship between diabetes and chronic periodontal disease is characterized
by an enhanced local to systemic inflammatory response. Bacteria and host immune
responses are two main factors affecting the severity and progression of periodontal tissue
destruction [79–81]. Several studies have reported that patients with type 2 diabetes
(t2DM) had a high prevalence of periodontal disease in the periodontitis–diabetes linkage.
The increased expression of selectins and other inflammatory mediators was frequently
associated with higher severity of periodontal conditions due to host tissue destruction,
which could be a characteristic of periodontitis-t2DM (Figure 1) [14,82].
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ciated periodontitis. (c) Bacteremia caused by Pg-LPS may induce chronic renal inflammation. Fig-
ure created with BioRender.com. 
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Figure 1. Diabetes can accelerate the development of periodontitis through the involvement of
selectins. (a) Hyperglycemia can increase vascular permeability and leukocyte adhesion molecule
expression, which enhance leukocyte aggregation and lead to periodontitis. (b) Blood-derived
macrophages/monocytes secrete chemokines and cytokines to regulate the development of diabetes-
associated periodontitis. (c) Bacteremia caused by Pg-LPS may induce chronic renal inflammation.
Figure created with BioRender.com.

Research demonstrated that chronic hyperglycemia caused by diabetes creates a
microvascular environment similar to acute inflammation in the gingiva with periodontitis.
The chronic hyperglycemia state is induced by overexpression of P-selectin in endothelial
cells and PSGL-1 in leukocytes, leading to the alteration of the permeability of gingival
postcapillary venules and resulting in lymphocyte spillage [83]. An animal study on
leukocyte activation revealed that the cytoplasmic domain of PSGL-1 is dispensable as it is
not required to support leukocyte rolling on P-selectin. However, the cytoplasmic domain
of PSGL-1 is still necessary to activate lymphocyte function-associated antigen 1 (LFA1)
to slow rolling on intercellular adhesion molecule-1 (ICAM-1). Hence, the increase in the
interaction of P-selectin and PSGL-1 may affect the endothelial cell cytoskeleton, directly
affecting vascular permeability [84]. In addition, Lalla et al. emphasized the potential
mechanism for the production of tumor necrosis factor-α (TNF-α) by macrophage-derived
foam cells macrophages/monocytes, which is related to the activation of E-selectin to
mediate the development of diabetes-associated periodontitis [85].

Likewise, severe periodontitis may lead to bacteremia because microorganisms from
the oral cavity could reach the renal circulation of individuals with periodontitis-associated
diabetes via systemic circulation (Figure 1). It appears that lipopolysaccharides (LPS) of

BioRender.com


Int. J. Mol. Sci. 2022, 23, 14280 5 of 15

P. gingivalis (Pg-LPS) accumulated in glomeruli may cause chronic renal inflammation
and damage renal tubules as an impact of the leukocyte migration. Alternatively, the
severe stage of diabetes can be complicated by nephropathy through induced diabetic
renal inflammation by Pg-LPS, such as glomerulosclerosis and tubulitis. Glomerular
overexpression of VCAM-1 and E-selectin induces the recruitment of Mac-1/podoplanin-
positive macrophages, leading to the deposition of unmetabolized angiotensin-converting
enzyme 2 (ACE2) and fibroblast growth factor 23 (FGF23) and inflammation-induced
kidney injury in diabetics [86]. Therefore, periodontal disease may influence patients’
different stages of diabetic progression.

3.2. Periodontitis–Cardiovascular Disease Linkage

Millions of people are afflicted with CVD, causing prolonged suffering, economic
loss, and even death. Atherosclerosis is the primary cause of CVD, such as myocardial
infarction, heart failure, and claudication [87]. Epidemiological findings have revealed that
individuals with severe periodontitis have a higher risk for CVD [88–90]. The cause of
periodontitis-associated CVD is mainly due to elevated vascular inflammation, which is
affected by soluble-intercellular adhesion molecules and immune complexes. This condi-
tion induces proinflammatory cytokines and chemokines production, which subsequently
stimulate the release of leukocytes, such as neutrophils, monocytes/macrophages, NK
cells, and T cells [91]. Moreover, platelet count and activity elevation are other factors for
periodontitis and CVD [92]. Activated platelets release potent inflammatory and mito-
genic chemicals into the immediate surroundings that affect the endothelium’s chemotactic
and adhesive characteristics [93,94]. These molecules work in combination to accelerate
inflammatory processes and increase the recruitment of immune cells, resulting in en-
dothelial activation and proliferation [92]. Endothelial activation and adhesion molecule
expression appear in atherosclerosis’s initial phase, allowing mononuclear leukocytes to
bind to the endothelium and penetrate the intima [95]. Therefore, the development of
periodontitis-associated CVD could be promoted by leukocyte activation and recruitment
via interaction between adhesion molecules and endothelial cells, in addition to other con-
tributing factors relating to glucose metabolism, lipid metabolism, amino acid metabolism,
and phospholipid metabolism [96,97]. Figure 2 illustrates the potential roles of selectins in
periodontitis-associated CVD.
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release of proinflammatory cytokines and chemokines, which could result in CVD. (b) Activated
platelets interact with endothelium to accelerate inflammatory processes and enhance immune cell
recruitment, leading to the development of CVD. Figure created with BioRender.com.

Regarding the roles of selectins and their ligands in periodontitis-CVD linkage, Ning
et al. conducted a study to investigate the molecular mechanisms between atheroscle-
rosis and periodontitis. Bioinformatics results of the study revealed that Selectin P Lig-
and (SELPLG) is one of the core crosstalk genes involved in the mechanisms between
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atherosclerosis and periodontitis. SELPLG was identified to promote the progression of
atherosclerosis via regulating the interaction of activated immune cells and endothelial
cells and also elevating expression levels of TNF-α and IL6 [15]. Nonetheless, it remains
inconclusive whether periodontitis-triggered systemic inflammation can cause the upreg-
ulation of SELPLG [15,98]. Additionally, Leong et al. reported that periodontitis-CVD
was associated with the elevated expression of serum P-selectin (sP-selectin) level and
platelet activation as observed via spider-form and pathological aggregation patterns of
platelets [99]. The activated P-selectin could also assist platelets in adhering to monocytes
by integrating with PSGL-1, indirectly causing inflammation and pathological changes of
periodontitis related to thromboembolism [100,101].

3.3. Periodontitis and Other Diseases Linkage

Other periodontitis-related diseases, such as cancer (periodontitis-cancer), are also
worth exploring. Recent studies discovered that PSGL-1 could act as an immune check-
point and therapeutic target for tumor disease. PSGL-1 binds on T cells and potentially
contributes to inhibitory signaling pathways that promote T cell exhaustion in tumors;
thus, blocking PSGL-1 can increase tumor control [102]. At the tumor site, several adhesion
molecules (such as E- and P-selectins) may act in a synergistic way to control endothelial
progenitor cell (EPC) integration and tumor angiogenesis [103]. Moreover, animal studies
showed that a protein from P. gingivalis accelerated tumor growth by increasing E-selectin
expression and enhancing EPC’s function [104,105].

Overall, only a few studies focus on the role of selectins in periodontitis and associated
systemic disease. Figure 3 illustrates the potential functions of selectins in periodontal
diseases and systemic diseases. Further research is crucial to examine the mechanisms
of selectins in these systemic diseases, and clinical trials to evaluate their prospects as
immunotherapeutic targets are required.
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Figure 3. The mechanisms of selectins in periodontal diseases and systemic diseases. (a) Periodontal
diseases caused by subgingival bacteria on the tooth surface and periodontal pocket. Periodontal bacteria
can enter the bloodstream and cause systemic inflammation due to disruption in the integrity of the
vascular endothelium, such as CVD, diabetes, kidney diseases, atherosclerosis, and certain cancers. (b) In a
severe inflammation state, the host’s immune response will be triggered, which causes the activation of
various lymphocytes in the vasculature, rolling of leukocytes on the vascular endothelium, spillover, and
activation of platelets. (c) P-selectin is selectively expressed on activated platelets which connect platelet
adhesion and leukocytes, such as neutrophils, monocytes, and T-lymphocytes; E-selectin and P-selectin
are generally expressed on endothelial cells that activate the process of rolling of leukocytes; L-selectin is
mainly expressed on leukocytes, which can mediate the recirculation of lymphoid cells and leukocytes
adhesion; PSGL-1 can interact with P-, L-, and E-selectin, which can be expressed on platelets, neutrophils,
monocytes, and most peripheral T cells and B cells. Figure created with BioRender.com.
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3.4. The Relationship between Selectins and Periodontal Pathogens

Pathogens’ perturbation of the host’s oral microbiome can disrupt gingival health.
During the events of subgingival infections, the inflammatory immune response produced
is the primary contributor to periodontitis. The three most common bacterial species associ-
ated with periodontitis are Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis,
and Tannerella forsythia [106]. Bacteremia induced by periodontal bacteria is common during
biting and tooth brushing [64]. The link between periodontitis and systemic disorders
stems from the hematogenous dissemination of periodontal pathogens or spillover of
inflammatory mediators from periodontal tissues to the whole bloodstream [107].

Several studies have focused on investigating the expression of selectins with periodon-
tal pathogens to understand further the mechanisms between periodontitis and diabetes,
CVD, and other systemic diseases [77,107,108]. According to Horie et al., T. forsythia in the
periodontal pocket could trigger the onset of periodontitis by binding to lectins expressed
on host cells, including the E-, P-, and L-selectins, Sig-lec-5, -9, and -10, and DC-SIGN [109].
T. forsythia and A. actinomycetemcomitans have been detected in human atherosclerotic
plaques, which supported the direct link of the periodontal pocket to systemic circu-
lation [110,111]. A study also reported that spontaneously hyperlipidemic mice with
atherosclerosis infected by A. actinomycetemcomitans presented an increased expression of
adhesion molecule (e.g., ICAM-1, E-selectin, and P-selectin) [112]. Assinger et al. revealed
that periodontal pathogens, A. actinomycetemcomitans and P. gingivalis, induced rapid sur-
face expression of P-selectin in platelets and endothelial cells. This significantly increased
plasma soluble P-selectin (sP-selectin) levels, correlated with the severity of periodontitis
and bacterial infection [76]. sP-selectin has the ability to promote the severity of thrombotic
and CVD via stimulating leukocyte recruitment to vascular injury and escalating CVD
progression [62]. Nicu et al. also found that platelets from periodontitis patients had
increased exposure of P-selectin and formation of platelet monocyte complexes compared
to controls. The enhanced platelet activation was in response to periodontal pathogens.
Activated platelets and leukocytes are risk factors triggering atherothrombotic activity,
increasing the risk for CVD [77].

Besides, it has been discovered that human aortic endothelial cells (HAEC) infected
with invasive P. gingivalis can lead to the expression of E-/P-selectin, ICAM-1, and VCAM-
1, thereby enhancing the expression of tissue factor and producing procoagulant ef-
fect [113,114]. Additionally, studies reported that P. gingivalis, A. actinomycetemcomitans,
and other dental plaque microbes, such as Streptococcus sanguis, become a potential risk for
cerebrovascular and atherosclerotic disorders by inducing platelet activation and aggrega-
tion. This causes a high release rate of P-selectin [115,116]. Furthermore, P. gingivalis can
trigger endothelial cells and stimulate E-selectin overexpression, which enhances mono-
cytes’ adherence to endothelial cells [117,118] and initiates vascular inflammation [119].
Lipopolysaccharides (LPS) present on the surface membrane of periodontal pathogen
P. gingivalis can cause periodontal tissue destruction, a risk factor for systemic diseases [120].
LPS of P. gingivalis (Pg-LPS) is widely recognized by host defense systems via Toll-like
receptor 4 (TLR4) or Toll-like receptor 2 (TLR2) to activate immune response [121,122].
Kajiwara et al. reported that LPS from P. gingivalis caused diabetic renal inflammation,
which includes glomerulosclerosis and tubulitis. Overexpression of E-selectin was observed
in renal intertubular capillaries, parenchyma, and glomeruli, which led to macrophage
infiltration and kidney damaged by Pg-LPS-induced inflammation in diabetes [86].

Additionally, other experiments showed that NOD1 and NOD2, as classical nucleotide-
binding oligomerization domain (NOD)-like receptors, play an essential role in sensing
intracellular pathogens [123]. P. gingivalis has been demonstrated to activate NOD1, NOD2,
and TLR2 expression in human endothelial cells, leading to enhanced E-selectin expres-
sion. In P. gingivalis-regulated endothelial cells, selectins are implicated in the activation
of the NF-κB signaling pathway. Meanwhile, additional signaling pathways through
P38 MAPK are primarily presented during NOD1 activation in response to P. gingivalis
infection [108,124,125]. Promoting the recruitment of monocytes and T cells and their
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subsequent adherence to the endothelium could accelerate the first stage of atherogene-
sis [126]. In contrast, another important immunodominant antigen in individuals with
periodontitis is GroEL from P. gingivalis, which may be involved in pathological processes
and systemic inflammation [127]. Lin et al., 2015 conducted an animal study to understand
the underlying mechanisms between oral bacteria and cancer. They revealed that the GroEL
protein of P. gingivalis increased E-selectin expression and promoted neovascularization via
PI3K- and p38 MAPK-signaling pathways and partially via a NOS-related pathway [105].

Overall, periodontal pathogens destroy periodontal tissues and induce inflammation
of distal organs through their capacity to release various virulence factors, such as LPS
and GroEL, to cause platelet activation, endothelium dysfunction, and lymphocyte infiltra-
tion [105,128]. Table 1 summarizes the potential mechanisms in the association between
periodontal pathogens, selectins, and periodontitis-associated systemic diseases. However,
the research investigating the relationship between periodontal bacteria and selectins in
periodontitis-associated diseases is limited, and the findings remain inconclusive.

Table 1. The roles of periodontal pathogens and selectins involved in periodontitis associated-
systemic diseases.

Periodontal Pathogens Selectin Systemic Disease Main Role of Selectin Reference

P. gingivalis

P-selectin
/PSGL-1

CVD;
Atherosclerosis Induce platelet activation and aggregation [115,116]

E-selectin

CVD

Facilitate monocytes adhering to endothelial cells [117,118]
LPS is recognized Via TLR4 and TLR2 to mediate the

function of endothelium [121,122]

Facilitate monocytes and T cells recruiting and
adhering to endothelium [126]

Promote neovascularization through PI3K- and p38
MAPK-signaling pathways, as well as a NOS-

related pathway
[105]

Atherosclerosis Activate NOD1, NOD2, and TLR2 expression to
regulate the function of endothelium [108,124,125]

Diabetes Induce diabetic renal inflammation by infiltrating
Mac-1-positive macrophages [86]

A. actinomycetemcomitans P-,E-selectin
/PSGL-1

Atherosclerosis;
CVD

Induce platelet activation and aggregation data [115,116]
Regulate macrophage and T cells through

cytokine response [111]

T. forsythia E-,P-,L-
selectin Atherosclerosis Modulate the host immune response through

regulating macrophage and T cells [109,111]

4. The Implication of Selectins in Treatment of PD and Associated Systemic Diseases

Endothelial dysfunction forms the basis for developing periodontal and systemic
inflammatory diseases. The upregulation of adhesion molecules in periodontitis can
increase circulating levels of systemic inflammation. Therefore, selectively reducing the
cell adhesion molecules on endothelium that facilitate the uptake of leukocytes into the
vessel wall is a promising method to limit the development of periodontitis and may
aid in controlling related systemic diseases [129]. Periodontal therapy, which mainly
consists of the mechanical destruction of the subgingival calculus and microbial film of
the diseased teeth, is often associated with a local and systemic repairment of endothelial
dysfunction [71,73,129,130].

Various non-surgical and surgical options are available to treat periodontal diseases
by reducing the adhesion of periodontal pathogens. These have been proven to represent
a novel therapy in decreasing the risk of vascular disease [18,130]. Clinical non-surgical
periodontal treatment could reduce systemic inflammation by decreasing inflammatory
mediators’ circulating levels, such as CRP, sE-selectin, IL-1, IL-6, and TNF-α [19,131]. Non-
surgical therapy of periodontitis-associated diabetic individuals can significantly reduce
the serum levels of high-sensitivity-C-reactive protein (hsCRP) and E-selectin. Additionally,
an in vivo study indicated that biomarkers associated with vascular function (E-Selectin
and si-CAM plasma levels) were significantly reduced in the obesity–periodontitis rats after
local combination with systemic therapy [132]. However, another study showed an inter-



Int. J. Mol. Sci. 2022, 23, 14280 9 of 15

esting result where sP-selectin levels had increased after three months of periodontal ther-
apy [133]. The increased circulating sP-selectin could be derived from membrane-bound
P-selectin rapidly shedding from activated platelets after periodontal therapy [133,134],
while platelets can still maintain their normal function and characteristics. In addition, the
shed sP-selectin may have a “calming” effect on activating neutrophils and mediating leuko-
cyte adhesion [135], which may be part of a healing phase after treatment. The study found
that sP-selectin levels in periodontitis patients were much lower than that of untreated
periodontitis and healthy controls from previous studies [92,133,136]. The inconsistencies
in sP-selectin levels observed across different studies could be due to the employment of
different anticoagulants for the analysis (e.g., citrate plasma or EDTA plasma).

There are a limited number of clinical trials involving selectins as a therapeutic tar-
get. Nevertheless, studies have proven that periodontal therapy positively influences
endothelial-dependent function by altering selectins’ expression. Given the potential roles
of selectin in periodontitis and associated systemic diseases, selectins can be anticipated to
represent possible novel therapeutic targets for the treatment of these diseases.

5. Conclusions

Periodontal diseases are among the highest prevalent public health problem world-
wide. Periodontal diseases are closely associated with systemic inflammatory disorders,
especially the development of diabetes and cardiovascular disease [124]. People suffer-
ing from periodontitis and systemic diseases have a greater social-economic burden and
lower quality of life. Periodontal inflammation causes a systemic inflammatory immune
response. The inflammatory factors in leukocytes, platelets, and endothelium, as well as
the direct lesion of the intima by bacteria in the circulation, could induce the formation
and development of inflammatory debris [137]. During this process, the selectins and their
ligands play vital roles in mediating the rolling and transfer of leukocytes in blood flow
and promoting the development of other inflammatory disorders [138]. The regulation of
selectins’ levels could offer preventative measures in the course of periodontal diseases
and their associated inflammatory disorders. Therefore, selectins may be a promising
therapeutic target for periodontal diseases and periodontal-associated systemic disorders.
Thus far, the limited knowledge of selectins’ functions and regulatory mechanisms in
periodontal diseases and their associated systemic diseases warrants further investigation.
Further research in these areas is required to assist in developing selectin-based therapeutic
strategies for the treatment of periodontal and systemic diseases.
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