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Abstract: Predicting SARS-CoV-2 mutations is difficult, but predicting recurrent mutations driven by
the host, such as those caused by host deaminases, is feasible. We used machine learning to predict
which positions from the SARS-CoV-2 genome will hold a recurrent mutation and which mutations
will be the most recurrent. We used data from April 2021 that we separated into three sets: a training
set, a validation set, and an independent test set. For the test set, we obtained a specificity value
of 0.69, a sensitivity value of 0.79, and an Area Under the Curve (AUC) of 0.8, showing that the
prediction of recurrent SARS-CoV-2 mutations is feasible. Subsequently, we compared our predictions
with updated data from January 2022, showing that some of the false positives in our prediction
model become true positives later on. The most important variables detected by the model’s Shapley
Additive exPlanation (SHAP) are the nucleotide that mutates and RNA reactivity. This is consistent
with the SARS-CoV-2 mutational bias pattern and the preference of some host deaminases for specific
sequences and RNA secondary structures. We extend our investigation by analyzing the mutations
from the variants of concern Alpha, Beta, Delta, Gamma, and Omicron. Finally, we analyzed amino
acid changes by looking at the predicted recurrent mutations in the M-pro and spike proteins.

Keywords: SARS-CoV-2; COVID-19; machine learning; mutations

1. Introduction

SARS-CoV-2 is the coronavirus that causes COVID-19. It has a positive sense single-
stranded RNA (ssRNA) genome of around 29,900 nucleotides that codifies 11 genes:
ORF1ab, spike (S), ORF3a, envelope (E), membrane (M), ORF6, ORF7a, ORF7b, ORF8,
nucleocapsid (N), and ORF10 [1,2]. The ORF1ab gene encodes the polyproteins pp1a and
pp1ab, which are further cleaved by the main protease (M-pro) and papain-like protease
(PLpro) [3]. Pp1ab includes pp1a, and its synthesis requires a ribosomal frameshift [3].
When pp1ab cleaves, it gives rise to 15 proteins: a lead protein, nsp2, nsp3 (PLpro), nsp4,
nsp5 (M-pro), nsp6, nsp7, nsp8, nsp9, nsp10, nsp12 (an RNA-dependent RNA polymerase,
RdRp), nsp13 (a helicase), nsp14 (a 3′-5′ exonuclease), nsp15 (an endoRNAse) and nsp16 (a
2’-O-ribose methyltransferase) [3].

Like other viruses, the SARS-CoV-2 genome mutates. Mutations can lead to enhanced
viral fitness and the emergence of virus variants [4]. However, recombination and re-
assortment are also important mechanisms to generate genomic variability [5]. Virus
mutation rates vary widely [6], but coronaviruses have a proofreading activity (due to the
nsp14 gene) [7] that may explain their abnormally large genome compared to other ssRNA
viruses [5]. Mutations can be caused by RNA polymerase errors during virus replication or
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by the deamination of unpaired nitrogenous bases caused by host deaminases [6,8–10]. In
mammalian species, apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)
enzymes deaminate cytosines into uracils (C > U) in single-stranded DNA (ssDNA) and
ssRNA [11]. Recent experiments have demonstrated that APOBEC3A, APOBEC1, and
APOBEC3G can effectively cause C > U mutations in the SARS-CoV-2 genome at specific
sites [12]. Cytosines in UC and AC motifs showed the highest mutation rate, modulated
by features of the RNA structure around these motifs [12]. This is consistent with previ-
ous results [13,14]. For example, the 5′-[U|A]C>U mutation occurs more frequently than
5′-[C|G]C > U (p = 0.0501) in the SARS-CoV-2 genome [14]. If APOBEC enzymes were
to act on the negative strand of the SARS-CoV-2 genome, it would be reflected on the
positive strand as G>A mutations [15]. Adenosine deaminases acting on RNA (ADAR)
deaminate adenines into inosines (A > I) in double-stranded RNA (dsRNA) [16]. As in-
osine preferentially base pairs with cytidine, A > I mutations cause A > G and U > C
transitions on the positive strand of the SARS-CoV-2 genome [15,17]. Most SARS-CoV-2
mutations are expected to be neutral, but some may be advantageous or deleterious to the
virus [18]. Viruses experience selection pressure from their host’s immune system, defense
mechanisms, antiviral drugs, and vaccines [5]. Highly deleterious mutations, such as those
that prevent the virus from invading the host, are unlikely to be observed [18]. The high
frequency of some mutations is not always due to an advantageous mutation. It can also
be caused by a founder effect, which is when a mutation emerges early in the evolution of
a pandemic and is transmitted to all of its descendants [19] or when they are found in a
variant that carries an additional advantageous mutation.

During the COVID-19 pandemic, the number of new SARS-CoV-2 variants, including
the variants of concern (VoCs), has steadily increased [20,21]. VoCs are variants that exhibit
increased transmissibility; more severe disease; significantly decreased neutralization by
antibodies developed from previous infection or immunization; reduced efficacy of thera-
pies or vaccines, or failures of detection at diagnosis [22]. Therefore, it is very important to
understand the mutational patterns in the evolution of SARS-CoV-2 and to predict its muta-
tions in order to devise better antiviral treatments [23]. Due to the random nature of these
mutations, predicting SARS-CoV-2 mutations caused by replication errors can be difficult.
However, it is feasible to predict mutations driven by the host, such as those caused by
host deaminases [12]. These mutations are expected to be recurrent, i.e., to appear multiple
times independently and be present in several SARS-CoV-2 lineages. In this paper, we
use machine learning (ML) to predict recurrent mutations that will emerge repeatedly and
independently as the virus adapts to humans [18,24]. Before the pandemic, ML was used
extensively in biology [25–28], for example, to predict mutations of influenza A viruses
by predicting which AA position will mutate [29] and to predict recurrent mutations in
cancer [30]. ML has been used throughout the SARS-CoV-2 pandemic as a tool to assist
vaccine development and predict epitope hotspots [31]; the binding affinity of antibodies to
mutations in the spike RBD [32]; the binding affinity of chemical compounds as inhibitors
against the M-pro protein [33,34]; the clinical disease severity based on the virus genome
mutations [35]; the mutation rate of nucleotide substitution (e.g., A > T) [36]; the subsequent
nucleotide given a sequence of the SARS-CoV-2 genome, and also given a pair of sequences
to indicate the location of the changes [37]; the antibody escape mutations of the spike
protein [38]; the spread of spike protein mutation, based on fold-change per country [39];
future domain-specific spike mutations [40]; anti-SARS-CoV-2 activities from molecular
structure [41]; and many more [42,43]. In this article, we start by showing some descriptive
statistics of SARS-CoV-2 mutations. We continue by defining recurrent mutations. We then
use ML models to predict which positions of the genome will have a recurrent mutation,
showing the performance metrics of the models and variables that are more important for
the ML models. Subsequently, we extend our investigation to predict which mutations will
become recurrent and how our work can be used with the variants of concern Alpha, Beta,
Delta, Gamma, and Omicron. Finally, we analyze amino acid changes by looking at the



Int. J. Mol. Sci. 2022, 23, 14683 3 of 17

predicted recurrent mutations in the M-pro and spike proteins, evaluated with recent data
from 2022.

2. Results and Discussion
2.1. SARS-CoV-2 Mutation Description

The GISAID database [44] had 877,086 SARS-CoV-2 genomes as of 19 April 2021. From
these genomes, we found 25,353,899 mutations (including insertions and deletions), of
which 52,160 were unique single nucleotide variants (SNVs) found in one or more genomes.
Among the unique SNVs, adenine and uracil were the nucleotides with the most SNVs,
15,898 and 15,313, respectively (Figure 1A). Because the SARS-CoV-2 genome is richer in
adenines and uracils (its G + C content is 37.97%), in SNVs, it is expected to find more
adenines and uracils than guanines and cytosines. Transitions, i.e., U > C, A > G, C > U,
and G > A, are more frequent than transversions (Figure 1B). When uracil mutates, 51%
of the time, it mutates into a cytosine, with similar percentages found regarding other
transitions (Figure 1B), with the exception of G > A, which has a slightly lower frequency
(Figure 1B). C > G and G > C transversions are observed with lower frequencies (Figure 1B).
Only 14% and 17% of cytosine and guanine SNVs are, respectively, C > G and G > C
transversions. This may reflect the CpG avoidance that has been described for SARS-CoV-2
and other coronaviruses [45,46]. This CpG dinucleotide suppression is thought to be due to
the fact that it is evading the zinc-finger antiviral protein (ZAP) that specifically binds CpG
dinucleotides in ssRNA and causes its degradation [47,48].
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Figure 1. Nucleotide change count of unique single nucleotide mutations. (A) Total count of changes
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2.2. Recurrent Mutations in SARS-CoV-2

Recurrent mutations (RM) are mutations that occur independently and many times
throughout a virus’ evolution. They could be the result of host RNA-editing mechanisms
or ongoing selection [18,24]. After analyzing 46,723 and 7710 SARS-CoV-2 genomes from
July and April 2020, van Dorp et al. [18,24] identified 5710 and 198 RM, respectively.
Among the RM, they found no evidence for increased transmissibility, suggesting that
RMs were caused by RNA editing [18]. To identify RMs, van Drop et al. [18,24] used a
multiple alignment and a maximum likelihood tree. However, due to the large number of
analyzed sequences, we used another strategy. We used Pango nomenclature that classifies
SARS-CoV-2 genomes into lineages [49,50]. The Pango nomenclature is a hierarchical and
dynamic classification system based on phylogenetic evidence that uses ML to assign
each SARS-CoV-2 genome to a lineage [49,50]. Although this system is not intended to
represent every evolutionary change in SARS-CoV-2 [49], we have used it to count the
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number of different lineages in which each mutation is found. Taking advantage of the
hierarchical nature of the Pango system, we then reduced this number by grouping related
lineages and counting the number of distantly-related lineages (NDRL) (see Materials and
Methods). This provided us with an estimate of the number of times a mutation emerged
independently. Then, we defined RM for a set of NDRL thresholds of 5, 10, and 15. We used
different NDRL thresholds to overcome potential sequencing errors, artefactual biases, and
other causes, such as recombination, which may lead to homoplasies [14,24]. We found
22,738, 11,275, and 6767 RM for the 5, 10, and 15 NDRL thresholds. Dataset S1 contains
all the mutations found and the number of NDRLs for each mutation. Mutations present
in almost all Pango lineages that appeared early in the pandemic, such as the A23403G
mutation that results in the D614G substitution of the spike protein, are not considered
to be RM because they have an NDRL value of 1. As expected and based on previous
work [14,18,46,51,52], RMs are rich in C > U mutations (Figure S1). For instance, for the
NDRL threshold of 15, 47% of the 6767 mutations are C > U, while 19% are G > U. U > C,
G > A, and A > G each constitute 10% (Figure S1).

2.3. Prediction of Whether a Given Position in the SARS-CoV-2 Genome Will Be Affected by a
Recurrent Mutation

To predict whether a given position in the SARS-CoV-2 genome holds an RM, as
defined by the NDRL thresholds of 1, 5, 10, and 15, a deep learning/machine learning model
was trained using the artificial neural network/multi-layer perceptron architecture. The
variables used to train the models were the SARS-CoV-2 genome sequence, the prediction
of the secondary structure of the SARS-CoV-2 genome, the RNA normalized 2′-hydroxyl
acylation analyzed by primer extension (SHAPE) reactivity [53], and the translated AA
sequences of the coding parts of the genome. The genome variables were split into 13
position windows, with the central window position indicating the location of the possible
mutation. The data split for the machine learning setup included a group of 16 genes
for training and four different genes for validation (Figure S2). To evaluate the model
predictions, a separate test set was used. The test set was not used at any moment during
training or model tuning. Given their relevance, the M-pro, spike, PLpro, and RNA
polymerase genes were included in the test set [54–56] (Figure S2). The genes in the
validation and test sets were chosen in order to have a similar number of mutations per
nucleotide between them (Figures S2 and S3).

We decided to prioritize sensitivity (true positive rate) over specificity (true negative
rate) in choosing the best prediction model. We chose the model that achieved the highest
specificity with a minimum sensitivity of 0.85 in the validation set. As the NDLR threshold
increased, the performance of the trained model on the testing, validation, and training
set improved (Figure 2). This is shown by the increase in the area under the curve (AUC)
of the receiver operating characteristic (ROC) curve. The AUC values for the training set
were between 0.82 and 0.87 and, as expected, were higher than the values for the validation
and testing sets. Interestingly, the values for the validation and testing sets were similar.
The best AUC for the testing set was achieved for the NDRL threshold of 15, with an AUC
of 0.81. This shows that it is possible to predict the position of recurrent SARS-CoV-2
mutations. When analyzing the model’s performance on the test set genes separately for
the four genes included in this set (M-pro, spike, PLpro, and RNA polymerase), for the
NDRL threshold of 15, the prediction is worse for the spike gene (with an AUC value of
0.77) (Figure S4). This is not uncommon, as mutations in the spike gene can have a high
impact on the infectious power of the virus and these mutations are the most difficult
to predict.
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Figure 2. Receiver operating characteristic (ROC) curve for the testing, validation, and training set
using 1, 5, 10, and 15 as thresholds for the NDRL. The blue dashed diagonal line represents how a
random model would behave.

Figure 3 shows the sensitivity, specificity, and confusion matrix of the test set across the
four NDRL thresholds. The four predictive models showed similar sensitivity values, but
as the NDRL thresholds increased, specificity also increased from 0.46 to 0.69. Confusion
matrices show that when the degree of RM is low, 1 or 5 NDRL, more positions in the SARS-
CoV-2 genome have an RM. In this case, predictive models perform well for predicting
true positive cases but perform worse for predicting true negative cases. When the NDRL
threshold increases, the number of RM decreases, but predictive models are able to predict
reasonably well the positions in the genome that do or do not have an RM.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 2. Receiver operating characteristic (ROC) curve for the testing, validation, and training set 
using 1, 5, 10, and 15 as thresholds for the NDRL. The blue dashed diagonal line represents how a 
random model would behave. 

Figure 3 shows the sensitivity, specificity, and confusion matrix of the test set across 
the four NDRL thresholds. The four predictive models showed similar sensitivity values, 
but as the NDRL thresholds increased, specificity also increased from 0.46 to 0.69. 
Confusion matrices show that when the degree of RM is low, 1 or 5 NDRL, more positions 
in the SARS-CoV-2 genome have an RM. In this case, predictive models perform well for 
predicting true positive cases but perform worse for predicting true negative cases. When 
the NDRL threshold increases, the number of RM decreases, but predictive models are 
able to predict reasonably well the positions in the genome that do or do not have an RM. 

 
Figure 3. Sensitivity, specificity, and confusion matrix of the test set using the thresholds 1, 5, 10, 
and 15 for the NDRL. (A) shows sensitivity and specificity. (B–E) show, respectively, the confusion 
matrix using the NDRL thresholds of 1, 5, 10, and 15. The values are not normalized. Therefore the 
color cannot be compared between subplots. The ground truth, true categories, is placed on the left, 
and predicted values on the bottom. True positives are on the bottom right, and true negatives are 
on the top left. 

We hypothesized that some positions predicted by the model as false positives might 
become true positives later on. To test this hypothesis, we used model predictions trained 
with data from 19 April 2021 but with updated ground truth from 6 January 2022. Table 
1 shows the percentage of the predicted false positives that turned into true positives and 
other variables for various NDRL thresholds for considering a mutation as RM in the 
January 2022 ground truth. We used different NDRL thresholds because the number of 
lineages for each mutation in the January 2022 data is three to four times higher than in 
the April 2021 data. The AUC and sensitivity of the RM position prediction increase as the 
NDRL threshold increases (Table 1). When using an NDRL threshold of 45, 17.7% of the 

Figure 3. Sensitivity, specificity, and confusion matrix of the test set using the thresholds 1, 5, 10, and
15 for the NDRL. (A) shows sensitivity and specificity. (B–E) show, respectively, the confusion matrix
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We hypothesized that some positions predicted by the model as false positives might
become true positives later on. To test this hypothesis, we used model predictions trained
with data from 19 April 2021 but with updated ground truth from 6 January 2022. Table 1
shows the percentage of the predicted false positives that turned into true positives and
other variables for various NDRL thresholds for considering a mutation as RM in the
January 2022 ground truth. We used different NDRL thresholds because the number of
lineages for each mutation in the January 2022 data is three to four times higher than in
the April 2021 data. The AUC and sensitivity of the RM position prediction increase as the
NDRL threshold increases (Table 1). When using an NDRL threshold of 45, 17.7% of the
false positives predicted for the NDRL threshold of 15 turns into true positives in January
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2022. At this NDRL threshold, the AUC, sensitivity, and specificity of the RM position
prediction are 0.8, 0.747, and 0.716, respectively (Table 1). All these metrics correspond to
the testing set. These data confirm our hypothesis that some of our predicted false positives
become true positives later on.

Table 1. Performance metrics of models trained with data from 19 April 2021 and evaluated with
data from 6 January 2022. This table shows the metrics (ROC-AUC, sensitivity, specificity, accuracy),
false positives from 2021 (fps in 2021) that turn into true positives (fps in 2021 to tps in 2022), and the
proportion of this conversion (fps to tps ratio) using different NDRL thresholds for the data from
2022 (th true January 2022).

NDRL
Threshold

Pred 04/2021

NDRL
Threshold

True 01/2022
ROC-AUC Sensitivity Specificity Accuracy Fps in 2021

Fps in 2021
to Tps in

2022

Fps to Tps
Ratio

15 15 0.644 0.481 0.724 0.549 3147 2119 0.673
15 30 0.728 0.597 0.743 0.671 3147 1402 0.446
15 45 0.800 0.747 0.716 0.726 3147 557 0.177
15 60 0.848 0.853 0.681 0.715 3147 99 0.031
15 75 0.873 0.910 0.655 0.691 3147 14 0.004
15 90 0.879 0.936 0.636 0.668 3147 5 0.002
15 105 0.877 0.939 0.622 0.647 3147 2 0.001
15 120 0.880 0.949 0.612 0.634 3147 2 0.001
15 135 0.883 0.953 0.606 0.625 3147 0 0

2.4. Global Feature Importance of the Prediction of Whether a Given Position in the SARS-CoV-2
Genome Will Be Affected by a Recurrent Mutation

Neural networks are often described as black-box models when the influence of each
input variable on the success of the model is unknown. We used the Shapely Additive
exPlanations (SHAP) [57] to determine the influence of each variable on whether a position
in the trained model would mutate or not. The most important features are those with the
highest normalized SHAP values (see Materials and methods). We analyzed four models
with NDRL thresholds of 1, 5, 10, and 15 from April 2021. The nucleotide in the central
position (P0) of each evaluated window of 13 positions (P-6 to P6) is the most important
variable in predicting the position of the SARS-CoV-2 genome where an RM will take
place (Figure S5). Other important variables are the nucleotides in other positions (e.g.,
P1, P-1, P2) and the in vivo and in vitro RNA SHAPE-Seq reactivity data [53]. When the
NDRL threshold is higher, the most relevant variables become more important. Mainly
cytosines, and to a lesser extent, guanines, are more prone to being RM (Figures 4 and S6).
False positives have either a guanine (35%) or a cytosine (25%), and true negatives have
mainly adenine (46%) and uracil (45%) (Figure 4). Regarding the nucleotides surrounding
the nucleotide that mutates, at an NDRL threshold of 15, the upstream and downstream
positions (P-1 and P1, respectively) are the most relevant. In general, the other positions
are of little importance (Figure 4 and Figure S6). In 44% and 27% of the true positives, there
is an adenine or an uracil at P-1, and in 37% of the cases, there is an uracil at P1. This is
consistent with evidence that the cytosines of the UC and AC motifs of the SARS-CoV-2
genome are preferentially deaminated by the APOBEC3A and APOBEC1 enzymes [12].
The importance given to the SHAPE-Seq reactivity comes after that of the nucleotides
(Figure S5). However, the magnitude of their importance is at least five times lower. Low
SHAPE-Seq reactivity values, in the range of 0 to 0.69, do not promote mutagenesis at most
positions (Figure S7). However, higher SHAPE-Seq reactivity values lead to mutations
(Figure S7). This analysis of the most important variables is compatible with a model that
mainly predicts cytosines of the ACU pattern as RM in a region with an RNA structure
that makes this cytosine more reactive. This is consistent with the SARS-CoV-2 mutational
bias pattern and the preference of some host deaminases for specific sequences and RNA
secondary structures [11,12,14].
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2.5. Prediction of Whether a Given Mutation Will Be a Recurrent Mutation

We developed another machine learning method, this time to predict the NDRL in
which we can find a specific mutation, i.e., whether a specific mutation will become an
RM. The data were split into training, validation, and testing sets, in the same manner as
described before. Similarly, the model selection was also chosen by maintaining a minimum
value of 0.8 for the sensitivity in the validation set and selecting the model that achieved the
highest specificity. The performance of this prediction method was similar to the previous
one. The ROC-AUC of the prediction of whether a mutation will be found in more than
15 NDRLs was 0.88, 0.83, and 0.84 for, respectively, the training, validation, and testing sets
(Figures S8 and S9). In the testing set, once again, the worst prediction was found in the
spike gene (AUC 0.82, Figure S9). The most important variables for predicting the NDRL
of a mutation were the starting nucleotide, towards which it mutates, and the in vitro
SHAPE-Seq reactivity (Figure S10). For the NDRL threshold of 15, (a) the most important
variable is when a nucleotide mutates into an uracil (>U at Figure S10), and (b) adenine and
cytosine were the most relevant starting nucleotides (A> and C> at Figure S10). Again, this
is compatible with a model that predicts the mutations C > U and A > G to be recurrent.

2.6. Evaluation of the Models with the Variants of Concern

A good way to test the usefulness of our predictions is to check whether our models
could have predicted the mutations we found in the variants of concern (VoCs). The
identification of the positions of the testing set that mutate in the Alpha, Beta, Delta, Gamma,
and Omicron VoCs has an accuracy of 0.636, 0.600, 0.778, 0.80, and 0.697, respectively, when
using the ground truth of January 2022 and an NDRL threshold of 45 (Table 2). The accuracy
for predicting the mutations of these VoCs is 0.545, 0.40, 0.33, 0.733, 0.636, and 0.60 (Table 2).
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Table 2. Performance over variants of concern.

Position Prediction. NDRL 15/45 * (2022)

Variant of Concern No. of Mutations No. of Mutations NDRL45 Accuracy Sensitivity Specificity

Alpha 11 8 0.636 0.750 0.333
Beta 10 8 0.600 0.625 0.500
Delta 9 7 0.778 0.857 0.500

Gamma 15 11 0.800 0.818 0.750
Omicron 33 24 0.697 0.708 0.667

Combined 61 49 0.697 0.776 0.667

Mutation Prediction. NDRL 15/45 * (2022)

Alpha 11 8 0.545 0.500 0.667
Beta 10 8 0.400 0.375 0.500
Delta 9 7 0.333 0.286 0.500

Gamma 15 11 0.733 0.727 0.750
Omicron 33 17 0.636 0.471 0.812

Combined 61 42 0.607 0.500 0.842

* 15/45 means that the NDRL threshold of 15 was used for the prediction, but it was evaluated with the ground
truth from January 2022, using an NDRL threshold of 45.

Several mutations of the testing set from the VoC are correctly predicted by our two
prediction methods (Table 3 and Table S1). This is the case for the C3267U, C3828U and
G5230U mutations of the PLpro gene, the G15451A mutation of the RNA polymerase, the
C21614U, C21638U, C21762U, C21846U, G21974U, G22132U, C22686U, G22813U, G22898A,
C23525U, C23604A, C23664U, C23709U, G23948U, C24642U, G24914C and G25088U muta-
tions of the spike gene. Our method predicts that the C14408U mutation, present in all VoCs
and that codes for the RNA polymerase P323L shift, is an RM. As this mutation was found
early in the pandemic, it is found in more than 99% of SARS-CoV-2 genomes available
until January 2022. This mutation is present in all Pango lineages and therefore it is not
considered to be an RM. As a result, this mutation is a false positive of our predictions.
Mutations A5648C and A22812C from the VoC Gamma and U6515A, G8393A, A23055G,
U23075C, A23403G, and A24424C from the VoC Omicron are true negative predictions of
our position and mutation prediction models. These mutations are not recurrent because
they are found in less than 45 Pango lineages. Mutations C10449A, U23599G, C23854A,
and C24130A (Omicron) are true positives of the position prediction and true negatives of
the mutation prediction. This means that these positions contain RMs, but the particular
mutations observed in these VoCs are not recurrent. It has been described that the VoC
Omicron contains many mutations not observed with a high frequency in other SARS-CoV-
2 genomes [58]. Other VoC mutations were false negatives of our predictions. This is the
case with the A2832G and U6954C mutations from the PLpro and the A21801C, U22679C,
U22917G, G23012A, A23013C, and A23063U mutations of the spike gene. The G23012A
mutation from the receptor binding domain (RBD) of the spike protein causes the AA
change E484K, which reduces serum neutralization efficiency [59]. The A23063U mutation
is a missense mutation present in the VoCs Alpha, Beta, Gamma, and Omicron that results
in the AA substitution N501Y of the spike protein’s RBD. This substitution enhances SARS-
CoV-2 infection and transmission and occurs convergently in several lineages [60]. The
U22917G mutation causes the AA substitution L452R that increases spike stability, viral
infectivity, and viral fusogenicity and thereby promotes viral replication [61]. Although
the A23063U and U22917G mutations were present, respectively, in more than 1 million
and 2 million of SARS-CoV-2 genomes available up until January 2022 and in more than
280 pangolin lineages, neither of our two prediction methods predicted these positions or
mutations as recurrent. These kinds of mutations, which enhance SARS-CoV-2 infection
and transmission, are the most interesting ones but the most difficult to predict because
they could not be caused by host deaminases. Our current prediction models are not
specifically trained to detect them. Other interesting cases are those that are false positives
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of our predictions. The C14408C (RNA polymerase) and C24503U (spike) mutations are
found in a few SARS-CoV-2 genomes but are now in the VoC Omicron. They are false
positives of our predictions because they are found in very few cases until January 2022.
They could be mutations that were not observed because they have a negative impact on
SARS-CoV-2, or they could be mutations that may be recurrent in the future, and it would
therefore be interesting to monitor them.

Table 3. Summary of some VoC predictions on position (pos) and mutation (mut). See Table S1 for a
complete table.

Position VoC * Gene Mutation AA N i Countries i NL i,† NDRL i Prediction 15/45 ‡

pos. mut. pos. mut.

3267 A Plpro C3267U T183I 903,866 164 246 241 238 tp tp
21614 G S C21614U L18F 167,687 145 428 399 397 tp tp
21762 O S C21762U A67V 13,723 103 244 248 244 tp tp
23709 A S C23709U T716I 904,197 167 247 234 234 tp tp
14408 A,B,D,G,O RNA pol C14408U P323L 4,577,014 193 1450 1 1 fp fp
6515 O Plpro U6515A L1266I 61 4 3 15 3 tn tn
23403 A,B,D,G,O S A23403G D614G 4,589,366 193 1460 1 1 tn tn
24424 O S A24424C Q954H 5 4 4 30 4 tn tn
8393 O Plpro G8393A A1892T 722 30 33 43 32 tn tn
10449 O M-pro C10449A P132H 1064 32 33 173 31 tp tn
23599 O S U23599G N679K 2425 38 36 138 34 tp tn
23854 O S C23854A N764K 849 27 26 200 24 tp tn
24130 O S C24130A N856K 658 32 32 314 31 tp tn
21801 B S A21801C D80A 25,012 108 88 133 84 fn fn
22917 D S U22917G L452R 2,844,958 171 321 154 137 fn fn
23063 A,B,G,O S A23063U N501Y 1,020,863 175 280 243 242 fn fn
21801 B S A21801C D80A 25,012 108 88 133 84 fn fn

* A: Alpha, B: Beta, D: Delta, G: Gamma, and O: Omicron VoC. i On 6 January 2022. † Number of Pango lineages.
‡ 15/45 means that the NDRL threshold of 15 was used for the prediction, but it was evaluated with the ground
truth from January 2022, using an NDRL threshold of 45. tp, fp, tn, and fn mean true positive, false positive, true
negative, and false negative, respectively.

2.7. Prediction of AA Changes Caused by Recurrent Mutations in the M-Pro and Spike Proteins

We used our model to predict whether a specific mutation is recurrent to evaluate all
possible mutations in the M-pro and spike proteins. The predicted mutations obtained
with the model trained with data from April 2021 produced a set of possible AAs that were
compared with the AA found in the ground truths from April 2021 and January 2022. We
obtained a ROC-AUC of 0.849 and 0.687 for the M-pro and spike proteins, respectively
(Table 4). For this calculation, we took all AAs that were neither observed nor predicted to
mutate as true negatives. The 8 and 102 AA positions for M-pro and spike proteins among
the false positives of the RM prediction became true positives with the data from January
2022 (Table 4).

Table 4. Amino acid change predictions in M-pro and spike proteins.

Gene Year † tp fp fn tn tnp acc spec Sens roc-auc

spike 2021 371 1880 471 24,032 113 0.912 0.927 0.441 0.684
2022 473 1778 596 23,907 103 0.911 0.931 0.442 0.687

M-pro 2021 133 492 26 5775 22 0.919 0.921 0.836 0.879
2022 141 484 41 5760 22 0.918 0.922 0.775 0.849

† Date of the ground truth used to evaluate the model. 2021 means the ground truth from 19 April 2021, and
2022 means the ground truth from 6 January 2022. The columns acc, spec, sens, tp, fp, fn, tn, and tnp stand for
accuracy, specificity, sensitivity, true positives, false positives, false negatives, true negatives, and true negative
positions, respectively.

The comparison of the predicted AA changes with the mutations observed up until
January 2022 shows that more than 77% of the observed recurrent AA changes and recurrent
synonymous mutations observed in the M-pro protein are well predicted by our method
(Figure 5). False positives (shown in red in Figure 5) could be recurrent AA changes that
will be observed in the future and are interesting to monitor. AAs that have mutated and



Int. J. Mol. Sci. 2022, 23, 14683 10 of 17

that are thought to have other possibilities as predicted by our method, such as Ala94,
Arg105, Pro108, Ala116, Ala129, Cys160, Met162, Pro168, Ala191, Ala193, Ala234, Val247,
Ala260, Ala261, Arg279, and Ala285, are positions that tolerate diverse AA substitutions
because they do not affect protein function [62]. Among M-pro AAs, such as Thr25, Thr26,
His41, Met49, Phe140, Gly143, Cys145, His163, His164, Met165, Glu166, Pro168, His172,
Asp187 and Gln189, which usually make intermolecular interactions with covalent and
non-covalent inhibitors [63], only Gly143 and Pro168 show significant AAs changes caused
by RM (Figure 5). In addition, in order to evaluate the performance of our prediction
method, it is important to bear in mind that the false positives and false negatives of
our predictions may include negatively or positively selected positions. Among the false
positives, there are also deleterious mutations that are not expected to occur. Among these,
there are nonsense mutations that lead to the appearance of a premature stop codon and
mutations of the catalytic Cys145 and His41 [62]. The first and last AAs (a serine and a
glutamine, respectively) from the M-pro are also false positives of our prediction. These
two AAs are not expected to mutate because these AAs are recognized by the M-pro itself
to cut the polyprotein 1a and 1b to generate the mature M-pro. Other false positives are the
AAs between positions 143 and 149 (Figure 5). This region corresponds to the conserved
GSCGSxG motif, which has been identified as important for initiating catalysis in SARS-
CoV and MERS-CoV [64]. Among the false negatives (shown in dark yellow in Figure 5),
they could be recurrent mutations. Instead of being recurrent because the host deaminases
have caused them, they have been positively selected, and when they do occur, they confer
a beneficial effect on virus transmission. Asn274 has several recurrent AA substitutions
that our prediction method was unable to predict.
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The sensitivity of our predictions is only 44.2% for the spike protein, showing that the
AA changes for the spike proteins are more difficult to predict (Figure S11). One of the main
reasons for this low sensitivity is the high number of false negatives (Table 4). The RBD is
a key functional part of the spike protein that is responsible for ACE2 binding [65]. Our
prediction model showed that 46% of the recurrent AA changes and recurrent synonymous
mutations observed for the RBD until January 2022 are true positives (AA in green in
Figure 6A). Among the false positives (shown in red in Figure 6), there are nonsense
mutations that were not expected to occur. Other false positives may include AA changes
that are not observed in enough lineages to be considered RM or mutations not observed
because they are deleterious. Among the false negatives (shown in dark yellow in Figure 6),
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there are mutations that our method had not predicted as recurrent but that gives an
advantage to the virus. These include some of the mutations observed in some of the VOCs
discussed earlier, such as L452R [61], E484K [59], and N501Y [60]. Another interesting
region of the spike protein to be studied is the furin cleavage site, which plays a key role
in the cell tropism and pathogenesis of SARS-CoV-2 [66]. This cleavage site contains the
residues PRRARS at positions 681–686 of the spike protein. Figure 6B shows our mutation
predictions for this region. Some of the mutations in this region are expected to be rare
because they may reduce the cleavage caused by the furin protein [66]. This is the case
with R682, R685, and S686. The AAs substitutions R682L and R682W are predicted by
our methodology to be caused by the RM G23607T and C23606T, respectively. They are
observed in a few SARS-CoV-2 lineages and are false positives of our prediction (Figure 6B).
The R685C, R685S, and S686C changes are also false positives of our predictions for the
same reason. R683 seems to be not so important. AA changes of R683 to other AAs, i.e., L, Q,
and W, are recurrent, as our methodology correctly predicted (Figure 6B). Our methodology
also correctly predicted that the P681H substitution observed in the alpha variant was
caused by an RM. This substitution may slightly increase the furin cleavage, but it has no
effect on viral entry or cell-cell spread [67]. However, the P681R substitution observed in
the delta variant caused by the C23604G mutation is a false negative of our prediction.
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3. Materials and Methods

We used 877,086 SARS-CoV-2 genomes from the GISAID database [44,68] available
until 19 April 2021, to create the predictive model, and 4,616,059 SARS-CoV-2 genomes from
6 January 2022 to evaluate the model. Only genomes with a high coverage were considered.
The NC_045512.2 genome [69] was set as a reference genome in order to align and identify
mutations. The mutations, date, pangolin lineage, and genome ID were captured for each
genome. Insertions and deletions were not taken into account. Only mutations from A, G,
C, and U to A, G, C, and U were considered. For each mutation, we took the position and
calculated the number of different pangolin lineages where this mutation was observed.
We applied an algorithm to group the lineages that were linked together so that the whole
group could be counted as one, thereby reducing the number of lineages for each mutation.
We then calculated the NDRL.
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3.1. NDRL Algorithm

We established a set of thresholds to define when a mutation belongs to a lineage and
a group of linked lineages.

Th1: Threshold that defines when a mutation (grouped by the position that mutates)
belongs to a lineage. If a mutation is present in at least th1% of the genomes that belong
to that lineage, we say that it belongs to that lineage or that those mutation-genomes are
related. In our calculations, we considered that a mutation belongs to a lineage if it is in at
least 60% of that lineage’s genomes; therefore, Th1 is 0.6.

Th2: Threshold that defines when a mutation belongs to a group of related lineages.
If a mutation belongs (marked by Th1) to at least th2% of the lineages of related lineages,
we say it belongs to all those lineages for that mutation/position. In our calculations, we
considered that a mutation belongs to a group of related lineages if it belongs to at least
60% of them. Thus, Th2 is 0.6 as well.

A group of related lineages is a lineage and all its descendants. For example, A.1.*
means all the lineages that begin with A.1. [A.1.1, A.1.2, . . . , A.1.10]. When a mutation
belongs to a group of related lineages, the NDRL count is equal to one for that whole group.
Therefore, it is easier to count from parent to children, from a more general, bigger group
to a more specific one.

For each mutation, we visited each lineage, parents first, and evaluated which com-
plied with the Th1 and Th2 values. If the parent lineage complied, it was grouped with
all its children and counted as 1. All these children were then excluded from further
evaluations. If there was no group of related lineages, then the NDRL count was equivalent
to the number of lineages where the mutation was present.

3.2. Data Set Composition

Our main focus was finding future mutations in the genes M-pro, spike, PLpro, and
RNA_pol. Therefore, these genes became the test set. Among the other genes, those that
have a similar length are helicase, nsp6, endoRNAse, and M. Thus, we used these for the
validation set. This means the training set was composed of the remaining genes: leader,
nsp2, nsp4, nsp7, nsp8, nsp9, nsp10, exonuclease, methyltransferase, ORF3a, E, ORF6,
ORF7a, ORF7b, ORF8, N and ORF10. For each position in the selected genes, a window of
six positions was taken on each side, before and after. Therefore, the input of the models
had 13 positions of the genome, the central position being the one under analysis. A higher
number of positions did not improve the performance of the trained models. A set of
features were considered for each position of every window: mRNA nucleotide, RNA
normalized 2′-hydroxyl acylation analyzed by primer extension (SHAPE) reactivity [53],
secondary structure information calculated using Vienna RNAfold [70], and the AA to
which it is going to be translated. The secondary structure information was composed using
a forgi file format, and if it was connected to another nucleotide, we stated to which one it
was connected. We converted the variables that did not have a numerical representation
to a one-hot encoding representation. There were some missing values in the reactivity
data, so we used a multivariate imputation method [71–73]. For the position prediction, we
grouped positives and negatives into four groups. These groups contained mutations that
were at least in 1, 5, 10, or 15 NDRL. The NDRL was defined using the Th1 and Th2 equal
to 0.6. Therefore, when the threshold was set to 5, those positions with an NDRL lower
than 5 were set as negatives and those with a higher value as positives. Therefore, each
mutation with a threshold (th) of 15 was also a mutation in the group with a threshold of
10, 5, and 1. When higher NDRL values were evaluated, the performance increased, but
the number of mutations decreased substantially. For the mutation prediction models, we
followed the same steps but introduced a few changes. We only had three groups, NDRL
5, 10, and 15. NDRL 1 was excluded because we only worked with registered mutations.
Positions with no registered mutations were not included, so it was not possible to define a
negative category for the NDRL lower than 1. The other change was the addition of the
nucleotide to which the position in the center of the input window would mutate.
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3.3. Machine Learning

We used an artificial neural network (ANN) and multi-layer perceptron (MLP) archi-
tecture. To find the best hyper-parameters, such as the number of layers and neurons per
layer (Table S2), we used the Scikit-Optimize library [74]. We used a search space range
between 1 and 14 layers and between 1 and 2048 neurons per layer. The search space
limits were set up so that it could be tested in less than a week and fit into a 12 GB GPU
Memory. We used early stopping as the regularization technique. Our model selection
criteria consisted in considering only models with at least 0.8 of sensitivity and the high-
est possible specificity. Details about the metric implementation can be found in the file
model_selection_metric.py at https://github.com/bsaldivaremc2/sarscov2_rm_prediction
(accessed on 27 October 2022). We also tried convolutional neural networks (CNN) and
transformers [75] architectures. The metrics obtained were comparable. However, MLP
training was faster than training a transformer. In order to understand the models’ feature
importance, an MLP was simpler to integrate with the SHapely Additive exPlanation
(SHAP) [57] library than CNNs. We also tried a non-ANN approach with TPOT [76],
but the performance was worse. In addition, a similar AUC was obtained using Autok-
eras [77], but it lacked the flexibility to be integrated with our model selection criteria while
maintaining good results and explainability. We used the mljar-supervised package [78]
to generate a baseline of ensemble machine-learning models so that we could compare
the performance of our models to other methods (including traditional machine learning
models). A comprehensive list of the performance indicators for our chosen models and
this baseline can be found in Tables S3 and S4. Our model outperforms the baseline in
terms of meeting our model selection criteria (Tables S3 and S4). By using McNemar’s
test [79,80], we demonstrate in Table S5 that the differences between our models and the
baseline are significant. The uncertainty quality of the models, measured with the Brier
score [81], is available in Table S6. To obtain the most important features, we used the
SHAP values. One SHAP value was extracted per sample. Therefore, in order to obtain the
general importance of a specific feature, we took the absolute value of all SHAP values and
added those values to each feature (Equation (1)).

Fj =
i=N

∑
i=1

(Vi), Fnj =
Fj

i=M
∑

i=1
Fi

(1)

Fj is Importance of Feature j.
Vi is the SHAP values of sample i.
N is the number of samples.
Fnj is the normalized Importance of Feature j.
M is the number of features.
To evaluate the predictions of our models with the test set genes, we used updated

data from 6 January 2022. We used this data as a new ground truth, as shown in the Results
and discussion section. Nevertheless, the number of lineages and the NDRL had changed
for the known mutations from 2021 (with which we trained our models). Therefore, we
calculated the growth factor for these known mutations NDRL2022/NRDL2021. The
majority grew by a factor of three (15% between 2.75 and 3.25, 26% between 2.5 and 3.5).
So, we multiplied the NDRL threshold from 2021 by three, which gave us a correspondence
of 1/3, 5/15, 10/30, and 15/45 for 2021/2022. This resulted in an NDRL threshold of
45 instead of 15.

We obtained the list of variants of concern and the mutations that define them from
the WHO [82] and covariant [83] websites. For the development of the machine learning
models, we used a computer with 32 CPU threads, a 12 GB GPU, and 64 GB RAM.

4. Conclusions

Overall, we have created a novel methodology that uses an artificial neural network
capable of predicting RM in the SARS-CoV-2 genome. We have used the SARS-CoV-2

https://github.com/bsaldivaremc2/sarscov2_rm_prediction
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genome sequence, SHAPE-Seq reactivity values, and other variables to predict the position
that mutates, the mutation that occurs, and the AA changes involved. We have validated
our predictions using a test set of four genes that includes the M-pro and the spike genes, as
well as using a real-case scenario such as the prediction of RM in VoCs. The model is robust
enough to predict mutations in the long term, as some false positives within a limited time
frame become true positives in an extended period of time. The predictive method also
may be useful for finding positively and negatively selected positions in the SARS-CoV-2
genome. Among false positives, there are deleterious mutations that were not expected to
occur. Among false negatives, there could be positions that have been positively selected,
and when they occur, they confer a beneficial effect on virus transmission. These results can
be used to find antiviral drugs that will be effective against future SARS-CoV-2 mutations.
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35. Nagy, Á.; Ligeti, B.; Szebeni, J.; Pongor, S.; Győrffy, B. COVIDOUTCOME—Estimating COVID Severity Based on Mutation
Signatures in the SARS-CoV-2 Genome. Database 2021, 2021, baab020. [CrossRef]

36. Hossain, M.S.; Pathan, A.Q.M.S.U.; Islam, M.N.; Tonmoy, M.I.Q.; Rakib, M.I.; Munim, M.A.; Saha, O.; Fariha, A.; Reza, H.A.; Roy,
M.; et al. Genome-Wide Identification and Prediction of SARS-CoV-2 Mutations Show an Abundance of Variants: Integrated
Study of Bioinformatics and Deep Neural Learning. Inform Med. Unlocked 2021, 27, 100798. [CrossRef]

37. Nawaz, M.S.; Fournier-Viger, P.; Shojaee, A.; Fujita, H. Using Artificial Intelligence Techniques for COVID-19 Genome Analysis.
Appl. Intell. 2021, 51, 3086–3103. [CrossRef]

38. Hie, B.; Zhong, E.D.; Berger, B.; Bryson, B. Learning the Language of Viral Evolution and Escape. Science 2021, 371, 284–288.
[CrossRef]

http://doi.org/10.1126/sciadv.abb5813
http://doi.org/10.1016/j.virol.2015.03.012
http://doi.org/10.1038/s41598-022-19067-x
http://doi.org/10.1128/mSphere.00408-20
http://www.ncbi.nlm.nih.gov/pubmed/32581081
http://doi.org/10.1371/journal.pgen.1009175
http://www.ncbi.nlm.nih.gov/pubmed/33206635
http://doi.org/10.1016/j.isci.2021.102116
http://www.ncbi.nlm.nih.gov/pubmed/33532709
http://doi.org/10.1038/s41576-018-0006-1
http://doi.org/10.1016/j.clim.2021.108699
http://doi.org/10.1038/s41467-020-19818-2
http://doi.org/10.1001/jama.2020.27124
http://doi.org/10.1186/s13054-021-03662-x
http://doi.org/10.1073/pnas.2104241118
http://www.ncbi.nlm.nih.gov/pubmed/34292871
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
http://doi.org/10.1186/s13637-016-0042-0
http://doi.org/10.1016/j.meegid.2020.104351
http://doi.org/10.1038/s41580-021-00407-0
http://www.ncbi.nlm.nih.gov/pubmed/34518686
http://doi.org/10.1186/s13059-019-1689-0
http://doi.org/10.1021/acs.jproteome.1c00848
http://doi.org/10.1142/S0219720019500057
http://doi.org/10.1088/1742-6596/1682/1/012019
http://doi.org/10.1186/s12859-016-1385-y
http://doi.org/10.1038/s41598-020-78758-5
http://doi.org/10.1371/journal.pcbi.1009284
http://www.ncbi.nlm.nih.gov/pubmed/34347784
http://doi.org/10.1093/bib/bbab301
http://www.ncbi.nlm.nih.gov/pubmed/34368837
http://doi.org/10.3390/ijms22147714
http://www.ncbi.nlm.nih.gov/pubmed/34299333
http://doi.org/10.1093/database/baab020
http://doi.org/10.1016/j.imu.2021.100798
http://doi.org/10.1007/s10489-021-02193-w
http://doi.org/10.1126/science.abd7331


Int. J. Mol. Sci. 2022, 23, 14683 16 of 17

39. Maher, M.C.; Bartha, I.; Weaver, S.; Iulio, J.D.; Ferri, E.; Soriaga, L.; Lempp, F.A.; Hie, B.L.; Bryson, B.; Berger, B.; et al. Predicting
the Mutational Drivers of Future SARS-CoV-2 Variants of Concern. Sci. Transl. Med. 2022, 14, eabk3445. [CrossRef]

40. Sangeet, S.; Sarkar, R.; Mohanty, S.K.; Roy, S. Quantifying Mutational Response to Track the Evolution of SARS-CoV-2 Spike
Variants: Introducing a Statistical-Mechanics-Guided Machine Learning Method. J. Phys. Chem. B 2022, 126, 7895–7905. [CrossRef]

41. Kc, G.B.; Bocci, G.; Verma, S.; Hassan, M.M.; Holmes, J.; Yang, J.J.; Sirimulla, S.; Oprea, T.I. A Machine Learning Platform to
Estimate Anti-SARS-CoV-2 Activities. Nat. Mach. Intell. 2021, 3, 527–535. [CrossRef]

42. Arora, G.; Joshi, J.; Mandal, R.S.; Shrivastava, N.; Virmani, R.; Sethi, T. Artificial Intelligence in Surveillance, Diagnosis, Drug
Discovery and Vaccine Development against COVID-19. Pathogens 2021, 10, 1048. [CrossRef] [PubMed]

43. Alyasseri, Z.A.A.; Al-Betar, M.A.; Doush, I.A.; Awadallah, M.A.; Abasi, A.K.; Makhadmeh, S.N.; Alomari, O.A.; Abdulkareem,
K.H.; Adam, A.; Damasevicius, R.; et al. Review on COVID-19 Diagnosis Models Based on Machine Learning and Deep Learning
Approaches. Expert Syst. 2022, 39, e12759. [CrossRef] [PubMed]

44. Khare, S.; Gurry, C.; Freitas, L.; Schultz, M.B.; Bach, G.; Diallo, A.; Akite, N.; Ho, J.; Lee, R.T.; Yeo, W.; et al. GISAID’s Role in
Pandemic Response. China CDC Wkly. 2021, 3, 1049–1051. [CrossRef] [PubMed]

45. Daron, J.; Bravo, I.G. Variability in Codon Usage in Coronaviruses Is Mainly Driven by Mutational Bias and Selective Constraints
on CpG Dinucleotide. Viruses 2021, 13, 1800. [CrossRef] [PubMed]

46. Forni, D.; Cagliani, R.; Pontremoli, C.; Clerici, M.; Sironi, M. The Substitution Spectra of Coronavirus Genomes. Brief. Bioinform.
2022, 23, bbab382. [CrossRef] [PubMed]

47. Takata, M.A.; Gonçalves-Carneiro, D.; Zang, T.M.; Soll, S.J.; York, A.; Blanco-Melo, D.; Bieniasz, P.D. CG Dinucleotide Suppression
Enables Antiviral Defence Targeting Non-Self RNA. Nature 2017, 550, 124–127. [CrossRef]

48. Xia, X. Extreme Genomic CpG Deficiency in SARS-CoV-2 and Evasion of Host Antiviral Defense. Mol. Biol. Evol. 2020, 37,
2699–2705. [CrossRef]

49. Rambaut, A.; Holmes, E.C.; O’Toole, Á.; Hill, V.; McCrone, J.T.; Ruis, C.; du Plessis, L.; Pybus, O.G. A Dynamic Nomenclature
Proposal for SARS-CoV-2 Lineages to Assist Genomic Epidemiology. Nat. Microbiol. 2020, 5, 1403–1407. [CrossRef]

50. O’Toole, Á.; Scher, E.; Underwood, A.; Jackson, B.; Hill, V.; McCrone, J.T.; Colquhoun, R.; Ruis, C.; Abu-Dahab, K.; Taylor, B.;
et al. Assignment of Epidemiological Lineages in an Emerging Pandemic Using the Pangolin Tool. Virus Evol. 2021, 7, veab064.
[CrossRef]

51. Yi, K.; Kim, S.Y.; Bleazard, T.; Kim, T.; Youk, J.; Ju, Y.S. Mutational Spectrum of SARS-CoV-2 during the Global Pandemic. Exp.
Mol. Med. 2021, 53, 1229–1237. [CrossRef]

52. Rice, A.M.; Castillo Morales, A.; Ho, A.T.; Mordstein, C.; Mühlhausen, S.; Watson, S.; Cano, L.; Young, B.; Kudla, G.; Hurst, L.D.
Evidence for Strong Mutation Bias toward, and Selection against, U Content in SARS-CoV-2: Implications for Vaccine Design.
Mol. Biol. Evol. 2021, 38, 67–83. [CrossRef]

53. Manfredonia, I.; Nithin, C.; Ponce-Salvatierra, A.; Ghosh, P.; Wirecki, T.K.; Marinus, T.; Ogando, N.S.; Snijder, E.J.; van Hemert,
M.J.; Bujnicki, J.M.; et al. Genome-Wide Mapping of SARS-CoV-2 RNA Structures Identifies Therapeutically-Relevant Elements.
Nucleic Acids Res. 2020, 48, 12436–12452. [CrossRef]

54. Macip, G.; Garcia-Segura, P.; Mestres-Truyol, J.; Saldivar-Espinoza, B.; Pujadas, G.; Garcia-Vallvé, S. A Review of the Current
Landscape of SARS-CoV-2 Main Protease Inhibitors: Have We Hit the Bullseye Yet? Int. J. Mol. Sci. 2022, 23, 259. [CrossRef]

55. Petushkova, A.I.; Zamyatnin, A.A. Papain-Like Proteases as Coronaviral Drug Targets: Current Inhibitors, Opportunities, and
Limitations. Pharmaceuticals 2020, 13, 277. [CrossRef]

56. Chen, J.; Ali, F.; Khan, I.; Zhu, Y.Z. Recent Progress in the Development of Potential Drugs against SARS-CoV-2. Curr. Res.
Pharmacol. Drug Discov. 2021, 2, 100057. [CrossRef]

57. Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural
Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.

58. Mallapaty, S. Where Did Omicron Come from? Three Key Theories. Nature 2022, 602, 26–28. [CrossRef]
59. Jangra, S.; Ye, C.; Rathnasinghe, R.; Stadlbauer, D.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermúdez-

González, M.C.; Chernet, R.L.; et al. SARS-CoV-2 Spike E484K Mutation Reduces Antibody Neutralisation. Lancet Microbe 2021, 2,
e283–e284. [CrossRef]

60. Liu, Y.; Liu, J.; Plante, K.S.; Plante, J.A.; Xie, X.; Zhang, X.; Ku, Z.; An, Z.; Scharton, D.; Schindewolf, C.; et al. The N501Y Spike
Substitution Enhances SARS-CoV-2 Infection and Transmission. Nature 2022, 602, 294–299. [CrossRef]

61. Motozono, C.; Toyoda, M.; Zahradnik, J.; Saito, A.; Nasser, H.; Tan, T.S.; Ngare, I.; Kimura, I.; Uriu, K.; Kosugi, Y.; et al.
SARS-CoV-2 Spike L452R Variant Evades Cellular Immunity and Increases Infectivity. Cell Host Microbe 2021, 29, 1124–1136.e11.
[CrossRef]

62. Flynn, J.M.; Samant, N.; Schneider-Nachum, G.; Barkan, D.T.; Yilmaz, N.K.; Schiffer, C.A.; Moquin, S.A.; Dovala, D.; Bolon, D.N.
Comprehensive Fitness Landscape of SARS-CoV-2 Mpro Reveals Insights into Viral Resistance Mechanisms. eLife 2022, 11, e77433.
[CrossRef]

63. Gimeno, A.; Mestres-Truyol, J.; Ojeda-Montes, M.J.; Macip, G.; Saldivar-Espinoza, B.; Cereto-Massagué, A.; Pujadas, G.; Garcia-
Vallvé, S. Prediction of Novel Inhibitors of the Main Protease (M-pro) of SARS-CoV-2 through Consensus Docking and Drug
Reposition. Int. J. Mol. Sci. 2020, 21, 3793. [CrossRef] [PubMed]

http://doi.org/10.1126/scitranslmed.abk3445
http://doi.org/10.1021/acs.jpcb.2c04574
http://doi.org/10.1038/s42256-021-00335-w
http://doi.org/10.3390/pathogens10081048
http://www.ncbi.nlm.nih.gov/pubmed/34451513
http://doi.org/10.1111/exsy.12759
http://www.ncbi.nlm.nih.gov/pubmed/34511689
http://doi.org/10.46234/ccdcw2021.255
http://www.ncbi.nlm.nih.gov/pubmed/34934514
http://doi.org/10.3390/v13091800
http://www.ncbi.nlm.nih.gov/pubmed/34578381
http://doi.org/10.1093/bib/bbab382
http://www.ncbi.nlm.nih.gov/pubmed/34518866
http://doi.org/10.1038/nature24039
http://doi.org/10.1093/molbev/msaa094
http://doi.org/10.1038/s41564-020-0770-5
http://doi.org/10.1093/ve/veab064
http://doi.org/10.1038/s12276-021-00658-z
http://doi.org/10.1093/molbev/msaa188
http://doi.org/10.1093/nar/gkaa1053
http://doi.org/10.3390/ijms23010259
http://doi.org/10.3390/ph13100277
http://doi.org/10.1016/j.crphar.2021.100057
http://doi.org/10.1038/d41586-022-00215-2
http://doi.org/10.1016/S2666-5247(21)00068-9
http://doi.org/10.1038/s41586-021-04245-0
http://doi.org/10.1016/j.chom.2021.06.006
http://doi.org/10.7554/eLife.77433
http://doi.org/10.3390/ijms21113793
http://www.ncbi.nlm.nih.gov/pubmed/32471205


Int. J. Mol. Sci. 2022, 23, 14683 17 of 17

64. Wang, H.; He, S.; Deng, W.; Zhang, Y.; Li, G.; Sun, J.; Zhao, W.; Guo, Y.; Yin, Z.; Li, D.; et al. Comprehensive Insights into the
Catalytic Mechanism of Middle East Respiratory Syndrome 3C-Like Protease and Severe Acute Respiratory Syndrome 3C-Like
Protease. ACS Catal. 2020, 10, 5871–5890. [CrossRef] [PubMed]

65. Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 Spike
Receptor-Binding Domain Bound to the ACE2 Receptor. Nature 2020, 581, 215–220. [CrossRef] [PubMed]

66. Chan, Y.A.; Zhan, S.H. The Emergence of the Spike Furin Cleavage Site in SARS-CoV-2. Mol. Biol. Evol. 2022, 39, msab327.
[CrossRef] [PubMed]

67. Lubinski, B.; Fernandes, M.H.V.; Frazier, L.; Tang, T.; Daniel, S.; Diel, D.G.; Jaimes, J.A.; Whittaker, G.R. Functional Evaluation of
the P681H Mutation on the Proteolytic Activation of the SARS-CoV-2 Variant B.1.1.7 (Alpha) Spike. iScience 2022, 25, 103589.
[CrossRef]

68. Elbe, S.; Buckland-Merrett, G. Data, Disease and Diplomacy: GISAID’s Innovative Contribution to Global Health. Glob. Chall.
2017, 1, 33–46. [CrossRef]

69. Severe Acute Respiratory Syndrome Coronavirus 2 Isolate Wuhan-Hu-1, Complete Genome. Available online: https://www.
ncbi.nlm.nih.gov/nuccore/NC_045512.2 (accessed on 20 March 2022).

70. Lorenz, R.; Bernhart, S.H.; Höner zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0.
Algorithms Mol. Biol. 2011, 6, 26. [CrossRef]

71. Buck, S.F. A Method of Estimation of Missing Values in Multivariate Data Suitable for Use with an Electronic Computer. J. R. Stat.
Soc. Ser. B Methodol. 1960, 22, 302–306. [CrossRef]

72. van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67.
[CrossRef]

73. Sklearn.Impute.IterativeImputer. Available online: https://scikit-learn/stable/modules/generated/sklearn.impute.
IterativeImputer.html (accessed on 20 March 2022).

74. Scikit-Optimize. Available online: https://github.com/scikit-optimize/scikit-optimize (accessed on 20 March 2022).
75. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762. [CrossRef]
76. Le, T.T.; Fu, W.; Moore, J.H. Scaling Tree-Based Automated Machine Learning to Biomedical Big Data with a Feature Set Selector.

Bioinformatics 2020, 36, 250–256. [CrossRef] [PubMed]
77. Jin, H.; Song, Q.; Hu, X. Auto-Keras: An Efficient Neural Architecture Search System. arXiv 2018, arXiv:1806.10282v3. [CrossRef]
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