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Abstract: Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis
(MS), approximates the key histopathological, clinical, and immunological features of MS. Hippocam-
pal dysfunction in MS and EAE causes varying degrees of cognitive and emotional impairments and
synaptic abnormalities. However, the molecular alterations underlying hippocampal dysfunctions in
MS and EAE are still under investigation. The purpose of this study was to identify differentially
expressed genes (DEGs) in the hippocampus of mice with EAE in order to ascertain potential genes
associated with hippocampal dysfunction. Gene expression in the hippocampus was analyzed by
RNA-sequencing and validated by reverse transcription-quantitative polymerase chain reaction
(RT-qPCR). Gene expression analysis revealed 1202 DEGs; 1023 were upregulated and 179 were
downregulated in the hippocampus of mice with EAE (p-value < 0.05 and fold change >1.5). Gene
ontology (GO) analysis showed that the upregulated genes in the hippocampi of mice with EAE were
associated with immune system processes, defense responses, immune responses, and regulation of
immune responses, whereas the downregulated genes were related to learning or memory, behavior,
and nervous system processes in the GO biological process. The expressions of hub genes from
the search tool for the retrieval of interacting genes/proteins (STRING) analysis were validated by
RT-qPCR. Additionally, gene set enrichment analysis showed that the upregulated genes in the hip-
pocampus were associated with inflammatory responses: interferon-γ responses, allograft rejection,
interferon-α responses, IL6_JAK_STAT3 signaling, inflammatory responses, complement, IL2_STAT5
signaling, TNF-α signaling via NF-κB, and apoptosis, whereas the downregulated genes were related
to synaptic plasticity, dendritic development, and development of dendritic spine. This study char-
acterized the transcriptome pattern in the hippocampi of mice with EAE and signaling pathways
underpinning hippocampal dysfunction. However, further investigation is needed to determine
the applicability of these findings from this rodent model to patients with MS. Collectively, these
results indicate directions for further research to understand the mechanisms behind hippocampal
dysfunction in EAE.

Keywords: experimental autoimmune encephalomyelitis; gene expression profiling; hippocampus;
multiple sclerosis; neuroinflammation; neuroplasticity

1. Introduction

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS)
that affects a variety of CNS regions and causes a wide range of symptoms [1]. Hippocam-
pal involvement in MS is evident with severe demyelination [2], neuroinflammation [3],
neuronal loss [4], synaptic abnormalities [5], and hippocampal dysfunctions [6]. Previously,
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accumulating evidence suggested a direct link between neuroinflammation and synaptic
abnormalities in the hippocampi of patients with MS [7,8]. For example, increases in the
number and activation of microglia cells and complement system coincide with synaptic
pruning and the engulfment/elimination of synapses in MS hippocampi [8,9]. Thus, neu-
roinflammation and synaptic abnormalities in the hippocampus have gained attention as
plausible mechanisms underlying the cognitive and emotional symptoms in patients with
MS [3,10].

The hippocampus is critical for cognition and emotional regulation [11]. Cognitive
and emotional abnormalities in MS are replicated in its most prevalent animal model,
experimental autoimmune encephalomyelitis (EAE) [12,13]. These studies have used a
battery of behavioral paradigms to assess different aspects of hippocampal function in
terms of learning, memory, and emotional behavior. However, the severity of motor
impairment in EAE can make the identification of aforementioned non-motor symptoms
difficult. Nevertheless, previous studies have used the early pre-symptomatic [14] or late
symptomatic phase [15] of EAE in order to explain the validity of functional studies related
to behavioral assessment. Thus, as in MS, hippocampal dysfunction occurs in the EAE
animal model.

In addition, the EAE animal model mimics the key histopathological (inflammation,
demyelination, axonal loss, and gliosis), clinical, and synaptic features of the hippocampus,
which are observed during MS pathogenesis [16,17]. Particularly, alterations in synaptic
long-term potentiation (LTP) have been found in the hippocampi of mice with EAE [18,19].
Furthermore, in this model, hippocampal dysfunction was observed during the late phase
of disease [19–21] when neuroinflammation and neurodegeneration are prominent [19,22].
However, the molecular mechanisms underlying hippocampal dysfunction in CNS au-
toimmune disease, including MS and EAE, remain largely unknown. In the present study,
gene expression profiles were analyzed in the hippocampi of mice at the late phase of
EAE to gain insights into the underlying mechanisms of hippocampal dysfunction in this
animal model.

2. Results
2.1. Clinical Score following Immunization

Following EAE induction, mice (n = 10/group) were monitored daily for the clinical
score and body weight until 28 days post-immunization (DPI). Twelve days after immuniz-
ing mice with myelin oligodendrocyte glycoprotein peptide 35–55 (MOG35–55), a flaccid tail
was seen. Hind limb paralysis was observed at approximately 15–24 DPI. By 28 DPI, EAE-
affected mice had persistent hind limb paralysis and/or tail atony (Finteraction (28, 522) = 27.09,
p < 0.0001; Supplementary Figure S1A). In line with the EAE onset and progression, the
bodyweight of mice with EAE showed a drastic decrease followed by a gradual increment
(Finteraction (28, 522) = 12.25, p < 0.0001; Supplementary Figure S1B).

2.2. Differentially Expressed Genes (DEGs) in the Hippocampi of Mice with EAE

To determine the gene expression profile specific to the hippocampus in EAE-induced
mice (n = 5/group), total RNA-sequencing (RNA-seq) was performed at the late phase
(28 DPI). A fold change of 1.5 and a p-value of 0.05 were set as cut-off levels for DEG
screening. Compared to the corresponding expression levels in the control (CON) group,
1202 genes were recognized as differentially expressed; 1023 were upregulated and 179
were downregulated in the hippocampi of EAE-affected mice. A hierarchical clustering
heat map of DEGs is shown in Supplementary Figure S2.

2.3. Functional Analysis of DEGs

During DEG analysis, many genes were significantly different between the CON and
EAE-affected hippocampi. Using ShinyGO 0.76 (South Dakota state University, SD, USA),
we performed functional annotation analysis to determine the biological significance of the
DEGs [23]. Gene ontology (GO) analysis revealed that upregulated genes were associated
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with biological processes (BP), including the regulation of immune responses, regulation
of responses to external stimuli, leukocyte activation, innate immune responses, and reg-
ulation of immune response processes (Figure 1A). Figure 1B illustrates the interactions
among the pathways in GOBP, where the pathways (nodes) are connected if they share at
least 20% of their genes. The darker nodes represent gene sets that are considerably more
enriched. Bigger nodes correspond to larger gene sets, whereas thicker edges correspond
to more overlapping genes. The search tool for the retrieval of interacting genes/proteins
(STRING) analysis illustrates the interaction among the proteins coded by genes repre-
sented in the top five pathways in GOBP (Figure 1C). Moreover, cellular components (CC)
(Supplementary Figure S3), including symbiont-containing vacuoles, MHC class I protein
complex, inflammasome complex, MHC class I peptide loading complex, and MHC protein
complex, and molecular functions (MF) (Supplementary Figure S4), including peptide
antigen binding, MHC protein binding, antigen binding, immune receptor activity, and
cytokine receptor activity, were enriched in EAE-affected hippocampi. Supplementary
Table S1 summarizes the detailed report of the GO analysis for upregulated genes in the
hippocampi of mice with EAE.
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Figure 1. Gene ontology (GO) analysis of upregulated genes from the RNA-seq data. (A) Dot plot 
of enriched genes under GOBP (top ten) in EAE-affected hippocampi with >1.5-fold change and p-
value < 0.05. (B) Interactive plot showing the relationship between enriched pathways. (C) STRING 
analysis of the top five pathway genes in GOBP at the highest confidence level (0.9). 

Downregulated genes in EAE-affected hippocampi were associated with BP, includ-
ing learning, skeletal muscle cell differentiation, olefinic compound metabolic processes, 
cellular hormone metabolic processes, and embryonic skeletal system development (Fig-
ure 2). Moreover, CC, including postsynaptic membrane and synaptic membrane (Sup-
plementary Figure S5), and MF, including DNA-binding transcription activator activity, 
DNA-binding transcription activator activity, RNA polymerase II-specific, RNA polymer-
ase II cis-regulatory region sequence-specific DNA binding, cis-regulatory region se-
quence-specific DNA binding, and transcription cis-regulatory region binding (Supple-
mentary Figure S6), were downregulated in EAE-affected hippocampi. Supplementary 
Table S2 summarizes the detailed report of the GO analysis for downregulated genes in 
the hippocampi of mice with EAE. 

Figure 1. Gene ontology (GO) analysis of upregulated genes from the RNA-seq data. (A) Dot plot
of enriched genes under GOBP (top ten) in EAE-affected hippocampi with >1.5-fold change and
p-value < 0.05. (B) Interactive plot showing the relationship between enriched pathways. (C) STRING
analysis of the top five pathway genes in GOBP at the highest confidence level (0.9).

Downregulated genes in EAE-affected hippocampi were associated with BP, including
learning, skeletal muscle cell differentiation, olefinic compound metabolic processes, cellu-
lar hormone metabolic processes, and embryonic skeletal system development (Figure 2).
Moreover, CC, including postsynaptic membrane and synaptic membrane (Supplementary
Figure S5), and MF, including DNA-binding transcription activator activity, DNA-binding
transcription activator activity, RNA polymerase II-specific, RNA polymerase II cis-regulatory
region sequence-specific DNA binding, cis-regulatory region sequence-specific DNA bind-
ing, and transcription cis-regulatory region binding (Supplementary Figure S6), were
downregulated in EAE-affected hippocampi. Supplementary Table S2 summarizes the
detailed report of the GO analysis for downregulated genes in the hippocampi of mice
with EAE.
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Figure 2. Gene ontology (GO) analysis of downregulated genes from the RNA-seq data. (A) Dot plot 
of enriched genes under GOBP (top ten) in EAE-affected hippocampi with > −1.5-fold change and 
p-value < 0.05. (B) Interactive plot showing the relationship between enriched pathways. (C) 
STRING analysis of the top ten pathway genes in GOBP at a medium confidence level (0.4). 

2.4. Validation of DEGs in EAE-Affected Hippocampi 
To establish whether the gene expressions found by reverse transcription-quantita-

tive polymerase chain reaction (RT-qPCR) were comparable with those discovered by the 
RNA-seq analyses (n = 5/group), we assessed genes chosen based on gene expression and 
biological significance. Genes were selected from the STRING analysis among the top five 
GOBP pathways for upregulated genes. There were 28 hub genes whose levels were sig-
nificantly upregulated in EAE-affected hippocampi among which the qRT-PCR validation 
was performed for eight genes (Table 1) including chemokine ligand 5 (Ccl5), interferon-
induced protein with tetratricopeptide repeats 1 (Ifit1), tumor necrosis factor alpha (Tnfα), 
C-X-C Motif Chemokine Ligand 10 (Cxcl10), TYRO protein tyrosine kinase binding pro-
tein (Tyrobp), C-C Motif Chemokine Receptor 2 (Ccr2), beta-2-microglobulin (B2m), and 
signal transducer and activator of transcription 1 (Stat1). However, from the STRING anal-
ysis, the node degree of downregulated genes did not reach 10, even in the top ten GOBP 
pathways. Therefore, four genes with the highest node degree from GOBP, GOCC, and 
GOMF were selected for RT-qPCR validation (Table 1), including transcription factor jun-
B (Junb), early growth response 1 (Egr1), Fos proto-oncogene (Fos), and activity regulated 
cytoskeleton associated protein (Arc).  

  

Figure 2. Gene ontology (GO) analysis of downregulated genes from the RNA-seq data. (A) Dot plot
of enriched genes under GOBP (top ten) in EAE-affected hippocampi with > −1.5-fold change and
p-value < 0.05. (B) Interactive plot showing the relationship between enriched pathways. (C) STRING
analysis of the top ten pathway genes in GOBP at a medium confidence level (0.4).

2.4. Validation of DEGs in EAE-Affected Hippocampi

To establish whether the gene expressions found by reverse transcription-quantitative
polymerase chain reaction (RT-qPCR) were comparable with those discovered by the
RNA-seq analyses (n = 5/group), we assessed genes chosen based on gene expression
and biological significance. Genes were selected from the STRING analysis among the
top five GOBP pathways for upregulated genes. There were 28 hub genes whose levels
were significantly upregulated in EAE-affected hippocampi among which the qRT-PCR
validation was performed for eight genes (Table 1) including chemokine ligand 5 (Ccl5),
interferon-induced protein with tetratricopeptide repeats 1 (Ifit1), tumor necrosis factor
alpha (Tnfα), C-X-C Motif Chemokine Ligand 10 (Cxcl10), TYRO protein tyrosine kinase
binding protein (Tyrobp), C-C Motif Chemokine Receptor 2 (Ccr2), beta-2-microglobulin
(B2m), and signal transducer and activator of transcription 1 (Stat1). However, from the
STRING analysis, the node degree of downregulated genes did not reach 10, even in the
top ten GOBP pathways. Therefore, four genes with the highest node degree from GOBP,
GOCC, and GOMF were selected for RT-qPCR validation (Table 1), including transcription
factor jun-B (Junb), early growth response 1 (Egr1), Fos proto-oncogene (Fos), and activity
regulated cytoskeleton associated protein (Arc).
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Table 1. Summary of RNA sequencing results for selected differentially expressed genes (DEGs) for
RT-qPCR validation.

Gene Symbol FC–RNAseq FC–RT-qPCR NCBI Sequence Primer Pair (5′-3′) Length (bp)

Ccl5 20.954 * 69.55 ** NM_013653.3 F-CAATCTTGCAGTCGTGTTTGTC
R-AGGGGATTACTGAGTGGCATC 197

Ifit1 3.945 * 3.688 ** NM_008331.3 F-TACAGCAACCATGGGAGAGAATG
R-ACTGGACCTGCTCTGAGATT 143

Tnfα 16.693 * 21.64 ** NM_013693.3 F-CCCAAAGGGATGAGAAGTTCC
R-TGGGCTACAGGCTTGTCACTC 109

Cxcl10 13.65 * 17.28 * NM_021274.2 F-CCACGTGTTGAGATCATTGCC
R-GAGGCTCTCTGCTGTCCATC 184

Tyrobp 2.8097 * 2.832 ** NM_011662.3 F-TTAAGTCCCGTACAGGCCCA
R-TTGTTTCCGGGTCCCTTCCG 170

Ccr2 19.534 * 14.26 * NM_009915.2 F-AGGAGCCATACCTGTAAATGCC
R-ATGCCGTGGATGAACTGAGG 163

B2m 5.464 ** 5.728 ** NM_009735.3 F-CTCACACTGAATTCACCCCC
R-TCACATGTCTCGATCCCAGTAG 300

Stat1 2.803 * 3.091 ** NM_001357627.1 F-GCCTCTCATTGTCACCGAAGAAC
R-TGGCTGACGTTGGAGATCACCA 100

Junb −1.7655 *** −1.982 ** NM_008416.3 F-GGATCCCTATCGGGGTCTCA
R-TTGCTGTTGGGGACGATCAA 156

Egr1 −2.397 *** −3.915 ** NM_007913.5 F-GCACCTGACCACAGAGTCCTTT
R-GGCCACTGACTAGGCTGAAAA 188

Fos −2.3463 *** −1.898 ** BC029814 F-GGGCTGCACTACTTACACGT
R-TGCCTTGCCTTCTCTGACTG 169

Arc −1.94 ** −1.676 * NM_018790.3 F-GATCTTTCCTGCTGTGCCCT
R-CGCAACAAGGCCTACTCAGA 109

Gapdh NM_008084 F-CATCACTGCCACCCAGAAGACTG
R-ATGCCAGTGAGCTTCCCGTTCAG 153

Abbreviations: Arc, activity regulated cytoskeleton associated protein; B2m, beta-2-microglobulin;
Ccl5, chemokine ligand 5; Ccr2, C-C motif chemokine receptor 2; Cxcl10, C-X-C motif chemokine ligand 10;
Gapdh, glyceraldehyde-3-phosphate dehydrogenase; Egr1, early growth response 1; F, forward; FC, fold change;
Ifit1, interferon induced protein with tetratricopeptide repeats 1; Junb, transcription factor jun-B; NCBI, National
Center for Biotechnology Information; R, reverse; Stat1, signal transducer and activator of transcription 1; Tnfα, tu-
mor necrosis factor alpha; Tyrobp, TYRO protein tyrosine kinase binding protein. * p < 0.05, ** p < 0.01, *** p < 0.001
(CON vs. EAE).

A validation of gene expression revealed that in the hippocampi of mice with EAE, the
expressions of Ccl5 (mean (M) = 69.55, standard error of mean (SEM) = 19.65; t(8) = 3.489,
p = 0.0082), Ifit1 (M = 3.69, SEM = 0.56; t(8) = 4.551, p = 0.0019), Tnfα (M = 21.64, SEM = 4.82;
t(8) = 4.283, p = 0.0027), Cxcl10 (M = 17.28, SEM = 5.42; t(8) = 2.997, p = 0.0172), Tyrobp
(M = 2.83, SEM = 0.47; t(8) = 3.881, p = 0.0047), Ccr2 (M = 14.26, SEM = 4.13; t(8) = 3.203,
p = 0.0125), B2m (M = 5.73, SEM = 1.00; t(8) = 4.706, p = 0.0015), and Stat1 (M = 3.09,
SEM = 0.54; t(8) = 3.851, p = 0.0049) genes were significantly increased (Figure 3A). However,
the expressions of Junb (M = 0.50, SEM = 0.07; t(8) = 4.953, p = 0.0011), Egr1 (M = 0.26,
SEM = 0.03; t(8) = 3.842, p = 0.0049), Fos (M = 0.53, SEM = 0.10; t(8) = 3.520, p = 0.0078), and
Arc (M = 0.60, SEM = 0.16; t(8) = 2.381, p = 0.0445) genes were significantly decreased in the
hippocampi of mice with EAE (Figure 3B).

2.5. Additional Assessment of Functional Differences Using Gene Set Enrichment
Analysis (GSEA)

To explore the functional differences of a pre-defined set of genes in the CON vs.
EAE-affected groups, we evaluated the differences in the enrichment profiles of hallmark
and curated gene sets from the MSigDB database using GSEA, a powerful tool to analyze
the expressions of large numbers of genes [24,25]. Notably, the top five positively enriched
gene sets in the EAE group were interferon-γ responses, allograft rejection, interferon-
α responses, IL6_JAK_STAT3 signaling, and inflammatory responses whereas only four
negatively enriched gene sets (Wnt/beta catenin signaling, Hedgehog signaling, estrogen
response-early, and myogenesis) were significant (FDR q-value < 0.25, NOM p-value < 0.05).
Moreover, gene sets associated with complement, apoptosis, TNFα signaling via NF-κB, and



Int. J. Mol. Sci. 2022, 23, 14829 7 of 16

P13k_AKT_mTOR signaling were also positively enriched in GSEA Hallmarks. Figure 4 and
Table 2 provide the detailed enrichment report for hallmark gene sets in the GSEA analysis.
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Figure 4. Hallmark gene sets enriched in the hippocampi of mice with EAE. The bar graphs show the
top GSEA hallmark gene sets (FDR q-value < 0.25, NOM p-value < 0.05) that were enriched (positively
(red) and negatively (green)) in EAE. The bars are ordered by the size of the gene set (A) and the
normalized enrichment score (NES) indicates the strength of the enrichment (B).



Int. J. Mol. Sci. 2022, 23, 14829 8 of 16

Table 2. Gene Set Enrichment Analysis (GSEA) results according to the MSigDB Hallmark gene sets.

MSigDB Gene Set Size NES FDR
q-value

NOM
p-value

Negatively enriched gene sets
Wnt_beta-catenin signaling 41 −1.74 0.015 0.008
Hedgehog signaling 36 −1.45 0.06 0.033
Estrogen response early 197 −1.44 0.05 0
Myogenesis 200 −1.38 0.06 0

Positively enriched gene sets
Interferon gamma response 192 2.78 0 0
Allograft rejection 194 2.68 0 0
Interferon alpha response 93 2.67 0 0
Il6_jak_stat3 signaling 85 2.49 0 0
Inflammatory response 197 2.33 0 0
Complement 193 2.24 0 0
Il2_stat5 signaling 199 2.09 0 0
Kras signaling up 199 1.85 0 0
E2f targets 200 1.82 0 0
G2m checkpoint 196 1.81 0 0
Coagulation 138 1.79 0 0
Apoptosis 161 1.77 0 0
Tnfα signaling via nfκb 198 1.62 0.005 0
P13k_akt_mtor signaling 105 1.35 0.096 0.041

Abbreviations: FDR, false discovery rate; NES, normalized enrichment score; NOM, nominal.

Additionally, a curated gene set was used to analyze neuroplasticity-related gene
set enrichment in the hippocampi of mice with EAE. The results indicated that the most
significant gene sets were negatively enriched. The top five negative enrichment of gene
sets related to dendritic morphogenesis, dendritic development, CNS neuron development,
CNS neuron differentiation, and positive regulation of dendritic development (Figure 5).
Table 3 summarizes the detailed enrichment information of the neuroplasticity-related
curated gene set.
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Figure 5. Neuroplasticity-related curated gene sets enriched in the hippocampi of mice with EAE.
The bar graphs show the top five gene sets (FDR q-value < 0.25, NOM p-value < 0.05) that were
negatively enriched in the EAE-affected group. The bars are ordered by the size of the gene set
(A) and the normalized enrichment score (NES) indicates the strength of the enrichment (B).
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Table 3. Gene Set Enrichment Analysis (GSEA) results according to the MSigDB neuroplasticity-
related curated gene sets.

MSigDB Gene Set Size NES FDR
q-value

NOM
p-value

Dendrite morphogenesis 137 −1.933 0.01 0
Dendrite development 227 −1.929 0.01 0
Central nervous system neuron
development 80 −1.849 0.01 0

Central nervous system neuron
differentiation 169 −1.763 0.02 0

Positive regulation of dendrite development 17 −1.698 0.02 0.01
Dendritic spine morphogenesis 57 −1.694 0.02 0.01
Regulation of dendrite development 97 −1.686 0.02 0
Regulation of dendrite morphogenesis 63 −1.667 0.02 0.01
Dendritic spine development 89 −1.591 0.03 0.01
Regulation of dendritic spine
morphogenesis 43 −1.578 0.03 0.02

Dendrite terminus 12 −1.574 0.03 0.03
Regulation of dendrite extension 25 −1.551 0.03 0.02
Dendrite extension 35 −1.524 0.04 0.03
Positive regulation of dendrite
morphogenesis 34 −1.502 0.04 0.01

Abbreviations: FDR, false discovery rate; NES, normalized enrichment score; NOM, nominal.

3. Discussion

The present study aimed to analyze gene expression in the hippocampi of mice with
EAE in order to unravel plausible molecular changes underlying the hippocampal dys-
function in this CNS autoimmune disease. RNA-seq was used to determine the molecular
differences between the hippocampi of CON and EAE-affected mice. Among the DEGs in
the hippocampi of mice with EAE, we found that neuroinflammation-related genes were
largely upregulated, and a number of genes involved in hippocampal neuroplasticity and
learning and memory were downregulated. As a result, this study reports the molecular
modifications underlying the hippocampal dysfunctions observed in EAE.

MS is a chronic immune-mediated inflammatory disorder of CNS with diverse clinical
symptoms [26,27]. Hippocampal dysfunctions in patients with MS are widely evident with
cognitive deficits in all phases of disease progression [28] even though the underpinning
mechanisms are yet to be elucidated. In EAE, spatial learning and memory deficits have
been reported at different phases of the disease. There is a consensus that synaptic plasticity,
the basis of cognitive function, might be influenced by neuroinflammation and immune
molecules [29]. In particular, during EAE, abnormalities in synaptic plasticity have been
described in the hippocampus [18,19]. However, the underlying molecular mechanisms
are still under investigation. Therefore, we attempted to examine the alterations in the
gene expression profile of the hippocampus in EAE, which might identify molecules that
contribute to hippocampal dysfunction.

In line with most previous reports, we found several inflammation- and immune
response-related pathways enriched in the hippocampi of mice with EAE. We confirmed
the elevated gene expression levels of inflammatory mediators (cytokines, chemokine
ligands, and receptors) in the hippocampi of mice with EAE. Chemokines are involved in
immunological processes, including leukocyte recruitment and maturation, and lympho-
cyte trafficking. For instance, Cxcl10, a known chemoattractant for activated T cells [30,31],
and Ccr2 are involved in the microglial phenotype switch to M1 [28]. Chemokines are also
known to affect synaptic plasticity and cognitive performance in EAE [32]. For example, in-
creased Ccl5 paralleled presynaptic defects in EAE [33]. Additionally, the inhibition of Ccr2
prevented neurobehavioral deficits in a cerebral ischemia model [28]. The major sources
of these inflammatory mediators in the hippocampus during the course of EAE seem to
be activated microglia and astrocytes, although there is a contribution from blood-borne
immune cells [34–37]. Chronic neuroinflammation, in terms of elevated inflammatory
mediators and activated microglia/astrocytes, in the hippocampus at the late phase of
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EAE is known to affect neuroplasticity, and thus induce cognitive deficits [38,39]. For
example, TNFα in the hippocampus triggered astrocyte-mediated synaptic disruption and
learning-memory impairment in EAE [37]. Neuroinflammation in the hippocampus is
also known to decrease GABAergic neurons, pre-synaptic puncta, and synaptic protein
expression [40]. In support of this, brain slices incubated with activated microglia displayed
alterations of GABAergic neurotransmission similar to those seen in the EAE brain [38].
The improvement of cognitive function and synaptic plasticity upon the alleviation of
neuroinflammation is not surprising because such therapeutic approaches to inhibit mi-
croglial/astrogial activation are now being researched. EAE and MS are neuroinflammatory
diseases, and it is noteworthy that the targeted inhibition of chemokine pathways in the
hippocampus might improve the alterations in hippocampus-related behavior.

In the present study, we observed a significant upregulation of Stat1 together with
interferon inducible gene, Ifit1, in the hippocampi of mice with EAE. Moreover, GSEA
analysis indicates the upregulation of JAK/STAT signaling in EAE-affected hippocampi.
T cell receptor signaling in combination with interferon gamma (IFNγ) stimulation resulted
in the activation of Stat1 [41,42]. Stat1 and Ifit1 were highly expressed in peripheral blood
mononuclear cells from patients with MS [43] and in CD4+ T cells in EAE [44], suggesting
that they enhanced IFN signaling. IFNγ-STAT1 signaling determines whether microglia
acquire neuroprotective or neurotoxic properties in EAE [45]. In fact, IFNγ and Toll-like
receptor signaling pathways were promoted by Stat1 to shift microglia to an M1 phenotype
in EAE [46]. Moreover, Stat1 is involved in several pathways related to inflammation and
synaptic plasticity in neuroinflammatory diseases, including the development, regulation,
and termination of immune responses; synaptic plasticity; and the regulation of cognitive
function, through the JAK/STAT pathway [47,48]. The inhibition of JAK/STAT1-mediated
neuroinflammation alleviated learning and memory impairment, and improved synaptic
protein expression in an animal model of vascular dementia [28,49]. Thus, the inhibition
of JAK-STAT1 in EAE may improve synaptic and behavioral abnormalities, at least, those
related to the hippocampus. However, the applicability of such therapeutic interventions
in patients with MS needs to be clarified in the future.

In addition, we found that Tyrobp (Dap12) was highly upregulated in the EAE hip-
pocampus. Tyrobp plays a major role in transducing activation signals in myeloid cells
and in the modulation of genes involved in phagocytosis [50]. The upregulation of Ty-
robp has also been noted in CNS during acute EAE [51] where it has an important role
in the development of autoimmunity during the course of EAE. This is supported by the
failure of EAE development in Tyrobp knockout (KO) mice [51]. Apart from its role in
autoimmunity, Tyrobp appears to play role in neuroplasticity because microglial Tyrobp KO
mice displayed synaptic dysfunction [52]. Clinically, a mutation in Tyrobp in humans was
associated with presenile dementia and demyelination [53]. However, it remains unclear
whether the synaptic effect of microglial Tyrobp occurs directly or indirectly. Therefore,
increased expression of Tyrobp in the present study might be associated with glial cells, and
this should be evaluated in the future in order to investigate the synaptic effect of Tyrobp
in EAE.

The present study showed the upregulation of B2m and other genes related to the
MHC-I protein complex in the hippocampi of EAE mice. B2m is a co-subunit for MHC-I
molecules, which are necessary for antigen processing and binding, synaptic processing,
and selective elimination [54]. Interestingly, this is the first time the upregulation of
MHC-I-related molecules and pathways have been reported in EAE-affected hippocampi.
Previously, increased cellular components of the MHC-I complex in the frontal cortex of
mice with EAE in the late phase were reported [55]. Furthermore, B2m was identified in
neuronal and non-neuronal cells in the spinal cord during EAE progression [56–58]. In the
spinal cord, the upregulation of MHC-I genes correlated with periods of synaptic plasticity
disruption by immune cell infiltration [57]. However, the exact effect of MHC-I gene
upregulation in the hippocampi of EAE-affected mice is unknown. It is highly possible
that B2m upregulation underlies synaptic elimination through MHC-I because MHC-I
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molecules are thought to mediate the selective removal of defective synapses, through
activated microglia, in the hippocampi of an epileptic mouse model [59]. Moreover, MHC-I
KO mice had increased LTP in the hippocampus [60]. A similar phenomenon also occurred
in EAE-affected hippocampi. Thus, this should be a focus for future studies to understand
the detailed mechanisms behind the synaptic effects of MHC-I molecules.

Among the genes downregulated in EAE-affected hippocampi, we identified several
immediate early genes (IEGs) including Junb, Egr1, Fos, and Arc with higher node degrees
in the STRING analysis. For decades, IEGs were used as indirect markers to measure
neuronal activity [61]. Junb, Egr1, and Fos belong to an early response family, and Egr1 is
well-known for its role in synaptic plasticity [62]. Egr1 mediates the expression of a number
of late-response genes involved in neuronal processes from growth to plasticity change [61].
The knockdown of Egr1 in the hippocampus impaired long-term memory [63,64]. Egr1
regulates the expression of Arc, one of the most characterized molecules involved in
memory consolidation [65]. Importantly, Arc encodes synaptic proteins, and thus is required
for the generation of new synapses and plasticity mechanisms [66]. The CNS-specific
deletion of Fos resulted in the disruption of synaptic plasticity in the hippocampus and
learning and memory [67]. Aside from the above, many previous studies reported that the
increased expressions of Egr1, Fos, and Arc were related to an improvement in learning and
memory across different animal models of neurological conditions [61,68–70], whereas the
decreased levels of IEGs in the hippocampus were closely related to mood disorders and
cognitive dysfunctions [61]. To the best of our knowledge, this is the first report to show
the downregulation of IEGs in the hippocampus in the late phase of EAE. In a previous
study, however, increased TNFα and microglial activation were associated with spine
loss and decreased levels of Arc in the striatum in the early phase of EAE [71]. Taken
together, IEGs might be interesting candidates to examine in future studies to understand
neuronal activity in the hippocampi of mice with EAE, and the underlying mechanisms of
the cognitive and neuropsychiatric symptoms in EAE.

4. Materials and Methods
4.1. Animals and EAE Induction

Male C57BL/6J mice aged nine weeks (n = 10/group) were acquired from Daihan
Biolink Co. (Chungbuk, Republic of Korea). The mice were kept in a room with a tempera-
ture of 23 ± 2 ◦C, relative humidity of 50 ± 5%, artificial illumination from 06:00 to 18:00,
and 13–18 air volume changes per hour. All mice had free access to water and standard
rodent food (Samyang Feed; Republic of Korea). All experimental and animal handling pro-
cedures were carried out in accordance with the guidelines of the institutional care and use
committee of Chonnam National University (12 August 2022; CNU IACUC-YB-2022-101),
and animal care adhered to internationally agreed standards for laboratory animal use and
care, as mandated by the National Institutes of Health (NIH). Every attempt was made to
reduce the number of animals utilized and their suffering.

EAE was induced in mice (n = 10) as previously described [72]. Briefly, the EAE
group was immunized with 1 mg/mL of MOG35–55 peptide (purity > 96.44%; #051716, GL
Biochem Ltd., Shanghai, China) emulsified in complete Freund’s adjuvant (CFA; #F5881,
Sigma-Aldrich, St. Louis, MO, USA) supplemented with 5 mg/mL of Mycobacterium
tuberculosis H37Ra (#BD231141, Difco Laboratories Inc., Franklin Lakes, NJ, USA) by
subcutaneous injection into the hind flank. At days 0 and 2 post-immunization (DPI), 500 ng
of pertussis toxin (List Biological Laboratories, Inc., Campbell, CA, USA) was injected
intraperitoneally into mice. Control animals remained non-immunized as previously
described [73]. Following immunization, the mice were weighed daily and scored clinically
as follows: grade 0 (G.0), no signs; G.1, floppy tail; G.2, mild paraparesis; G.3, severe
paraparesis; G.4, tetraparesis; and G.5, moribund or death. At 28 DPI, hippocampal tissues
from control and EAE mice were sampled for RNA-Seq and RT-qPCR validation.
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4.2. RNA Isolation and RNA-Seq

Mice (n = 5/group) were decapitated and their hippocampi were removed. Following
the manufacturer’s instructions, total RNA was extracted using an RNeasy® Mini Kit
(#74106, Qiagen, Hilden, Germany). Quant-IT RiboGreen (#R11490, Invitrogen, Carlsbad,
CA, USA) was utilized to determine the total RNA concentration. Samples were tested on
the TapeStation RNA ScreenTape (#5067-5576, Agilent Technologies, Palo Alto, CA, USA) to
determine the integrity of the total RNA. For RNA library construction, only high-quality
RNA preparations with an RNA integrity number greater than 7.0 were employed.

A library was constructed separately with 1 µg of total RNA for each sample by the
Illumina TruSeq Stranded mRNA Sample Prep Kit (RS-122-2101, Illumina, Inc., San Diego,
CA, USA). The initial stage in the procedure is to use poly-T-attached magnetic beads
to purify the poly-A carrying mRNA molecules. Following purification, the mRNA is
fragmented into small pieces under increased temperature using divalent cations. Super-
Script II reverse transcriptase (#18064-014, Invitrogen, Waltham, MA, USA) and random
primers are utilized to convert the cleaved RNA fragments into first strand cDNA. The
second strand of cDNA is then synthesized using DNA polymerase I, RNase H, and dUTP.
These cDNA fragments are subsequently subjected to an end repair procedure, the inser-
tion of a single ‘A’ base, and adapter ligation. To construct the final cDNA library, the
products are purified and enriched by PCR. The libraries were quantified utilizing KAPA
Library Quantification kits for Illumina Sequencing platforms in accordance with the qPCR
Quantification Protocol Guide (KK4854, Kapa Biosystems, Wilmington, MA, USA) and
qualified utilizing the TapeStation D1000 ScreenTape (#5067-5582, Agilent Technologies,
Palo Alto, CA, USA). Indexed libraries were then sent to Illumina NovaSeq (Illumina, Inc.),
and Macrogen Inc. (Seoul, Republic of Korea) completed the paired-end sequencing.

4.3. DEGs, Enrichment Analysis, and Protein–Protein Interaction Analysis

The Bowtie 2 tool was used to match the trimmed reads to the indexed genome.
Cufflinks [74] was used to determine fragments per kb per million reads (FPKM). Genes
with log2 fold change more than 0.75 and p-value less than 0.05 were declared differentially
expressed. ShinyGO 0.76 (South Dakota state University, SD, USA; http://bioinformatics.
sdstate.edu/go/; accessed on 13 August 2022) was used to examine the gene ontology
enrichment of the DEGs [23]. Three GO datasets, including BP, CC, and MF, were analyzed,
respectively for upregulated and downregulated genes [75]. An interactive plot was created
to show the interactions between the top ten enriched pathways, where two pathways
(nodes) were connected if they shared at least 20% (default) of their genes, darker nodes
indicated more significantly enriched gene sets, bigger nodes reflected larger gene sets,
and thicker edges represented more overlapping genes. The genes under the top ten GO
functional categories at a false discovery rate (FDR) cutoff at 0.05 were analyzed further for
possible interactions. Using the STRING database, a protein–protein interaction network
was created to determine the potential physical or functional interactions between DEGs
and to identify the hub genes. For the minimum needed interaction score, the highest
confidence of ≥0.900 and medium confidence of ≥0.400 were set for upregulated and
downregulated DEGs, respectively. Each node in the STRING analysis corresponded to the
protein/gene product and the edges represent evidence for associations.

Additionally, GSEA version 4.2.3 (www.gsea-msigdb.org) was employed to analyze
the gene sets enriched in the RNA-seq data. GSEA is a useful statistical approach for
identifying significantly enriched or depleted groups of genes [24]. In the above com-
parisons, analysis parameters were set up following the GSEA user guide. An enriched
dataset expression matrix using the Hallmark gene sets was created at the cut-off levels
FDR q-value < 0.25 and NOM p-value < 0.05 [24]

4.4. RNA Extraction, cDNA Synthesis, and RT-qPCR

RNA extraction, complementary DNA (cDNA) synthesis, and RT-qPCR were con-
ducted in accordance with our previous studies [76]. Briefly, cDNA was made using the
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SuperiorScript III cDNA synthesis kit (#EZ405S, Enzynomics, Daejeon, Republic of Korea).
The cDNA was diluted with RNase-free water to a final concentration of 8 ng/µL, and
the samples were kept at −80 ◦C. RT-qPCR was carried out using TOPrealTM SYBR Green
qPCR PreMix (#RT500M, Enzynomics, Daejeon, Republic of Korea) and the LineGene
9600 Plus machine (BIOER, Hangzhou, China) following the manufacturer’s instructions.
The primers for RT-qPCR are shown in Table 1. The annealing temperature for the reaction
was 58 ◦C, and the built-in software created the amplification curves and calculated the
threshold cycle values. The GAPDH reference gene was used to normalize all the readouts.
Data were reported as the mean relative values compared to the CON group using the
2−∆∆CT method.

4.5. Statistical Analysis

The RT-qPCR findings were analyzed to determine any differences between the CON
and EAE-affected groups using independent two-tailed Student t-tests. Clinical score and
body weight changes between the CON and EAE-affected groups were compared using
two-way ANOVA followed by Sidak’s multiple comparisons test. All statistical analyses
were performed by GraphPad (version 9.3.1, GraphPad Software, San Diego, CA, USA),
and all data are presented as the mean (M) ± standard error of mean (SEM). A p-value less
than 0.05 was considered statistically significant in all the analyses.

5. Conclusions

The present study strengthens the available evidence for hippocampal neuroinflammation,
even in the chronic phase of EAE in mice. Importantly, for the first time, we unraveled
the significant downregulation of IEGs in the hippocampi of mice with EAE, which may
underlie hippocampus-related behavioral and synaptic dysfunctions in this animal model.
Furthermore, these findings might explain the alterations in hippocampus-related symp-
toms in patients with MS and therefore should be confirmed in future studies.
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