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Abstract: The two members of the UBASH3/TULA/STS-protein family have been shown to critically
regulate cellular processes in multiple biological systems. The regulatory function of TULA-2
(also known as UBASH3B or STS-1) in platelets is one of the best examples of the involvement of
UBASH3/TULA/STS proteins in cellular regulation. TULA-2 negatively regulates platelet signaling
mediated by ITAM- and hemITAM-containing membrane receptors that are dependent on the protein
tyrosine kinase Syk, which currently represents the best-known dephosphorylation target of TULA-2.
The biological responses of platelets to collagen and other physiological agonists are significantly
downregulated as a result. The protein structure, enzymatic activity and regulatory functions of
UBASH3/TULA/STS proteins in the context of platelet responses and their regulation are discussed
in this review.
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1. Novel Family of Atypical Protein Tyrosine Phosphatases

The family discussed in this review is currently termed UBASH3 for the ubiquitin-
associated (UBA) and Src-homology 3 (SH3) domain-containing gene. The protein product
of UBASH3A is also called STS-1 for the suppressor of TCR signaling, CLIP4 for the Cbl-
interacting protein and TULA (or TULA-1) for the T-cell ubiquitin ligand, while the protein
product of UBASH3B, originally designated p70, is also called STS-1 and TULA-2 [1–7].
The terms TULA-1 and TULA-2 will be used in this review solely for the sake of consistency,
even if a respective original paper uses a different name. Extensive discussions of all
TULA-related findings, including platelet-unrelated ones, which are not a direct focus of
this review, can be found in previous reviews on this topic [6–10].

The structure of TULA proteins is conserved within the family and sports an unusual
combination of functional domains [1–4] (Figure 1). One of them is a phosphatase domain
containing a catalytic histidine residue (histidine phosphatase, or HP domain [11]), which
confers phosphatase activity to TULA-family members [12]. The nature of the TULA-
family HP domain sharply differentiates it from the typical protein tyrosine phosphatases
(PTPs), whose key catalytic residue is cysteine [13,14]. The N-terminal half of TULA-family
proteins contains UBA and SH3 domains, which interact with ubiquitin and proline-rich-
motif-containing proteins, respectively [4,5,15,16], and appear to regulate various cellular
processes [4,5,12,15–21] (see Figure 1). Finally, a domain exhibiting 2′-phosphodiestease
activity has been recognized in the region between UBA and SH3 domains, although its
physiological substrates remain unclear [22] (see Figure 1).
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Figure 1. TULA-family protein structure, domains and major interactions. Major functional do-
mains of UBASH3/STS/TULA proteins are shown, including ubiquitin-associated domain (UBA), 
Src-homology domain 3 (SH3) and histidine phosphatase (HP) domain. The 2H phosphoesterase 
domain has been identified in TULA-2. The degree of homology within major domains is shown as 
the percentage of similar (‘positive’) amino acid residues. Major interactions, including enzymatic 
activities, are outlined for various domains; most of them are characteristic of both family members. 
The key catalytic histidine of the histidine phosphatase domain is indicated (H380 in human TULA-
2). The C-terminal sequence mediates dimerization of TULA proteins. See details in the text. 

2. PTP Activities of TULA-Family Proteins and Their Possible PTP-Independent  
Functions 

The structures of TULA-1 and TULA-2 are very similar, especially within the func-
tional domains; this notion is apparent from sequence comparisons and structural studies 
[12,23–26]. However, the two family members are very different in their enzymatic activ-
ity; TULA-2 activity is much higher than that of TULA-1 [12,24,27]. Quantitative compar-
isons of activities have been mostly performed using small molecules and total cellular 
phosphotyrosine (pY)-containing protein [12,24,28] and also with recombinant full-length 
Syk [27]. The observed difference varies depending on the substrates and reaction condi-
tions used but always remains profound. Thus, the difference in activity between TULA-
2 and TULA-1 toward p-nitrophenyl phosphate (pNPP) is ~6000-fold, but for 3-O-methyl-
fluorescein phosphate (OMFP), it is ~200-fold [24,28]. Furthermore, the difference between 
TULA-2 and TULA-1 activities toward pNPP is reduced at pH 5.0, where the maximal 
activity of TULA-1 is detected but still remains ~200-fold [24]. Likewise, the activity of 
TULA-1 toward total immunoprecipitated pY-proteins from T cells becomes detectable at 
pH 5.0, but the difference between TULA-2 and TULA-1 remains no less than two orders 
of magnitude [24]. 

These results are consistent with the finding that multiple pY-peptide substrates of 
TULA-2 have been identified in the course of random peptide library screening, while no 
substrates have been identified for TULA-1 in these experiments [29]. The substrates of 
TULA-2 found by screening were validated and further characterized using enzyme ki-
netic analysis with multiple synthetic pY-peptides [29], and this substrate specificity was 
confirmed for individual pY-sites of Syk, a bona fide substrate of TULA-2, both in reaction 
mixes and in platelets [27,29]. Notably, the HP domain of TULA-2 is sufficient for govern-
ing substrate specificity [29]. 

One may hypothesize that UBA-mediated interactions are important for the binding 
of TULA PTPs to their substrates, since many pY-containing proteins are ubiquitylated 
[30–35]. This hypothesis is supported by the accumulation of ubiquitylated pY-proteins in 
T-cell receptor (TCR)/CD3-stimulated mouse T cells lacking both TULA-1 and TULA-2 
(double knockout, dKO) as compared to wild-type (WT) T cells [36] and by a decrease in 

Figure 1. TULA-family protein structure, domains and major interactions. Major functional domains
of UBASH3/STS/TULA proteins are shown, including ubiquitin-associated domain (UBA), Src-
homology domain 3 (SH3) and histidine phosphatase (HP) domain. The 2H phosphoesterase domain
has been identified in TULA-2. The degree of homology within major domains is shown as the
percentage of similar (‘positive’) amino acid residues. Major interactions, including enzymatic
activities, are outlined for various domains; most of them are characteristic of both family members.
The key catalytic histidine of the histidine phosphatase domain is indicated (H380 in human TULA-2).
The C-terminal sequence mediates dimerization of TULA proteins. See details in the text.

2. PTP Activities of TULA-Family Proteins and Their Possible
PTP-Independent Functions

The structures of TULA-1 and TULA-2 are very similar, especially within the functional
domains; this notion is apparent from sequence comparisons and structural studies [12,23–26].
However, the two family members are very different in their enzymatic activity; TULA-2 ac-
tivity is much higher than that of TULA-1 [12,24,27]. Quantitative comparisons of activities
have been mostly performed using small molecules and total cellular phosphotyrosine (pY)-
containing protein [12,24,28] and also with recombinant full-length Syk [27]. The observed
difference varies depending on the substrates and reaction conditions used but always
remains profound. Thus, the difference in activity between TULA-2 and TULA-1 toward
p-nitrophenyl phosphate (pNPP) is ~6000-fold, but for 3-O-methyl-fluorescein phosphate
(OMFP), it is ~200-fold [24,28]. Furthermore, the difference between TULA-2 and TULA-1
activities toward pNPP is reduced at pH 5.0, where the maximal activity of TULA-1 is
detected but still remains ~200-fold [24]. Likewise, the activity of TULA-1 toward total im-
munoprecipitated pY-proteins from T cells becomes detectable at pH 5.0, but the difference
between TULA-2 and TULA-1 remains no less than two orders of magnitude [24].

These results are consistent with the finding that multiple pY-peptide substrates of
TULA-2 have been identified in the course of random peptide library screening, while
no substrates have been identified for TULA-1 in these experiments [29]. The substrates
of TULA-2 found by screening were validated and further characterized using enzyme
kinetic analysis with multiple synthetic pY-peptides [29], and this substrate specificity
was confirmed for individual pY-sites of Syk, a bona fide substrate of TULA-2, both in
reaction mixes and in platelets [27,29]. Notably, the HP domain of TULA-2 is sufficient for
governing substrate specificity [29].
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One may hypothesize that UBA-mediated interactions are important for the binding of
TULA PTPs to their substrates, since many pY-containing proteins are ubiquitylated [30–35].
This hypothesis is supported by the accumulation of ubiquitylated pY-proteins in T-cell
receptor (TCR)/CD3-stimulated mouse T cells lacking both TULA-1 and TULA-2 (double
knockout, dKO) as compared to wild-type (WT) T cells [36] and by a decrease in the ability
of TULA-2 to reconstitute WT signaling levels in dKO T cells as a result of the mutational
inactivation of UBA [12]. However, UBA–ubiquitin binding is unlikely essential for TULA–
substrate interactions, since the dephosphorylation of multiple non-ubiquitylated pY-
peptides and pY-proteins by TULA PTPs has been shown [12,27,29] and since the HP
domain of TULA-2 alone is sufficient to govern substrate specificity [29].

It should be noted that most studies with TULA-family proteins were conducted
with mouse proteins. However, human TULA-1 and TULA-2 have been described as
structurally similar and behaving comparably to their mouse counterparts [26]. As shown
for mouse TULA-family proteins, human TULA-2 is substantially more active than human
TULA-1, although some subtle differences are apparent between human and mouse TULA
families [26]. Another significant finding of this study is that the PTP kinetics of full-length
human TULA-2 and its HP domain are reasonably similar, confirming the conclusion that
TULA HP domains can be used as proxies of the corresponding full-length proteins [26].

Finally, despite its relatively low phosphatase activity, TULA-1 is capable of dephospho-
rylating ZAP-70, a protein tyrosine kinase (PTK) critical for TCR/CD3 signaling [26,28,37],
although the lack of TULA-2 alone influences ZAP-70 phosphorylation to a much greater
extent than the lack of TULA-1 alone [28]. Other substrates of TULA-1 are not known
and are hard to predict due to the lack of comprehensive substrate specificity data for this
family member [29]. It was also suggested that TULA-1 has PTP-independent functions,
which may be involved in T-cell death [38,39] and activation [21], the downregulation of
TCR/CD3 [16], chromosome segregation [19] and HIV-1 production [18].

3. Regulatory Effect of TULA-2 on Platelet Signaling and Activation
3.1. Effects of TULA-Family Proteins in Cells Other Than Platelets

Although this review is focused on platelets, it should be noted that TULA-family
proteins play a regulatory role in several different cell types. Originally, it was shown that
both TULA-1 and TULA-2 downregulate signaling through TCR/CD3 and the resulting
T-cell proliferation and cytokine secretion [3,12,28]. The absence of TULA-family members
has been shown to upregulate TCR/CD3 signaling, elevate T-cell responses and exacerbate
inflammation in a mouse trinitrobenzene sulfonic acid-induced colitis model [37]. In all
these studies, the lack of both TULA-1 and TULA-2 in dKO exerted a higher effect on T-cell
responses than the lack of either single family member.

TULA-1 and TULA-2 also downregulate the signaling, activation and responses of
monocytes and dendritic cells (DCs), important immune cells belonging to the myeloid
lineage. Thus, dKO bone marrow (BM) monocytes and BM-derived DCs show an in-
crease in antifungal activity toward Candida albicans, a yeast pathogen, as well as in sig-
naling mediated by Dectin-1, a receptor for β-glucan, a major component of the fungal
cell wall [40]. The effect of TULA proteins appears to be cell-type-specific, since dKO
mouse neutrophils, which are also a myeloid cell type, show a decrease in their antifungal
activity [40]. Furthermore, BM-derived monocytes from TULA-1/TULA-2 dKO mice ex-
hibit an increase in antibacterial activity and interferon (IFN)-γ production in response to
Francisella tularensis [41].

Consistent with the effects of TULA proteins on myeloid immune cells, the differentia-
tion and physiological functions of osteoclasts, which are specialized bone-resorbing cells
of the macrophage lineage, are likewise downregulated by TULA-2 [42]. This study demon-
strated a substantial increase in signaling through the Fcγ receptor in TULA-2-deficient
BM-derived macrophages, which were used as a model of osteoclasts. TULA-2 has also
been identified in the protein complex associated with the Syk PTK in basophilic/mast
cells stimulated through the FcεRI receptor [43]. In these cells, TULA-2 downregulated
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FcεRI-mediated signaling and transcription, as well as degranulation, a key biological
response of these cells.

For systems in which the molecular basis of these effects was examined [3,12,28,37,40,42,43],
a common theme emerged: TULA-family proteins downregulated signaling through re-
ceptors bearing an immunoreceptor tyrosine-based activation motif (ITAM) as an essential
signaling structure, which, upon its phosphorylation, interacts with the Syk-family PTKs
Syk and ZAP-70, thus triggering the phosphorylation and activation of these PTKs and sub-
sequent downstream signaling dependent on their kinase activity [44–47]. ZAP-70 and Syk
have been identified as regulatory targets of TULA-dependent dephosphorylation in this
type of signaling pathway in various cells [3,12,28,37,40,42,43]. This theme is also evident
from the findings obtained in experiments with platelets and is discussed in detail below.

3.2. Effects of TULA-2 on Signaling Mediated by the Glycoprotein VI (GPVI) Collagen Receptor

It has been shown that ubiquitously expressed TULA-2 is substantially overexpressed
in platelets as compared to its expression in peripheral blood mononuclear cells [48]. The
high platelet expression level of TULA-2 correlates with the high level of TULA-2 transcrip-
tional upregulation demonstrated in the course of human megakaryocyte development
in vitro [49]. Together with the finding that Syk is a key PTK in platelet signaling [50–57]
and a bona fide cellular substrate of TULA-2 [27,29], the high expression of TULA-2 in
platelets renders this PTP a critical player in the system of platelet signaling regulation.

Initial studies of the effects of TULA-family proteins on platelet activation were con-
ducted using TULA-1/TULA-2 dKO mice lacking both TULA-1 and TULA-2 [48], because
both family members had previously been shown to be critical for signaling regulation in T
cells [3]. Signaling through the glycoprotein VI (GPVI)/Fc receptor-γ chain (FcR-γ chain)
complex, the primary platelet receptor of collagen, which transduces signals through an
ITAM located in the cytosolic tail of FcRγ, was dramatically facilitated in TULA-1/TULA-2
dKO platelets; Syk and PLCγ2 showed hyperphosphorylation on tyrosine, the kinase
activity of Syk was elevated, and Ca2+ mobilization was enhanced. Physiological responses
in vitro, such as aggregation and dense granule secretion, were also enhanced in dKO
platelets. In contrast, signaling through protease-activated receptor 4 (PAR4), a G-protein-
coupled receptor of thrombin, was not altered in dKO platelets (Figure 2). Finally, both the
tail bleeding time and the time to carotid artery occlusion in an FeCl3-induced thrombosis
model were significantly reduced, and the thrombi formed were substantially more stable
in TULA-1/TULA-2 dKO mice than in WT mice [48]. Overall, these data indicated that the
lack of TULA-family proteins specifically facilitated GPVI/FcRγ-mediated signaling and
functional responses in platelets.

The use of dKO mice raised a question of the relative contributions of TULA proteins
to the observed effects. While TULA-2 is greatly overexpressed in platelets as compared to
other cells, TULA-1 is not detected in platelet lysates using Western blotting [48]. Proteomics
reveals the presence of TULA-1 in mouse platelets, but at a level ~8- and 10-fold lower than
those of TULA-2 in mice and humans, respectively [58,59]. Since the level of TULA-1 is
much lower than that of TULA-2 and since the PTP activity of TULA-1 is significantly lower
than that of TULA-2, it was reasonable to conclude that the effect of TULA-1/TULA-2
dKO is primarily attributed to TULA-2 KO. Indeed, TULA-2 KO platelets showed GPVI-
induced Syk phosphorylation, aggregation and secretion that were very similar to those
demonstrated by dKO platelets, whereas the responses of WT and TULA-2 KO platelets
to GPVI agonists were indistinguishable [60]. Hence, TULA-1 at its physiological level
appears not to affect platelet responses, and TULA-2 is by far the major if not the sole
TULA-family regulator in platelets. Consistent with this conclusion, subsequent studies of
the TULA-mediated regulation of platelets have been conducted in TULA-2 KO systems.
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Figure 2. TULA-2 downregulates platelet signaling mediated by Syk. Major upstream events of 
platelet signaling through immunoreceptor tyrosine-based activation motif (ITAM)- or hemITAM 
(hemi-ITAM)-bearing receptors and G-protein-coupled receptors (GPCR) are schematically repre-
sented. Early signaling events through ITAM- or hemITAM-bearing receptors involve Src-family 
protein tyrosine kinases (SFKs) and Syk, a protein tyrosine kinase interacting with phosphotyro-
sines of ITAMs and hemITAMs through its tandem SH2 domains (see details in the text). This 
scheme illustrates how Syk, following activation through a receptor, phosphorylates its protein sub-
strates, including LAT and SLP-76 adaptors, which interact with other signaling proteins activating 
PLC-γ, thus increasing the intracellular Ca2+ concentration. Activation through the protease-acti-
vated receptor (PAR), which is a GPCR, increases Ca2+ in a Syk-independent fashion. TULA-2 down-
regulates Syk-mediated receptor signaling by dephosphorylating Syk phosphotyrosines, which pos-
itively regulate activity of this kinase. Various events dependent on receptor-induced Syk activation 
are downregulated by TULA-2, not only those depicted in this figure. 

The use of dKO mice raised a question of the relative contributions of TULA proteins 
to the observed effects. While TULA-2 is greatly overexpressed in platelets as compared 
to other cells, TULA-1 is not detected in platelet lysates using Western blotting [48]. Pro-
teomics reveals the presence of TULA-1 in mouse platelets, but at a level ~8- and 10-fold 
lower than those of TULA-2 in mice and humans, respectively [58,59]. Since the level of 
TULA-1 is much lower than that of TULA-2 and since the PTP activity of TULA-1 is sig-
nificantly lower than that of TULA-2, it was reasonable to conclude that the effect of 
TULA-1/TULA-2 dKO is primarily attributed to TULA-2 KO. Indeed, TULA-2 KO 

Figure 2. TULA-2 downregulates platelet signaling mediated by Syk. Major upstream events of
platelet signaling through immunoreceptor tyrosine-based activation motif (ITAM)- or hemITAM
(hemi-ITAM)-bearing receptors and G-protein-coupled receptors (GPCR) are schematically repre-
sented. Early signaling events through ITAM- or hemITAM-bearing receptors involve Src-family
protein tyrosine kinases (SFKs) and Syk, a protein tyrosine kinase interacting with phosphotyrosines
of ITAMs and hemITAMs through its tandem SH2 domains (see details in the text). This scheme
illustrates how Syk, following activation through a receptor, phosphorylates its protein substrates,
including LAT and SLP-76 adaptors, which interact with other signaling proteins activating PLC-γ,
thus increasing the intracellular Ca2+ concentration. Activation through the protease-activated recep-
tor (PAR), which is a GPCR, increases Ca2+ in a Syk-independent fashion. TULA-2 downregulates
Syk-mediated receptor signaling by dephosphorylating Syk phosphotyrosines, which positively
regulate activity of this kinase. Various events dependent on receptor-induced Syk activation are
downregulated by TULA-2, not only those depicted in this figure.

3.3. Effects of TULA-2 on Signaling through FcγRIIA, A Receptor for the Fc Fragment of IgG

Signaling through the GPVI/FcRγ complex is not the only target of TULA-2-mediated
negative regulation in platelets. Signaling through FcγRIIA, an ITAM-bearing receptor
for the Fc fragment of IgG, is also downregulated by TULA-2 [61,62] (see Figure 2). In
these studies, which were conducted with platelets from transgenic mice expressing human
FcγRIIA, a decrease in the TULA-2 level achieved using various approaches upregulat-
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edtyrosine phosphorylation of Syk and other signaling proteins, integrin activation, Ca2+

mobilization and platelet aggregation in response to both GPVI- and FcγRIIA-mediated
signaling. Consistent with the initial study [48], these results indicated that TULA-2 failed
to regulate platelet activation in response to thrombin [61,62]. Therefore, one can conclude
that TULA-2 specifically regulates ITAM-mediated signaling, which, in platelets, depends
on the functions of Syk.

3.4. Effects of TULA-2 on Signaling through the C-Type Lectin-like (CLEC)-2 Receptor

Recent studies also demonstrated the negative regulatory effect of TULA-2 on CLEC
(C-type lectin-like receptor)-2-mediated platelet activation [63]. The CLEC-2 receptor bears
HemITAM (for hemi ITAM), a YXX(L/I) sequence representing one-half of an ITAM, and
it has been speculated that signaling through HemITAMs occurs due to the binding of
the Syk tandem SH2 domains to two juxtaposed phosphorylated HemITAMs [64] (see
Figure 2). TULA-2 KO platelets exhibit an increase in tyrosine phosphorylation of Syk
and other signaling proteins, thromboxane production, aggregation and secretion in re-
sponse to CLEC-2 agonists [63] in a manner consistent with the effects of TULA-2 on
ITAM-mediated signaling.

3.5. Physiological Consequences of TULA-2-Mediated Signaling Regulation

Importantly, the studies discussed above definitively demonstrate the significant
effects of TULA-2 in vivo. A reduced level of TULA-2 is associated with a shortened tail
bleeding time [48,62], enhanced FeCl3-injury-induced thrombosis [48] and an exacerbated
heparin-induced thrombocytopenia (HIT)-like reaction [61,62] in mice. Together with an
inverse correlation between the level of TULA-2 in human platelets from multiple donors
and these platelets’ in vitro responses to anti-CD9, which models platelet stimulation in
the context of HIT [61], these results indicate that the effects of TULA-2 on platelets are
highly relevant for both normal physiological and pathological platelet activation. Notably,
even the moderate modulation of the TULA-2 level is sufficient to exert a detectable effect
on platelets; a two-fold decrease in the TULA-2 expression level in heterozygous KO/WT
mice [62] and its differential expression in human individuals by approximately the same
factor [61] are linked to a significant difference in platelet responses.

The specific physiological consequence of the downregulation of ITAM-mediated
signaling by TULA-2 remains to be fully understood. It is likely that this regulation acts
primarily as a biological brake preventing platelet responses to sub-optimal stimuli. This
notion is consistent with several observations: (i) TULA-2 inhibits platelet responses to a
much greater extent at low than at high agonist concentrations [60–63], (ii) TULA-2 inhibits
platelet signaling at early time points [29,61,63], (iii) Syk pY346, an early (and possibly
the earliest) phosphorylated regulatory site of Syk appears to be the best substrate site of
TULA-2 [29,60] (see below for a detailed discussion). However, TULA-2 strongly inhibits
platelet receptor signaling at late time points, as well [29,60–63]. This finding suggests that
TULA-2 may also facilitate the return of a platelet to its quiescent state if not all checkpoints
on the platelet’s path from this quiescent, non-adhesive patrolling state to the fully activated
pro-adhesive state that ensures hemostasis have been passed [65].

4. Molecular Basis of the Regulatory Effect of TULA-2 on Platelet Signaling
and Activation

The correlation of the downregulatory effects of TULA-2 on physiological platelet
responses with the TULA-2-dependent dephosphorylation of Syk, together with the speci-
ficity of these effects for Syk-dependent platelet responses when ITAM-mediated signaling
is affected, while G-protein-mediated signaling is not, strongly suggests that Syk is the
main regulatory target of TULA-2 [48,61,62]. It has been demonstrated that the level of
phosphorylation on Syk Y346, Y317, and Y519/Y520 sites, which are known to be phos-
phorylated in response to receptor stimulation in various cell types [66–70], is significantly
reduced in WT platelets as compared to platelets from TULA-2 KO or TULA-1/TULA-2
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dKO mice [29,48] (Figure 3). A decrease in pY519/pY520, a major activation marker of
Syk [71,72], is likely a consequence of a decrease in the phosphorylation of Syk regulatory
sites directly targeted by TULA-2, since Syk kinase activity is thought to be affected by
multiple pY-sites [45,47,68,69,73].
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being a key binding site for Cbl, a negative regulator of Syk activity [78,79] (see Figure 3). 

Figure 3. Effect of TULA-2 on Syk regulatory phosphotyrosines. Major domains, interdomain regions
and regulatory phosphotyrosines (pY) of Syk are depicted (residue numbering is for mouse Syk).
pY342 and pY346 exert positive regulatory effects on Syk, while pY317 is a negative regulatory
site. The pY519/pY520 site is located in the activation loop of Syk and represents a marker of Syk
activation. The differential ability of TULA-2 to dephosphorylate the sites depicted here is indicated
and varies from very strong (++) to strong (+) to moderate (±) to the lack thereof (−). See the text
for detail.

The effects of TULA-2 on Syk activity may be complex, because not only Syk pY346
but also, to some extent, Syk pY342 has been shown to be targets of TULA-2 [60], while
both of them profoundly regulate Syk activity [60,66,67,73–77]. Based on the results ob-
tained with other cell types, the effects of both pY342 and pY346 on Syk activity are
positive [66,67,74–76], but in platelets, this issue has not been addressed in detail. Addi-
tionally, pY346 and pY342 appear to functionally interact [60], and this interaction may
introduce additional complexity to the pY-dependent regulation of Syk activity. Further-
more, pY317 also appears to be a TULA-2 target while negatively regulating Syk by virtue
of being a key binding site for Cbl, a negative regulator of Syk activity [78,79] (see Figure 3).
Notably, the molecular basis of the Cbl-mediated regulation of Syk differs in platelets and
nucleated cells. In nucleated cells, Cbl acts by inducing the ubiquitylation and subsequent
degradation of phosphorylated and, hence, activated Syk, thus reducing Syk activity in the
cell [33,35,79,80]. In platelets, Syk binds to Cbl and becomes ubiquitylated, but its degrada-
tion does not occur; this result led to the speculation that Cbl downregulates platelet Syk by
facilitating the interaction of phosphorylated Syk with a protein tyrosine phosphatase [34].
In light of the subsequent progress, it is possible that TULA-2, which binds to both Syk
and Cbl as well as to ubiquitin [5,17,48], may act as such a phosphatase. Overall, the
regulation of Syk by TULA-2 is expected to be very complex, since the functions of Syk
depend on multiple pY-sites, several of which are targeted by TULA-2, as indicated above.
The opposite effects of some of these sites on Syk activity make the effects of TULA-2 on
the functions of Syk particularly intricate.

Despite the established importance of the TULA-2-dependent dephosphorylation of
Syk for platelet regulation, it cannot be ruled out that TULA-2 may dephosphorylate other
protein substrates, for example, Src-family kinases (SFKs). The dephosphorylation of Src
by TULA-2 has been shown in reaction mixes and in 293T cells overexpressing both Src
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and TULA-2 [12]. Likewise, the dephosphorylation of Fynby TULA-2 has been shown
in vitro [27]; in this case, the dephosphorylation of Fyn appeared to be specific, since neither
Lck nor Yes (the other SFKs examined) exhibited detectable dephosphorylation by TULA-2.
The rate of the TULA-2-dependent dephosphorylation of Fyn shown in this study appeared
to be substantially less than that of Syk [27]; this finding matches well with the difference
between the pY-sites of Syk and Fyn with regard to their TULA-2 substrate specificity
determinants. Syk pY346 and, to a slightly lower extent, Syk pY317 are predicted to be very
good substrate sites for TULA-2; Syk pY342 is predicted to be less advantageous based on
substrate specificity determinants, and these predictions are validated by experiments with
protein mixes and activated platelets [29,60]. In contrast, the major pY-sites of Fyn (and
SFKs, in general) are predicted to be poor substrates of TULA-2 [29,60]. However, dephos-
phorylation in the cellular context depends not only on the kinetic constants governed by
substrate specificity determinants but also on the concentration and localization of TULA-2
and its potential substrate, so even sub-optimal substrates may be dephosphorylated. No-
tably, the effect of the TULA-2-driven dephosphorylation of SFKs in platelets, if it occurs,
would exert a global effect on their signaling and responses, including Syk phosphorylation
and activation, since SFK activity is essential for triggering all ITAM-mediated events (see
Figure 2) and is involved in many other diverse signaling pathways and regulatory circuits
in platelets and other blood and immune cells [47,81–88]. Whether or not other substrates of
TULA-2 exist in platelets remains unclear. Although this is possible, it should be noted that
most of the tyrosine-phosphorylated protein material from GPVI-stimulated platelets that
binds to the inactivated substrate-trapping form of TULA-2 [89] corresponds to Syk [60],
while the amounts of other tyrosine-phosphorylated proteins bound to this reagent are
low [60], suggesting that Syk is the major substrate of TULA-2 in platelets.

Another potentially important molecular element of the TULA-2-mediated regulation
of platelet activation is ubiquitylation, since (i) UBA of TULA-family proteins is capable
of binding ubiquitin [4,5], (ii) ubiquitylated pY-containing proteins are accumulated in
TCR/CD3-activated TULA-1/TULA-2 dKO T cells [36], (iii) mutations in the UBA domain
reduce the ability of TULA-2 to reconstitute WT signaling levels in dKO T cells [12] and
(iv) the contribution of the Cbl-mediated ubiquitylation of Syk to the regulation of this
PTK in platelets has been considered [34]. Hence, the binding of TULA-2 to ubiquitylated
Syk has been postulated in the computational model of platelet activation, which predicts
the time course of Syk phosphorylation in response to GPVI-mediated stimulation quite
well [90]. However, the contribution of Syk ubiquitylation to its TULA-2-dependent dephos-
phorylation in platelets has not been experimentally established. Thus, non-ubiquitylated
Syk is bound to TULA-2 in cells overexpressing them and is dephosphorylated by TULA-2
in the cells and in the mix of recombinant proteins [27,48].

5. Regulation of TULA-2 Level and Activity in Platelets

Considering the importance of TULA-2 as a regulator of platelet functions, the mech-
anisms controlling the effects of TULA are of great interest. It should be noted that the
function of TULA-2 as a PTP can be regulated simply by the availability of substrates;
fully active TULA-2 may be present in the cell but exert no substantial effect until a pY-site
with the characteristic TULA-2 specificity determinants is formed on a protein accessible
to TULA-2, such as the pY346 site of Syk, as a result of specific receptor-mediated sig-
naling. However, the existence of mechanisms regulating the TULA-2 amount and/or
specific activity could substantially enrich the flexibility of this regulatory circuit. One
such mechanism is mediated by microRNA; it has been shown that miR-148a targets the 3′

untranslated region of TULA-2 mRNA and downregulates the level of TULA-2 in platelets
and erythroleukemia cells, thus facilitating ITAM- and Syk-dependent signaling through
the FcγRIIA receptor [61]. The treatment of cell line cultures or mice with anti-miR-148a
elevates the level of TULA-2 and suppresses receptor-mediated signaling and activation
as well as platelet-dependent thrombotic events in vivo. These results suggest that anti-
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miR-148a-type reagents can be used, in principle, as a therapy against thrombosis, but this
possibility remains to be examined further.

The functions of TULA-2 may be affected by its posttranslational modifications, as well.
The ability of TULA-family proteins to bind to ubiquitin appears to be critical for the TULA-
dependent inhibition of epithelial growth factor receptor degradation [4,5,17], and hence,
the mono-ubiquitylation of TULA-family proteins themselves downregulates this effect by
inducing an intramolecular interaction between the TULA UBA domain and a ubiquitin
residue attached to TULA [5]. However, the contribution of the ubiquitylation-mediated
regulation of TULA to platelet activation has never been demonstrated.

Finally, the phosphorylation of TULA-2 on a tyrosine residue in the N-terminal re-
gion in stimulated platelets has been reported [91]. This pY-site appears to be conserved,
since it has previously been detected in stimulated T cells [92]. Furthermore, several ser-
ine/threonine phosphorylation sites have been identified in TULA-2 in platelets [91,93].
Phosphorylation is generally recognized as a powerful and widely employed biological
mechanism regulating protein activity. However, the role of phosphorylation in the regula-
tion of TULA-family functions is currently obscure not only in platelets but also in general.
Overall, it remains poorly understood how the functions of TULA-family proteins are
regulated and whether this regulation plays a significant role in the effect of TULA-2 on
platelet signaling and activation.

6. Conclusions

The available data allow us to conclude that TULA-2 is a critically important regulator
of platelet signaling mediated by ITAM- or hemITAM-bearing receptors and the platelet
responses induced by this signaling. Furthermore, it has been convincingly demonstrated
that TULA-2 exerts significant effects on platelet functions in vivo. The molecular basis of
this effect is provided by a high level of TULA-2 expression in platelets, far exceeding that
in other blood/immune cells, together with the substrate specificity of TULA-2 PTP activity
rendering Syk, a key PTK of platelet ITAM/hemITAM-mediated signaling, a prime target
of TULA-2. The molecular mechanisms of TULA-2′s effects on Syk-mediated events clearly
involve the dephosphorylation of specific regulatory pY-sites of Syk, including Syk pY346,
although the dephosphorylation of pY-sites on other proteins might also participate in the
events of TULA-2-mediated regulation. The effects of TULA-2 appear to be regulated at
the TULA-2 transcript level, although the phosphorylation-mediated regulation of TULA-2
cannot be ruled out.
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