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Abstract: Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder. It is
characterized by the accumulation of α-Synuclein aggregates and the degeneration of dopaminergic
neurons in substantia nigra in the midbrain. Although the exact mechanisms of neuronal degeneration
in PD remain largely elusive, various pathogenic factors, such as α-Synuclein cytotoxicity, mitochon-
drial dysfunction, oxidative stress, and pro-inflammatory factors, may significantly impair normal
neuronal function and promote apoptosis. In this context, neuroinflammation and autophagy have
emerged as crucial processes in PD that contribute to neuronal loss and disease development. They
are regulated in a complex interconnected manner involving most of the known PD-associated genes.
This review summarizes evidence of the implication of neuroinflammation and autophagy in PD and
delineates the role of inflammatory factors and autophagy-related proteins in this complex condition.
It also illustrates the particular significance of plasma and serum immune markers in PD and their
potential to provide a personalized approach to diagnosis and treatment.
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1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after
Alzheimer’s disease. It affects about 1% of the population over the age of 60 [1], with the
total number of patients exceeding 6.1 million worldwide. As a highly diverse and complex
pathology, PD is represented by a plethora of motor symptoms such as tremor, muscle
rigidity, bradykinesia, and postural instability. Non-motor symptoms, including cognitive
and behavioral impairments, sleep irregularities, sensory and autonomic dysfunction, are
also common in PD [2–4]. The key histopathological characteristic associated with this
condition is the focal degeneration of dopaminergic neurons, which occurs in substantia
nigra pars compacta of the midbrain, as well as in locus ceruleus and other brain areas. The
loss of dopaminergic neurons that project from the substantia nigra to the striatum causes
the primary motor symptoms of PD. As the disease progresses, neurodegeneration affects
other brain areas, thus causing the non-motor symptoms of the disease. The neuronal loss
co-occurs with the formation of Lewy bodies: cytosolic inclusions of clumped proteins,
which are major cytological features of PD [5]. There are several aspects of the etiology and
pathogenesis of PD that remain incompletely elucidated. It has been suggested that age,
genetic predisposition, and environmental stressors may play a significant role in the onset
and the development of this complex disorder. A variety of cellular and molecular charac-
teristics of PD have been repeatedly described in human tissue samples, cell lines, human
brain 3D-organoids, and animal models. These include abnormal folding and aggregation
of alpha-synuclein (α-Syn), mitochondrial dysfunction, impaired protein degradation (in
both ubiquitin-dependent and autophagy-dependent manner), neuroinflammation, and
oxidative stress [6].
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The present review aims to demonstrate the involvement of neuroinflammation and
autophagy in PD development and to summarize the role of cellular and soluble inflam-
matory factors and autophagy-related proteins in this complex condition. Another major
objective is to illustrate the specific role of plasma and serum immune markers in PD and
their potential to provide a personalized approach to diagnosis and treatment.

2. Neuroinflammation in PD

The inflammatory response serves to efficiently eliminate the causative agent and to
facilitate tissue repair [7]. The initiation and progression of inflammation depend on the
coordinated interaction between immune and non-immune cells and the fine regulation
of inflammatory mediators. Primary inflammatory stimuli (molecules and structures of
microbial origin, aggregated or misfolded proteins) and cytokines—interleukin-1β (IL-
1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)—promote inflammation.
It is triggered as a result of interaction with the Toll-like receptors (TLRs), IL-1 receptor
(IL-1R), IL-6 receptor (IL-6R), and the TNF receptor (TNFR) [8]. The activated receptors
activate intracellular signal transduction cascades, including the mitogen-activated protein
kinase (MAPK), nuclear factor kappa-B (NF-κB), and Janus kinase signal transducer and
activator of transcription (JAK-STAT) pathways. Effector macrophages and lymphocytes
release pro- and anti-inflammatory cytokines that recruit other leucocytes and modulate
the inflammation itself via a complex network of interactions, thus regulating both the
expansion and the intensity of the process [9].

The inflammatory response in the CNS (neuroinflammation) has been directly asso-
ciated with viral and bacterial diseases, autoimmune and neurodegenerative conditions,
trauma, vascular damage, and neuropsychiatric disorders. Neuroinflammation can in-
crease the neuronal excitability, trigger cellular damages, and augment the permeability of
the blood-brain barrier [10].

Different studies have demonstrated that neuroinflammation participates not only
in typically inflammatory diseases such as viral encephalitis but also in neurodegenera-
tive conditions, including PD [11,12]. Neuroinflammation in PD involves activation of
microglia and T-lymphocytes alongside an increased expression of pro-inflammatory cy-
tokines. Experiments with animal models of PD have indicated that neuroinflammation is
profoundly involved in neuronal cell death, despite not being its primary cause. In agree-
ment with this assumption, available evidence suggests a significant role of glucocorticoid
receptors in modulating microglial reactivity and their substantial dysregulation in the
inflammation-mediated neuronal degeneration [13].

2.1. Microglia in PD

Microglial cells are the resident macrophages of the brain [14]. First discovered by
Pío del Río Hortega [15], they serve as primary cells of innate immunity in the CNS and
play a crucial role in maintaining the homeostasis of the brain [16]. Microglia participate in
synaptogenesis, synaptic pruning, neural progenitor-cell growth and differentiation, and
myelinogenesis [17–19]. Microglial activation is a complex response against infection or
injury that produces two functionally distinct phenotypes: M1 and M2 [20]. According to
the general model, although greatly simplified, M1 microglia secrete pro-inflammatory cy-
tokines (IL-1β, IL-6, IL-12, TNFα) that stimulate neurodegeneration [21]. These mediators
broaden the immune response and may directly contribute to neuronal death. TNFα is
known for its pro-apoptotic activity which, in neurons, depends on the downregulation
of c-Rel, a NF-κB homologue that inhibits cell death and promotes neuronal survival [22].
M1 cells also upregulate enzymes that produce reactive oxygen species with antimicrobial
function, thus elevating oxidative stress. Simultaneously, microglial metabolism shifts
from oxidative phosphorylation (OXPHOS) to glycolysis, allowing microglia to adapt to
increased energy demands. Metabolic reprogramming leads to faster, although less efficient,
production of ATP for proliferation, cytokine production, and ROS generation [23,24]. It
has been demonstrated that the glycolytic inhibitor deoxy-D-glucose (2-DG) decreases
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TNFα and IL-6 in microglia through NF-κB suppression, inducing microglial death [25].
Furthermore, an in vitro study on BV-2 microglial cells revealed an elevated lactate produc-
tion and decreased mitochondrial activity following lipopolysaccharide stimulation [26]. In
contrast with M1, M2 cells express factors involved in the inhibition of inflammation and
promotion of tissue repair. They secrete substances, such as IL-10, to reduce the activity
of pro-inflammatory cells. M2 microglia also express high levels of phagocytic receptors
to promote the clearance of cell debris [27]. Nevertheless, high-throughput studies have
revealed that microglial heterogeneity is even more complex, suggesting the presence of a
wider spectrum of microglial phenotypes [28]. To date, little is known about the molecular
mechanisms of microglial heterogeneity.

Studies of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice
models have demonstrated that microglial activation is a prominent and persistent feature
of PD [29–31]. Even the fact that substantia nigra constitutes the predominantly affected
site in PD is in concordance with the higher abundance of microglial cells in this brain re-
gion [32]. Microglia exert versatile roles in neuroinflammation, serving as both a damaging
and a protective factor. When activated, microglial cells infiltrate the site of neuroinflam-
mation, where they perform phagocytosis and secrete both pro- and anti-inflammatory
cytokines [33]. The cytokine synthesis and secretion are hallmarks of microglial acti-
vation as part of the early inflammatory response and persist throughout the disease
progression [34–36]. Secretion of pro-inflammatory factors such as IL-1β, IL-12, TNFα, and
inducible nitric oxide synthase (iNOS) greatly stimulates neuroinflammation and often
corresponds to significant neuronal loss. Conversely, the production of anti-inflammatory
cytokines such as IL-4, IL-10, IL-13, TGFβ, and IGF-1 by microglial cells suppresses inflam-
mation and promotes neuroprotection [33]. From this perspective, a prominent factor that
may contribute to microglial activation is the release of α-Syn. It is an abundant neuronal
protein that localizes to the presynaptic terminals in the CNS where it regulates vesicular re-
lease [37–39]. Its native conformation is largely unfolded but the same protein can also exist
in abnormal aggregated forms such as oligomers, protofibrils, and fibrils [40]. α-Syn is the
main component of Lewy bodies and, as such, significantly contributes to the pathogenesis
of PD. In the PD brain, α-Syn is often released by neurons in the extracellular interstitium,
which allows its laboratory detection in the bodily fluids of PD patients. Subsequently, the
α-Syn-induced microglial activation triggers rapid α-Syn phagocytosis. In this process,
the activated microglial cells engage their FcγR receptors in the α-Syn uptake and initiate
a sequence of pro-inflammatory events such as NF-κB/p65 translocation and increased
secretion of cytokines. These neuroinflammatory effects then result in neuronal loss and
chronic neurodegeneration in PD. In addition to α-Syn, other PD risk factors such as DJ-1
and LRRK2 can also participate in the regulation of microglia-mediated inflammation. For
instance, LRRK2 deficiency represses inflammation by inhibiting the p38 MAPK and NF-κB
pathways [33].

2.2. Astroglia in PD

Astroglia constitute the largest population of glial cells in the brain and perform
functions essential for the normal physiology of the CNS. Astrocytes mechanically support
the neurons and the adjacent capillaries. They maintain the integrity of the blood–brain
barrier and its permeability [16,41,42]. Astroglia synthesize and secrete a plethora of
neurotrophic factors, including glial cell line-derived neurotrophic factor (GDNF), brain-
derived neurotrophic factor (BDNF), nerve growth factor (NGF), and cerebral dopamine
neurotrophic factor (CDNF). These neurogenic molecules stimulate and fine tune neuronal
development, survival, and plasticity. In addition, CDNF provides neuroprotection and
promotes the recovery of damaged dopaminergic neurons [43–46]. In the structure of
the tripartite synapse, astrocytes surround the synaptic cleft where they interact with
the pre-and post-synaptic neurons and uptake excessive glutamate [42]. Astrocytes also
provide metabolic support for the neurons by transferring lactate for the Krebs cycle. They
are able to produce antioxidants and to neutralize neuronal waste products, including
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aggregated α-Syn and damaged mitochondria [47,48]. Finally, astrocytes are responsible for
the remodeling of the nervous tissue by filling the gaps left after neuronal death, forming
the so-called astroglial scar [49].

Similar to microglia, astrocytes exist in different functional states. The A1 astrocytic
population produces pro-inflammatory factors such as IL-1α, C1q, and TNFα, thus enhanc-
ing neuronal death and inflammation. Conversely, the A2 population promotes neuronal
survival and neuroprotection after injury [50]. Liddelow et al. (2017) have determined that
microglia cause astrocytic activation by secreting the cytokines IL-1α, TNF, and C1q [49].
The authors also demonstrated an elevated production of pro-inflammatory cytokines such
as TNF-α, IL-1α, and IL-1β in A1 astrocytes as a consequence of this activation. In their
pro-inflammatory state, astrocytes no longer assist neuronal survival but induce cell death
by releasing neurotoxic molecules. In turn, astrocytes can modulate microglial activation
and microglia-mediated inflammation [50].

Altered astrocytic function is involved in different mechanisms of PD development,
such as α-Syn accumulation, neuroinflammation, impaired mitochondrial metabolism and
oxidative stress. Of particular interest is the fact that at least eight out of 17 genes of known
causative importance for PD are expressed in astrocytes [51]. One of them, PARK7, is
even more prominent in astroglia than in neurons and shows noticeable upregulation in
astrocytes from PD individuals. The product of this gene, DJ-1, is involved in oxidative
stress response, glutamate uptake, and neuroprotection [52].

It has been shown that microglia and astrocytes can exhibit a protective effect on
neurons by eliminating extracellular α-Syn. Glial cells engulf and degrade complexes
of aggregated α-Syn via proteasomal and autophagic mechanisms [47,48]. Exchange of
intracellular materials including α-Syn and intact mitochondria occurs not only between
astrocytes and neurons but between neurons themselves [53]. Although α-Syn is pre-
dominantly expressed and accumulated in neurons, different studies have reported that
α-synuclein aggregates in astrocytes as well. Accumulation of α-Syn can disrupt astro-
cyte function and accelerate neurodegeneration through mitochondrial dysfunction and
impaired autophagy [54].

Sonninen et al. (2020) have demonstrated that metabolic changes occur in iPSC-
derived astrocytes from PD patients carrying mutant variants of the LRRK2 gene. These
astrocytes were characterized by abnormal α-Syn expression, metabolic alterations, im-
paired Ca2+ regulation, and elevated cytokine production [55]. It has been proposed that
mitochondrial dysfunction in astrocytes possibly evokes neuronal toxicity by altering the
normal glutamate uptake and degradation, Ca2+-induced cell death, impaired metabolism,
and accumulation of ROS and toxic fatty acids [56]. The interplay between astroglia and
microglia is presented in Figure 1.

2.3. Inflammatory Cytokines

Numerous reports have revealed the significant association between PD severity and
the level of immune markers in plasma and serum.

Notably higher serum levels of the proinflammatory cytokine IL-1β are detected in
patients with early PD [57]. However, no significant correlation was found between the
IL-1β levels and the clinical scales for PD assessment. Selikhova et al. (2002) described
elevated IL-6 in the plasma of patients with early idiopathic PD [58]. Higher abundance of
the pro-inflammatory cytokines IL-1β, INF-γ, and TNF-α was detected in PBMCs isolated
from PD patients [59]. The levels of TNF-α (but not those of IL-1β and IL-10) correlate with
cognition and other non-motor symptoms of PD [60].
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Figure 1. The complex interplay between cellular and molecular factors in PD-related neuroinflammation.

It is noteworthy that, contrary to these findings, a significant downregulation of
inflammatory cytokines has also been demonstrated in patients with PD. In a study by
Rocha et al. (2018), the PD-patient cohort exhibited a lower percentage of T-lymphocytes,
including activated T-lymphocytes, in comparison with healthy controls [61]. In accordance
with these findings, the authors also described decreased plasma levels of IL-4, IL-6, IL-10,
TNF, IFN-γ, and IL-17A in the PD group [61]. In a previous paper, the same authors also
detected significantly elevated levels of the soluble TNF-α receptors, sTNFR1 and sTNFR2,
in plasma of PD patients, suggesting the inflammatory etiology of PD [62]. Another
comparative analysis [63] suggested that IL-6 was significantly higher in patients with
PD than in healthy controls. Conversely, the authors found no significant differences in
the levels of CRP, sIL-2R, or TNF-α between the two studied groups. Dufek et al. (2008)
investigated a panel of inflammatory markers in serum samples from 29 patients with PD
and found significant overexpression of only TNF-α [64]. None of the other markers of
interest (IL-6, acute phase proteins, and factors of the complement system) showed any
abnormal changes in the PD group. There were also no significant correlations between the
patients’ clinical state and the levels of the examined serum markers.

Another cohort study revealed significantly lower serum levels of IL-1α and IL-6 in
PD patients than in their age-matched controls [65]. Conversely, the serum IL-1β levels
in the PD group appeared significantly higher than those in the control one. Again, the
authors observed no correlation between the studied markers and disease severity.

In a study of 83 PD patients and 83 healthy subjects, higher serum levels of TNF-α
and lower levels of IL-27 were detected in patients with PD compared to healthy controls
(p < 0.0001) [66].

All these studies are greatly limited due to the relatively small number of participants.
The first large-cohort research to evaluate serum cytokine markers in the context of PD
examined 262 newly diagnosed PD patients and 99 healthy controls [67]. It demonstrated
that a panel of cytokines is robustly associated with cognitive and motor features of PD. The
experimental results revealed higher levels of TNF-α, IL-1β, IL-2, and IL-10 in PD versus
healthy individuals. Based on their data, the authors suggest that a more pro-inflammatory
profile is associated with impaired cognition and rapid motor regression, while a more
anti-inflammatory profile is related to improved cognitive abilities and preserved motor
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function. Earlier research investigating the role of CRP in 375 PD individuals has suggested
that CRP associates with faster motor decline.

The immense scientific work in clarifying the complex interplay between immunity
and PD development delineates the potential usefulness of cytokines as biomarkers of
inflammation and neurodegeneration. Probably the most promising future insights will
combine clinical data, cellular and molecular features.

2.4. YKL-40 in PD-Related Neuroinflammation

The YKL-40 glycoprotein has been established as a prospective biomarker of neuroin-
flammation in neurodegenerative diseases. YKL-40 has also been debated as a biomarker in
diverse medical conditions, including toxoplasmosis [68], autoimmune disorders [69] and
hemodialysis inflammation [70]. This protein serves as an acute-phase factor, secreted by a
variety of immune cells (especially macrophages) in response to pro-inflammatory signals
including IL-1β, IL-6 and IFNγ, and TNFα. It is noteworthy to mention that YKL-40 has a
number of different cellular sources (chondrocytes, fibroblast-like synovial cells, vascular
smooth muscle cells, and macrophages) [71,72]. Our previous results showed correlation of
YKL-40 and neuron-specific enolase levels with clinical scores for assessment of severity
and outcome of traumatic brain injury [73]. We proposed that YKL-40 might reflect certain
aspects of the response to brain injury, such as neuroinflammation and brain damage. A
series of studies have suggested that the levels of YKL-40 correlate with the glial activation
and the number of cells involved in neurodegeneration [74–76]. Its levels in cerebrospinal
fluid (CSF) have been correlated with the disease phenotype of Parkinson’s-related disor-
ders. For instance, Magdalinu et al. (2015) discovered that the levels of YKL-40 were lower
in patients with PD compared to those with atypical Parkinson’s syndrome, but still higher
than the levels in the control group [74]. No correlations with disease stages or severity
were observed in this study. However, the expression data regarding YKL-40 in PD remain
controversial. Substantially higher YKL-40 levels in PD patients have also been reported. A
two-year follow-up study revealed a significant increase in the concentration of YKL-40 in
the CSF of PD patients compared to the baseline levels. Furthermore, the steady increase
in YKL-40 levels correlated with the deterioration of cognitive abilities [75]. Conversely,
according to other authors, the levels of YKL-40 were lower in patients with PD than in
healthy controls or those with multisystem atrophy, progressive supranuclear palsy and
corticobasal degeneration. Additionally, the concentration of YKL-40 in CSF appeared
lower in degenerative disorders known as synucleinopathies than in tauopathies [76]. In
that study, Olsson et al. (2013) evaluated the levels of YKL-40 together with those of the
soluble CD14 as markers for astrocyte and microglial activation. They examined CNF
and serum samples from 37 controls, 50 PD patients, and 79 P+ patients (with progres-
sive supranuclear palsy, corticobasal degeneration, and multiple system atrophy). The
experimental results identified significantly lower YKL-40 levels in the CNF of PD patients
compared to healthy controls or participants with multiple system atrophy and tauopathies.
A more recent study has reported elevated YKL-40 levels in cerebrospinal fluid (CSF) from
patients with AD dementia, but not in those with PD and Lewy body dementia (LBD),
in comparison with non-dementia controls. The authors also investigated the possible
association between YKL-40 dysregulation in CSF and other inflammatory-markers. They
found no relationship between YKL-40 and levels of the astrocytic marker glial-fibrillary
acidic protein (GFAP), interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1),
and interferon gamma-induced protein 10 (IP-10) [77]. Additionally, the plasma levels of
YKL-40 have been evaluated in the extended spectrum of neurodegenerative dementias.
Villar-Piqué et al. (2019) described significantly higher plasma YKL-40 levels in Creutzfeldt-
Jakob disease (CJD) with a moderate potential to discriminate CJD cases from controls.
Additionally, YKL-40 levels were strongly associated with age but not with gender. In CJD,
YKL-40 concentrations appear significantly higher at late disease stages [78].

Based on these vast experimental data, the protein YKL-40 may have a potential role
as a promising biomarker that reflects the severity of inflammation in PD.
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3. Protein Factors and Autophagy in PD

Autophagy is an essential catabolic mechanism in which cells degrade misfolded pro-
teins and larger cellular complexes such as excessive organelles. In the process, cytoplasmic
components undergo degradation in the lysosomes, releasing molecular building blocks
for reuse [79]. This mechanism is crucial for cell homeostasis. Dysfunctional autophagy
has been associated with several diseases including malignancies, bone diseases, as well as
cardiac and neurodegenerative conditions [80–82].

There are three major types of autophagy, which differ in the ways of delivering sub-
strates to the lysosomes. These include microautophagy, chaperone-mediated autophagy
(CMA), and macroautophagy [83]. In microautophagy, cellular molecules and complexes
are directly engulfed into lysosomes where they are subsequently degraded [84]. In turn,
CMA relies on specific recognition of KFERQ-resembling motifs within the target proteins.
These motifs interact with the heat shock cognate protein of 71 kDa (HSC70). HSC70 then
promotes translocation of the protein substrates into the lysosomal lumen through the
lysosome-associated membrane protein 2 receptor (LAMP2A) for degradation. CMA is
involved in the clearance of damaged and clumped proteins, and its dysfunction has been
associated with neurodegenerative diseases [85–87]. It is well-known that HSC70 prevents
the clustering of α-Syn into fibers, since it binds with high affinity to the soluble α-Syn. It
has been also demonstrated that HSC70 interacts with α-Syn fibers and promotes survival
in mammalian cultured cells by reducing the toxicity of α-Syn fibers [88].

Macroautophagy (or autophagy in the narrow sense of the term) is the best character-
ized type out of the three. The process was initially described by Christian De Duve [89].
In recent years, Yoshinori Ohsumi elucidated the molecular mechanisms of macroau-
tophagy and the genes involved in it [90]. The substrates are encapsulated in double-layer
membrane vesicles called autophagosomes that subsequently fuse with the lysosomes to
produce hybrid organelles: autolysosomes. Autophagy is a normal physiological process
that occurs in healthy cells. However, it is greatly induced under stress conditions such as
starvation, reactive oxygen species, and infections that significantly increase the number of
autophagosomes [91].

The initiation of autophagy in mammalian cells requires the presence of several
protein factors and complexes. The Unc51-like kinase 1 complex (ULK1) consists of a
catalytic subunit ULK1, an adaptor subunit ATG13, ATG101, and a FIP200 (focal adhesion
kinase family interacting protein of 200 kD). ULK1 is a promising therapeutic target in
PD [92]. Activation of ULK1-induced autophagy exhibits a significant protective effect
against MPTP-induced motor dysfunction and dopaminergic neurodegeneration in mouse
models [93]. The activity of the complex is modulated by phosphorylation. In general,
the complex is inactivated via phosphorylation by the mTORC1 (mammalian target or
rapamycin, also referred to as mechanistic target of rapamycin/ Complex 1) that suppresses
the activity of ATG13 as well. The ULK1 complex is activated by AMPK (adenosine
monophosphate-activated protein kinase), which also inhibits mTORC1 by phosphorylating
it directly [94,95].

Experiments involving knockout and knockdown mouse models have demonstrated
the importance of each of the above-mentioned proteins as key markers of autophagy.
Knockout mice of ATG13 and RB1CC1 die during embryonic development, while null
alleles of either ULK1 or ULK2 express a rather mild effect on autophagy. Conversely,
ULK1/2 double-knockout mice die shortly after birth. Fibroblasts isolated from these
ULK1/2 double-knockouts are responsive to glucose starvation but show no autophagy
induction in response to amino acid deprivation [96–100]. The PI3K/Akt/mTORC1 axis
serves as a central negative regulator of autophagy [101,102]. Since mTORC1 suppresses
the key autophagy-related complex ULK1 [103], the inactivation of mTORC1 promotes
autophagy initiation [104]. In the living cell, such mTORC1 inactivation is often provoked
by amino acid scarcity or low insulin levels [104]. The inactivation of mTORC1 mobilizes a
class III PI3K complex to complete the early stages of phagophore formation. The activity of
ULK1 is tightly regulated by upstream kinases including mTOR, AMPK, and AKT1. Each
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separate subunit of ULK1 has been extensively studied, but the significance of every single
protein–protein interaction within the complex is yet to be elucidated [105–108]. Most
studies report that the ULK1 subunit ATG13 is required for the recruitment of the other
subunits of the core complex (ULK1, RB1CC1, and ATG101) and their proper assembly. It
has been also reported that ATG13 directly interacts with both phospholipids and proteins.
From that perspective, targeting the protein–protein interactions involving ATG13 may
provide promising strategies for the modulation of autophagy signaling [109–111]. Block-
ing the interaction between ATG101 and ATG13 exhibits the strongest inhibitory effect on
autophagy, while the obstruction of ATG13—ULK1 or ATG13—RB1CC1 interactions shows
only limited effects. Additionally, the effects on autophagy resulting from suppression of
the ATG13 binding to phospholipids or Atg8 proteins are mild as well. Together, these
experimental results suggest that the ATG13—ATG101 interaction may have a significant
role as a prospective target in autophagy-related pathologies [112]. Numerous studies
involving PD models (including rodents, invertebrates, and cultured cells) have revealed
that AMPK activation may exhibit vast neuroprotective effects. AMPK-mediated phospho-
rylation increases ULK1 activity and induces autophagy, while mTORC1 phosphorylation
prevents ULK1 from binding to AMPK. Conversely, mTORC1 inhibition stimulates ULK1
which initiates the autophagosomal formation [113,114].

The mTORC1 inhibition stimulates a class III PI3K complex to promote phagophore
formation. The class III PI3K complex consists of several proteins including vacuolar pro-
tein sorting (VPS) 34, VPS15, Beclin-1, and Atg14 that drive the early stages of phagophore
growth. The VPS34 subunit of the PI3K complex produces phosphatidylinositol-3-phosphate
(PI3P) simultaneously with the formation of omegasomes [115]. It has been shown that
experimentally induced overexpression of Beclin 1 can decrease the accumulation of α-Syn
aggregates and reduce the related cell damage. Moreover, the transfer of a lentivirus vector
(LV) expressing the Beclin 1 cDNA into a mouse model restores the expression of the
presynaptic marker synaptophysin and the postsynaptic marker MAP2. In addition to the
reduction of α-Syn accumulation, Beclin 1 overexpression promotes autophagy induction
as demonstrated by the elevated levels of LC3. In line with this, the reduced accumulation
of α-syn and the elevated autophagy is also confirmed by an ultrastructural analysis [116].
In vitro studies have suggested that the absence of Vps34 results in disrupted autophagy.
According to Jaber et al., such absence affects predominantly the late autophagosome
formation and leaves the early stages of autophagy largely unaffected. Additionally, it
has been also demonstrated that Vps34 plays a central role in amino acid-induced mTOR
signaling [117]. The function of Vps15 in autophagic clearance of aggregate-prone proteins
has been clearly confirmed. Since increased autophagy can ameliorate aggregate-evoked
cell death, targeted modulation of the Vps34-Vps15 complex may open perspectives for
the development of more precise therapeutic strategies against neurodegenerative patholo-
gies [118]. Silencing of Atg14 in HeLa cells abolishes autophagosome formation almost
completely. Moreover, electron microscopic imaging has shown that autophagosomes
are virtually absent in Atg14 knockdown cells. These observations suggest that Atg14
participates in autophagosome formation rather than in autophagosome maturation [119].

Following omegasome formation, the PI3P-effector protein WIPI (WD repeat domain,
phosphoinositide-interacting protein) recruits Atg2 to the phagophore. Atg2 serves to estab-
lish a connection between the phagophore and the endoplasmic reticulum, and to transfer
lipids to the growing autophagosome membrane [120]. LC3, a ubiquitin-like protein, is en-
gaged in the phagophore elongation and closure via binding to phosphatidylethanolamine.
In turn, another ubiquitin-like protein, Atg12, binds covalently to Atg5 through Atg7 and
Atg10. The Atg12-Atg5-conjugate then binds to Atg16L1, which allows the conjugation of
LC3 to phosphatidylethanolamine [121,122]. Additionally, several studies have shown that
decreased expression of Atg5 or Atg7 in knockout mice leads to neuronal loss and protein
accumulation in the remaining neurons [123,124].

The lipidized LC3 shows E3-like activity, which allows the selective degradation of
specific substrates [125,126]. Furthermore, it has been determined that LC3 overexpres-
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sion has neuroprotective significance and enhances autophagic clearance of Aβ clearance
in vitro and in vivo [127]. Conversely, impaired LC3 lipidation causes accumulation of
unsealed phagophores, which suggests a role of LC3-phosphatidylethanolamine interaction
in autophagosome biogenesis [128]. Intriguingly, functional autophagosomes have been
reported to develop even in the absence of all ATG8 factors (one of which is LC3) [129].
Another functional defect that also causes accumulation of unclosed autophagosomes is
the knockdown of ATG2, a factor that exerts a crucial role in the lipid transfer towards the
growing phagophore [130]. Disrupted protein homeostasis associated with accumulation of
α-Syn microaggregates in dopaminergic neurons is a constantly observed hallmark of PD.
These microaggregates allow the dissemination of α-synuclein among closely associated
neurons, although the exact mechanism is yet to be revealed [131]. Stykel et al. (2021) have
demonstrated that mutant forms of α-syn (specifically A53T and E46K) engage functional
LC3B monomers into insoluble microaggregates. Moreover, the authors also discovered
that constitutive inactivation of LC3B enhances α-syn accumulation, while LC3B activation
inhibits clumping and facilitates α-syn clearance [131].

The formation of the autophagosome completes when the extending ends of the
phagophore fuse with one another with the assistance of ESCRT (endosomal sorting com-
plex required for transport). At least two different types of SNARE proteins—SNAP29
(synaptosomal-associated protein 29) and lysosomal VAMP7/VAMP8 (vesicle-associated
membrane protein)—mediate the fusion of autophagosomes and lysosomes. The merg-
ing of autophagosomes with lysosomes produces autolysosomes, in which the engulfed
materials are decomposed [132,133].

Abnormal levels of α-Syn disrupt the optimal autophagy turnover by impairing the
merging of phagosomes with lysosomes. α-Syn also stimulates the release of extracellular
vesicles and increases the presence of autophagy-associated proteins in those vesicles.
The observed effects result from the capability of α-Syn to decrease the levels of SNAP29,
one of the key factors mediating autophagosome–lysosome fusion. In general, α-Syn
overexpression causes a reduction in SNAP29 levels, which impairs the incorporation
between autophagosomes and lysosomes. That results in fewer autolysosomes being
formed, which impairs the degradation of cellular cargoes. As a compensatory mechanism,
autophagosomes merge more readily with the cell surface membrane to release vesicles
into the extracellular space. Accordingly, the effects of a SNAP29 knockdown closely
resemble the α-Syn impact on autophagy while SNAP29 co-expression ameliorates the
α-Syn-induced alterations on autophagy turnover and vesicle release and reduces neuronal
death [134].

Taken together, these observations support the concept that abnormalities in the
autophagy pathway play a central role in the pathogenesis of PD. It is also assumed that
key factors of autophagy may serve as potential therapeutic targets for PD.

Autophagy pathways in the CNS that involve PI3K, Akt and mTOR offer attractive
perspectives for better understanding of neurodegeneration and the development of novel
therapeutic strategies. PI3K, Akt and mTOR are essential regulatory factors that deter-
mine cell fate, not only during PD but also in the course of other disorders, such as HD,
AD, epilepsy, and traumatic injury. However, the delicate interplay between these factors
and the extent to which they can regulate autophagy may yield unanticipated practical
outcomes. Further efforts are still needed for the complete elucidation of the finer reg-
ulatory mechanisms of autophagy, which will allow the development of precise clinical
strategies [135].

Even though autophagy may be initiated at a certain disease stage, chronic inhibition
of autophagy is a pivotal pathological characteristic of PD. Reduced autophagic capacity is
consistent with the accumulation of abnormal proteins and protein aggregates as well as
aging and dysfunctional organelles, which accelerate cell degeneration. Given the crucial
role of autophagy in PD, investigators are in search of small molecules that modulate au-
tophagy and may potentially improve the symptoms of the disease. Prospective candidate
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compounds that have displayed neuroprotective effects in experimental PD models are
rapamycin, trehalose, and lysosome modulators [135].

Using structure-based drug design Ouyang et al. (2018) discovered a compound with
the designated name 33i (BL-918) that induces autophagy by activating the ULK1 complex.
The autophagy-promoting effects were confirmed experimentally in an in vitro assay with
the use of SH-SY5Y cells. The 33i compound demonstrates its protective effect on SH-
SY5Y cells even following an MPP treatment. Moreover, the activator protects against
MPTP-induced movement impairment and death of dopaminergic neurons by enhancing
ULK1-mediated autophagy in mouse models of PD. Taken together, these results suggest
the therapeutic potential of 33i as a prospective drug for PD [93].

It has been demonstrated that resveratrol treatment alleviates 6-OHDA-provoked de-
generation of dopaminergic neurons and decreases pro-inflammatory cytokines in rats [136].
Furthermore, in MPTP mice, resveratrol reduces depletion of dopamine and tyrosine hy-
droxylase in the striatum and loss of dopaminergic neurons in the substantia nigra [137].
Resveratrol’s cytoprotective effects are greatly diminished by inhibiting AMPK with com-
pound C [138]. Furthermore, resveratrol decreases the levels of α-Syn in PC12 cells over-
expressing it. This effect is prevented by Beclin-1 knockdown or lysosomal inhibition,
suggesting that macroautophagy is crucial for resveratrol-induced clearance of α-Syn [139].

GPA exerts neuroprotection in MPTP-treated mice and prolongs the lifespan in
Drosophila by increasing AMPK activity [140]. Consumption of 1% GPA with food for
4 weeks significantly enhances both AMPK activity and mitochondrial respiration in the
striatum. It ameliorates the MPTP-related degeneration of dopaminergic neurons in the
substantia nigra of experimental models [141].

Another widely tested drug, metformin, significantly reduces the MPTP-triggered neu-
rodegeneration and dopamine decline in mice and reinstates normal motor function during
a rotarod test [142]. Additionally, metformin increases macroautophagy and decreases
α-Syn, reactive microglia, and the levels of pro-inflammatory cytokines. These conclusions
were further confirmed in SH-SY5Y cells treated with MPP+; these showed improved
survival capabilities and reduced release of lactate dehydrogenase (LDH) following met-
formin administration. Metformin also increases macroautophagy-related markers, while
decreasing ROS levels and the number of dysfunctional mitochondria. Conversely, these
protective effects are nullified by the application of compound C (a potent AMPK inhibitor)
and the macroautophagy inhibitor 3-Methyladenine (3-MA). [142] These results indicate
that metformin-mediated AMPK activation exerts significant protective effects through
a plethora of mechanisms, such as increased α-Syn clearance, improved mitochondrial
fitness, and reduced neuroinflammation. In another experiment involving murine models,
metformin significantly elevated the expression of superoxide dismutase and catalase,
thus reducing the oxidative stress in the studied animals [143]. Metformin also increased
expression of the neurotrophic factor BDNF in MPTP mice undergoing a 21-day treatment.
Inhibition of the TrkB neurotrophin receptor in SH-SY5Y cells treated with MPP+ cancels
the neuroprotective effects of metformin, suggesting that the proper BDNF signaling may
play a critical role in the mechanisms of metformin treatment [144]. High expression of
the stress-inducible protein Sestrin-2 stimulates macroautophagy and cell survival and
decreases α-Syn accumulation in MES 23.5 cells treated with rotenone. These cytoprotective
effects appear to depend on AMPK, since metformin can rescue the impact of a Sestrin-2
knockdown on macroautophagy [145]. In a separate study, mice with Clk1 deficiency and
impaired AMPK function demonstrated decreased autophagy and increased susceptibility
to MPTP-triggered neurodegeneration. In these mice, metformin restores macroautophagy
and reduces the MPTP-related motor symptoms and loss of dopaminergic neurons, further
suggesting the role of AMPK-mediated macroautophagy in PD [146].

Neurotrophins have been established as important modulators of autophagy in neu-
rons. Available data suggest that neurotrophins including BDNF support neuronal survival,
at least partially, by modulating autophagy. It has been shown that in neurons, BDNF/TrkB
signaling assists cell survival by modulating the PI3K/Akt/mTOR and autophagy. It is
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noteworthy to mention that BDNF-related effects on autophagy depend on the nutritional
state of the neuron and its localization in a particular brain region. For instance, in cultured
cortical neurons under hypoxic conditions, BDNF enhances cell survival by inhibiting the
PI3K/Akt/mTOR pathway and, thus, enhancing autophagy. Conversely, in cell cultures of
hippocampal neurons under no metabolic challenge, BDNF suppresses autophagy again
via the PI3K/Akt/mTOR pathway. Additionally, studies involving animal models have
demonstrated that conditional deletion of BDNF in the neural lineage results in increased
LC3 and decreased p62 levels in the brain, which further confirms the role of BDNF in
autophagy modulation [147–150].

A series of studies of transgenic mice, and animal and cell models of PD have un-
derlined the role of PD-related protein factors, mostly α-Syn and LRRK2, in the processes
of autophagy [151,152]. Of particular importance is the fact that autophagy is the only
mechanism used by eukaryotic cells to break down clumped proteins and damaged or-
ganelles that cannot be digested by the proteasome. α-Syn molecules with native folding
are degraded mainly via chaperon-mediated autophagy involving HSP70 and LAMP2A.
However, mutant α-Syn variants are resistant to such degradation. As a result, they ag-
gregate in the cytosol, thus causing significant neuronal damage. The cell then engages
macroautophagy, in which the α-Syn clumps become enclosed in endophagosomes [153].
Accumulation of autophagosomes has been found in brain samples from patients with
PD, which confirms the possible induction of autophagy. According to Dehay et al. (2010),
the accumulation of autophagosomes and the loss of dopaminergic neurons result from
a significant decrease in the number of lysosomes in these neurons [154]. The authors
argue that levels of LAMP-1 as a marker for the lysosomal dynamics in mouse models
of PD are characterized by a significant decrease during the course of the pathological
process. Lower levels of LAMP-2A have been recently described in samples from the
cortex and hippocampus of PD patients [155]. In the same way, the immunoreactivity
of LAMP-1, cathepsin D (CatD), and HSP73 has proven to be significantly lower in the
neurons of substantia nigra in patients with PD compared to healthy controls. This decrease
is even higher in neurons harboring α-Syn inclusions [156]. Besides, McNeil et al. (2014)
suggested a clear negative correlation between the alpha-synuclein and LAMP-1 levels in
experimental cell models. In their study, the authors demonstrated that ambroxol treatment
significantly reduces α-Syn levels in neuroblastoma cells which is, in turn, accompanied by
an increase in LAMP-1 levels [157].

Autophagy Regulation in PD

As a crucial process for cell homeostasis and survival, autophagy is controlled at
various levels. For instance, the forkhead-box O transcription factors are largely involved
in the transcriptional control of autophagy [158]. FOXO3 directly binds to and regulates
a complex of autophagy-related genes in adult neural stem cells [159]. It also stimulates
FOXO1-mediated autophagy by activating the AKT1 signaling pathway [160]. Using a
transcriptome-scale microarray approach, Dimitriu et al. (2012) discovered a significant
upregulation of FOXO1 in the prefrontal cortex of PD patients. Moreover, a vast propor-
tion of genes containing FOXO1-binding sites were also upregulated in the same brain
area [161]. These findings are in agreement with an earlier microarray study by Zhang et al.
(2005), in which FOXO1 showed consistent overexpression [162]. Intriguingly, the available
expression data for another member of the family, FOXO3, are contradictory. Elevated
activity and expression of FOXO3a has been closely associated with the Lewy bodies in
the brain tissue of PD [163]. In contrast, significant downregulation of FOXO3 has also
been described in PD brain samples [164]. Despite this inconsistency, the role of FOXO3 in
neurodegeneration has been experimentally confirmed by functional analyses in transgenic
cell models expressing wild-type, constitutively active, and dominant-negative variants of
the gene. Further efforts are still needed for the better elucidation of FOXO3 involvement
in PD development.



Int. J. Mol. Sci. 2022, 23, 14997 12 of 20

Another factor potentially implicated in autophagy regulation in PD is the inositol-
requiring enzyme 1α/β (IRE1). IRE1 provides a direct link between protein accumulation
and cell degeneration. Current evidence has suggested that IRE1 induces an autophagy-
dependent neuronal death in an animal model of PD. Conversely, the suppression of IRE1
and ATG7 genes prevents the progression of α-Syn-induced PD in the same experimental
model [165].

Mitophagy is a special case of (macro)autophagy that involves targeted degradation
of mitochondria. Impaired mitochondrial clearance eventually leads to cell degenera-
tion and death. The most extensively studied pathway for mitochondrial degradation
requires PINK1/Parkin activation, even though this pathway is not the only mechanism
of mitophagy [166–170]. Briefly, upon detection of dysfunctional mitochondria, PINK1
accumulates on the mitochondrial outer membrane where it activates Parkin. It in turn
promotes the ubiquitination of mitochondria, marking them for clearance. Increased PINK1
expression exerts anti-apoptotic effects when cells are subjected to stress, while its defi-
ciency makes cells prone to stress-induced cell death. The roles of PINK1 in mitochondria
are versatile, including regulation of mitochondrial membrane potential, complex I and IV
activity, ATP- and ROS- production. Comparably, the most remarkable feature of Parkin is
its ability to provide cellular protection against a wide variety of detrimental factors, and
its gene expression is upregulated in various types of stress [171]. Mutations in PINK1 and
Parkin genes have been commonly associated with recessive forms of familial PD [172].
Loss of function of either of them results in impaired mitochondria accumulation. In
addition, post-translational modifications of Parkin have proven important for its solubility
or aggregation, and its potential contribution to the formation of Lewy bodies.

4. The Complex Interplay between Autophagy and Neuroinflammation

The interaction between autophagy and neuroinflammation is complex and, to a
certain extent, elusive.

A study involving murine models of PD has suggested that impaired autophagy en-
hances neuroinflammation in a NLRP3 inflammasome-dependent manner, eventually caus-
ing motor and cognitive impairments [173]. Conversely, artificially stimulated autophagy
with rapamycin promotes a significant protective role not only in neurodegeneration but
also in aging [174]. It has been also demonstrated that autophagy plays a crucial role in
microglial activation in vitro. Suppression of microglial autophagy results in increased M1
microglial activation, leading to upregulation of pro-inflammatory cytokines [175].

Jin et al. (2018) revealed that TNF-α causes autophagy dysregulation in both neurons
and microglia, which correlates with significant LAMP1 and LAMP2 overexpression in
the microglia [176]. It has been suggested that the impaired autophagic flux stimulates
microglial differentiation toward the M1 phenotype. In general, the M1 state of microglia is
known as pro-inflammatory and neurotoxic, while M2 is anti-inflammatory and neuropro-
tective [177]. Therefore, impaired microglial autophagy may promote cell sensitization and
neuroinflammation.

The importance of microglial autophagy for the efficient degradation of inflamma-
tory myelin debris has been proven as a key mechanism in the control of the brain tissue
homeostasis [178]. Autophagy-related phagocytosis improves the recovery rate of neuroin-
flammation and minimizes the symptoms of experimental autoimmune encephalomyelitis
in murine models.

Alterations in the gut microbiome and gut inflammatory processes are intimately
linked to PD pathophysiology [179] and may have some bearing on the interactions of
YKL-40, glia and autophagy, as highlighted above. Gut microbiome-derived butyrate,
as a histone-deacetylase inhibitor, would be expected to regulate the capacity of NF-kB
to induce YKL-40, as shown in glioma cells [180]. Butyrate’s mitochondria-optimizing
effects seem to be at least partly dependent on its induction of sirtuin-3 to upregulate the
mitochondrial melatonergic pathway, indicating diverse effects of butyrate arising from
alterations in the availability of this pathway [181]. As melatonin suppresses LPS-induced
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YKL-40 [182] and acts in an autocrine manner to suppress glia activation, alterations in the
availability of local melatonin and its capacity to be regulated by butyrate will be important
to determine across cell types in PD patients and preclinical models.

5. Conclusions

Current diagnosis of PD relies almost entirely on evaluating the clinical presentations
of the disease. Thus, the use of biomarkers that precisely indicate the stage and severity
of the disease may improve diagnosis and facilitate therapeutic intervention. A large
body of evidence has confirmed that autophagy and neuroinflammation are critical for PD
development. These processes are regulated in a complex interconnected manner involving
most of the known PD-associated genes. The extensive scientific efforts to clarify the
molecular mechanisms of neuroinflammation and autophagy offer promising perspectives
for the development of novel biomarkers that may objectively reflect the disease stage and
severity. Furthermore, a better elucidation of the molecular basis of neuroinflammation
and autophagy may allow these processes to be more precisely targeted by novel treatment
strategies for PD. Probably the most valuable future approaches will integrate clinical
observations with genetic and molecular data. Further efforts are still required for the
complete elucidation of autophagy and neuroinflammation in the context of PD progression
and therapy.
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