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Abstract: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease,
affecting approximately one-quarter of the global population, and has become a world public health
issue. NAFLD is a clinicopathological syndrome characterized by hepatic steatosis, excluding ethanol
and other definite liver damage factors. Recent studies have shown that the development of NAFLD
is associated with lipid accumulation, oxidative stress, endoplasmic reticulum stress, and lipotoxicity.
A range of natural products have been reported as regulators of NAFLD in vivo and in vitro. This
paper reviews the pathogenesis of NAFLD and some natural products that have been shown to have
therapeutic effects on NAFLD. Our work shows that natural products can be a potential therapeutic
option for NAFLD.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) has evolved from a relatively unknown
disease to the most common cause of chronic liver disease worldwide. Currently, a con-
sensus defines NAFLD as an umbrella term for a range of diseases in which steatosis is
present in more than 5% of hepatocytes with metabolic risk factors (especially obesity
and type 2 diabetes), excluding excessive alcohol consumption or other chronic liver dis-
ease [1,2]. NAFLD is divided into non-alcoholic fatty liver (NAFL) and non-alcoholic
steatohepatitis (NASH) according to histological features (Figure 1) [3]. NAFL is defined as
all cases characterized by steatosis, with or without mild lobular inflammation. In contrast,
NASH is additionally characterized by the presence of hepatocellular damage (hepatocyte
ballooning degeneration, diffuse lobular inflammation and fibrosis). Although simple
steatosis is considered a “benign” disease, its association with liver fibrosis can lead to the
development of cirrhosis and hepatocellular carcinoma (HCC) [4,5]. Therefore, NAFLD is
considered an important factor in regulating mortality from liver-related diseases.

With the global increase in metabolic syndrome, obesity and diabetes, the prevalence
of NAFLD has risen dramatically, affecting about a quarter of the world’s population [6].
Global epidemiological meta-analysis in 2016 showed that NAFLD is highly prevalent on
all continents [7]. Possibly due to differences in overall caloric intake, physical activity,
body fat distribution, socioeconomic status and genetic composition, the prevalence was
highest in the Middle East and lowest in Africa, with approximately 31.79% (95% confi-
dence interval (CI), 13.48–58.23) and 13.48% (95% CI, 5.69–28.69), respectively [7]. In this
survey, metabolic comorbidities associated with NAFLD, including obesity 51.34% (95% CI,
41.38–61.20), type 2 diabetes 22.51% (95% CI, 17.92–27.89), hyperlipidemia 69.16% (95% CI,
49.91–83.46), hypertension 39.34% (95% CI, 33.15–45.88) and metabolic syndrome 42.54%
(95% CI, 30.06–56.05), all showed strong correlations [7]. Obesity and insulin resistance
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(IR) lead to impaired lipid metabolism and chronic inflammation, which can lead to the
progression of NAFLD to NASH and even to cirrhosis, HCC and death. Alarming data
showed a global prevalence of 59.1% (95% CI, 47.6–69.7) of NASH among patients with
biopsied NAFLD [7]. Patients with NAFLD are the fastest growing group of HCC patients
requiring liver transplantation in the United States. A study analysed trends in the etiology
of HCC from 2002–2012 and found the prevalence of NASH-related HCC increased from
8.3% in 2002 to 13.5% in 2012 [8]. As a result, NAFLD has become a world public health
problem that cannot be ignored.
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Figure 1. The different stages of non-alcoholic fatty liver disease (NAFLD). First, the healthy livers
develop non-alcoholic fatty liver (NAFL) with hepatocellular steatosis as the main feature. If left
untreated, NAFL may progress to a more severe form of non-alcoholic steatohepatitis (NASH),
defined as inflammation and fibrosis in addition to hepatocellular steatosis. As the disease progresses,
NASH may progress to cirrhosis and even to hepatocellular carcinoma (HCC).

In clinical practice, patients with NAFLD show elevated triglycerides, elevated LDL
and reduced HDL in biochemical tests [9]. The symptoms are usually associated with
features of metabolic syndrome, such as obesity, dyslipidemia, type 2 diabetes and hy-
pertension [2,7,10–12]. However, the pathogenesis of NAFLD is unknown, and this has
become a hindrance to the treatment of NAFLD. Early studies suggest that IR and hep-
atic steatosis due to excess fatty acids are the “first-hit “, whereas hepatocytes eventually
undergo damage, inflammation, fibrosis and other pathological changes due to oxidative
stress and lipid peroxidation to form the “second-hit” [13]. Today, it is widely accepted
that the “multiple-hit” theory is based on the “second-hit” theory, which includes various
factors such as oxidative stress, endoplasmic reticulum (ER) stress and lipotoxicity [14].
This theory also provides a more accurate explanation for the pathogenesis of NAFLD.

Currently, there are no clinically approved drugs for NAFLD, and treatment is mainly
through diet and exercise to change lifestyles [15]. However, patients with NAFLD often
have difficulty maintaining an improved lifestyle. Therefore, it is of great practical im-
portance to strengthen the research on the pathogenesis of NAFLD and to find safe and
effective drugs for the prevention and treatment of NAFLD. With “NAFLD” and “Natural
products” as key words, we searched PubMed database for relevant literature in the last ten
years. It was found that the effects of natural products were usually evaluated in various
signaling pathways related to lipid metabolism, oxidative stress, ER stress and lipotoxicity,
and showed excellent therapeutic effects. In this article, we review the mechanisms associ-
ated with the pathogenesis of NAFLD and some natural small molecule compounds that
have been shown to play a therapeutic role in NAFLD, as well as some natural compounds
that may have therapeutic promise for NAFLD.

2. Pathogenesis
2.1. Lipid Accumulation

When energy intake is higher than consumption, excess energy is stored in the form of
lipids. In a disordered state, lipids are stored in other organs throughout the body [12,16–18].
NAFLD is a typical example of ectopic accumulation of lipids (Figure 2). Hepatic steatosis
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in NAFLD is triggered by excessive triglyceride (TG) synthesis in hepatocytes, with 60% of
the substrate for this synthesis originating from white adipose tissue (WAT), 26% from de
novo lipogenesis (DNL) and 15% from the consumption of a high-fat and/or high-sugar
diet [19–21].
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Figure 2. Abnormal lipid accumulation in NAFLD. The increase in hepatic lipid accumulation is
due to the absorption of large amounts of free fatty acids (FFAs) synthesized triglycerides by the
liver from white adipose tissue (WAT), high-fat and high-sugar foods, and de novo lipogenesis
(DNL). Insulin resistance plays a vital role in this process. Insulin resistance promotes glucose
absorption and enhances the lipolysis of WAT. This leads to the activation of the DNL pathway.
Abbreviations: ChREBP, carbohydrate response element binding protein; SREBP-1c, sterol regulatory
element binding protein 1c; ACC, acetyl-CoA carboxylase; FAS, fatty acid synthase.

Insulin has an anti-lipolytic effect, mediates TG storage in adipose tissue, and promotes
esterification and storage of fatty acids [22]. Therefore, insulin resistance (IR) becomes
a key therapeutic factor in NAFLD. The fatty acid is mainly stored in the lipid droplets
of WAT as TG [23]. Lipid droplets in cells have long been used as a relatively lazy lipid
reservoir [24]. They act like a battery to store excess energy and release it when needed.
In the IR state, the antilipolytic effect of insulin is diminished and WAT is broken down,
leading to a large release of free fatty acids (FFAs) [25]. Then, excess FFAs are stored in the
liver as TG, forming lipid ectopic deposits and causing NAFLD [26].

DNL is a key pathway that promotes lipid accumulation and is closely associated with
IR [27]. DNL is modulated by sterol regulatory element-binding protein 1c (SREBP-1c) and
carbohydrate response element-binding protein (ChREBP) [28,29]. IR activates SREBP-1c
to promote DNL in hepatocytes [30,31]. Increased glucose concentration activates ChREBP
to regulate the expression of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS),
thereby promoting DNL in hepatocytes [32–34].

With the obesity epidemic, we found that dietary factors are critical to the development
of NAFLD [35–37]. A study suggested that a high-fat diet (HFD) alone led to obesity, IR
and some degree of fatty liver with little inflammation and fibrosis, whereas a diet with
added fructose increased the gene expressions for liver fibrosis, inflammation, ER stress and
adipocyte apoptosis. [38]. In addition, animal models and human studies have shown that
fructose has selective hepatic metabolism and triggers hepatic stress responses, including
activation of c-Jun N-terminal kinase (JNK) and IR, which promotes fat accumulation in the
liver, leading to increased lipogenesis and impaired fatty acid oxidation (FAO), triggering
liver inflammation and liver fibrosis [39–42]. This suggests that fructose in the composition
of the diet is an important risk factor for the development of NAFLD into NASH.
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2.2. Oxidative Stress

Normally, DNL converts excess carbohydrates into fatty acids. Therefore, these fatty
acids are esterified to form triglycerides (TG) that are stored in hepatocytes. In times
of energy deficit, TG provides the body with energy through β-oxidation [43]. The in-
crease of FFAs in the liver due to various causes leads to the damage of β-oxidation and
mitochondrial dysfunction, resulting in inflammation, which leads to oxidative stress
(Figure 3) [44]. Reactive oxygen species (ROS) are important mediators of the inflammatory
response [45,46].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 18 
 

 

2.2. Oxidative Stress 
Normally, DNL converts excess carbohydrates into fatty acids. Therefore, these fatty ac-

ids are esterified to form triglycerides (TG) that are stored in hepatocytes. In times of energy 
deficit, TG provides the body with energy through β-oxidation [43]. The increase of FFAs in 
the liver due to various causes leads to the damage of β-oxidation and mitochondrial dysfunc-
tion, resulting in inflammation, which leads to oxidative stress (Figure 3) [44]. Reactive oxygen 
species (ROS) are important mediators of the inflammatory response [45,46]. 

The peroxisome is the first enzyme of the fatty acid β-oxidation system. Peroxisome 
proliferation-activated receptor α (PPARα) regulates the activity of three interrelated he-
patic fatty acid oxidation systems, namely the mitochondrial and peroxisomal β-oxida-
tion, and microsomal ω-oxidation pathways [47]. Sustained activation of PPARα can alle-
viate NAFLD by enhancing FAO and reducing ROS levels [48–50]. However, many stud-
ies have found that excessive activation of PPARα enhances hepatic FAO and also leads 
to excessive combustion of hepatic energy, disproportionately increasing H2O2 and pro-
ducing an inflammatory response [51–53]. 

NAFLD patients exhibit ultrastructural mitochondrial damage, reduced respiratory 
chain complex activity and impaired ATP synthesis [54]. Mitochondria play a very im-
portant role in FAO and energy supply, but a large number of ROS are also produced in this 
process, which is one of the main sources of ROS in cells [55]. ACC catalyzes DNL and reg-
ulates mitochondrial FAO [56]. DNL enhances glycolytic activity, resulting in a rise in py-
ruvate and acetyl-CoA. FFAs cross the inner mitochondrial membrane through the carnitine 
palmitoyltransferase 1 (CPT1) [57]. Impaired mitochondrial β-oxidation occurs when the 
transport of fatty acids to the mitochondria is reduced [58,59]. In the mitochondria, acyl-
CoA is converted to acetyl-CoA by β-oxidation and then enters the tricarboxylic acid cycle 
(TCA) to provide energy. More specifically, the mitochondrial dysfunction is due to the 
damage of the electron transport chain (ETC). Components of the mitochondrial respiratory 
chain are over-reduced by electrons, which then react abnormally with oxygen, leading to 
increased ROS [60]. In addition, ROS oxidizes fatty deposits to release lipid peroxides that 
damage hepatocytes. In hepatocytes, ROS and lipid peroxides further damage the respira-
tory chain, directly or indirectly causing oxidative damage to the mitochondrial genome, 
which also leads to the production of more ROS, thus creating a vicious cycle [61,62]. 

 
Figure 3. Fatty acid oxidation system in NAFLD. The fatty acid oxidation system consists of perox-
isome, mitochondria and microsomes. Mitochondria play a vital role in fatty acid oxidation and 
energy supply. Glucose enhanced glycolysis and increased pyruvate content through the de novo 
lipogenesis (DNL) pathway. Pyruvate enters mitochondria and is converted into acetyl-CoA. Part 

Figure 3. Fatty acid oxidation system in NAFLD. The fatty acid oxidation system consists of per-
oxisome, mitochondria and microsomes. Mitochondria play a vital role in fatty acid oxidation and
energy supply. Glucose enhanced glycolysis and increased pyruvate content through the de novo
lipogenesis (DNL) pathway. Pyruvate enters mitochondria and is converted into acetyl-CoA. Part
of acetyl-CoA enters tricarboxylic acid cycle (TCA) and then synthesizes free fatty acids (FFAs)
through the DNL pathway. The synthesized FFAs enter mitochondria together with the plasma
FFAs through carnitine palmitoyltransferase 1 (CPT1) and are converted into acyl-CoA. Acyl-CoA is
converted into acetyl-CoA by β-oxidation and enters the TCA to generate energy. The components
of the mitochondrial respiratory chain are abnormally reduced by electrons and react with oxygen,
producing a large number of reactive oxygen species (ROS). ROS further oxidize lipid deposition to
form lipid peroxide, which leads to inflammatory reaction. Abbreviations: ETC, electron transport
chain; PPAR, peroxisome proliferation-activated receptor.

The peroxisome is the first enzyme of the fatty acid β-oxidation system. Peroxisome
proliferation-activated receptor α (PPARα) regulates the activity of three interrelated hep-
atic fatty acid oxidation systems, namely the mitochondrial and peroxisomal β-oxidation,
and microsomalω-oxidation pathways [47]. Sustained activation of PPARα can alleviate
NAFLD by enhancing FAO and reducing ROS levels [48–50]. However, many studies
have found that excessive activation of PPARα enhances hepatic FAO and also leads to
excessive combustion of hepatic energy, disproportionately increasing H2O2 and producing
an inflammatory response [51–53].

NAFLD patients exhibit ultrastructural mitochondrial damage, reduced respiratory
chain complex activity and impaired ATP synthesis [54]. Mitochondria play a very im-
portant role in FAO and energy supply, but a large number of ROS are also produced in
this process, which is one of the main sources of ROS in cells [55]. ACC catalyzes DNL
and regulates mitochondrial FAO [56]. DNL enhances glycolytic activity, resulting in a rise
in pyruvate and acetyl-CoA. FFAs cross the inner mitochondrial membrane through the
carnitine palmitoyltransferase 1 (CPT1) [57]. Impaired mitochondrial β-oxidation occurs
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when the transport of fatty acids to the mitochondria is reduced [58,59]. In the mitochon-
dria, acyl-CoA is converted to acetyl-CoA by β-oxidation and then enters the tricarboxylic
acid cycle (TCA) to provide energy. More specifically, the mitochondrial dysfunction is
due to the damage of the electron transport chain (ETC). Components of the mitochon-
drial respiratory chain are over-reduced by electrons, which then react abnormally with
oxygen, leading to increased ROS [60]. In addition, ROS oxidizes fatty deposits to release
lipid peroxides that damage hepatocytes. In hepatocytes, ROS and lipid peroxides further
damage the respiratory chain, directly or indirectly causing oxidative damage to the mito-
chondrial genome, which also leads to the production of more ROS, thus creating a vicious
cycle [61,62].

2.3. Endoplasmic Reticulum (ER) Stress

ER stress is a protective response that restores protein homeostasis by activating
the unfolded protein response (UPR) [63]. However, when activation of the UPR fails to
promote cell survival, cells are activated by the proapoptotic ER stress pathway, which
ultimately leads to cell death (Figure 4) [64]. The ER membrane consists of a small amount
of cholesterol and complex sphingolipids [65]. This loose packing of ER membrane lipids
facilitates the synthesis of new lipids and the transport of proteins. Lipogenesis is the main
metabolic pathway affected by ER stress [66]. Recent data suggest that ER is present in
both the development of hepatic steatosis and the progression of NASH [67]. Disrupted ER
homeostasis has been reported to be found in the liver of NAFLD patients [68]. This result
suggests that ER stress is closely associated with NAFLD.
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Figure 4. Endoplasmic reticulum (ER) stress in NAFLD. With the increase of lipid accumulation, ER
stress leads to a large number of unfolded proteins, thus triggering unfolded protein response (UPR).
UPR is mediated by protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1),
and activating transcription factor 6 (ATF6). PERK-mediated phosphorylation of eukaryotic initiation
factor 2α (eIF2α) leads to the transient weakening of translation, but activation of transcription factor
4 (ATF4) induces the gene expression of CCAAT-enhancer-binding protein homologous protein
(CHOP). ATF6 can also activate CHOP to induce apoptosis. ATF6 and IRE1 promote the expression
of X-box binding protein-1 (XBP1), and mediate inflammation through the c-Jun N-terminal kinase
(JNK) signaling pathway. IRE1 can also directly promote the activation of JNK and activate tumor
necrosis factor (TNF) receptor-related factor 2 (TRAF2), thus promoting cell apoptosis. Abbreviations:
GRP78, glucose-regulated protein 78.

UPR is mediated by three typical ER-resident stress sensors, protein kinase RNA-like
ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor
6 (ATF6) [69]. In normal conditions, these molecules bind to glucose-regulated protein
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78 (GRP78) and keep it in an inactive state. Under ER stress conditions, all these pathways
can be activated after separation from GRP78, which influences different downstream
events [70].

The three proximal UPR sensors PERK, IRE1 and ATF6 all regulate lipid storage in the
liver [67]. The IRE1-XBP1 and PERK-peIF2α pathways upregulate the adipogenic gene pro-
gram, whereas the interaction between ATF6, sterol regulatory element-binding protein 2
(SREBP2) and histone deacetylase 1 (HDAC1) can limit adipogenesis. In the absence of
resolution of ER stress, hepatic steatosis may be promoted through the upregulation of lipid
input pathways and the downregulation of lipid output pathways. It has been reported
that ER stress promotes the activation of the adipogenic transcription factor SREBP-1c,
thereby promoting adipogenesis [71,72]. Significant insulin resistance and steatosis in
obese rodents are paradoxically associated with adipogenic activation in the liver precisely
because SREBP-1c and adipogenic activation in fatty liver are secondary to ER stress [28].

ER stress promotes apoptosis through three sensor dimers and autophosphoryla-
tion. [73]. PERK-mediated phosphorylation of eukaryotic initiation factor 2α (eIF2α) leads
to transient attenuation of translation but activates transcription factor 4 (ATF4) for se-
lective translation. ATF4 acts as a transcription factor and induces the gene expression
of CCAAT-enhancer-binding protein homologous protein (CHOP), which is associated
with apoptosis [74]. CHOP is also a substrate of ATF6. In addition, ATF6 upregulates the
expression of X-box binding protein-1 (XBP1), which mediates inflammatory responses
through the JNK signaling pathway. IRE1 promotes the activation of tumor necrosis factor
(TNF) receptor-associated factor 2 (TRAF2) and JNK, thereby promoting apoptosis. Several
studies have confirmed that the IRE1 pathway can activate JNK through its kinase struc-
tural domain, leading to the increased expressions of proinflammatory mediators [75–77].
Activation of IRE1 leads to splicing of XBP1. XBP1 is a key transcription factor that regulates
genes encoding adaptive UPR. These suggest that ER stress leads to the progression of
NAFLD to a more severe form of NASH.

2.4. Lipotoxicity

Lipotoxicity is the toxic effect of sustained high concentrations of lipids and metabolites
deposited excessively in nonadipose tissue, causing damage to that tissue [78]. When
lipotoxic substances in hepatocytes are consistently elevated beyond the hepatocyte’s
ability to transport them, hepatocyte damage is exacerbated and the disease progresses to a
more severe situation. In NAFLD, IR leads to a significant increase in plasma FFAs, and
FAO overload in hepatocytes leads to mitochondrial damage, generating large amounts
of ROS and causing ER stress, oxidative stress, and inflammatory responses (Figure 5). A
range of effects of lipotoxicity from free fatty acids (FFAs) play an important role in the
development of NASH and drive further progression of the disease.

Not all lipids are lipotoxic. For example, TG and FFA containing unsaturated double
bonds have protective effects against lipotoxic substance-induced liver injury [79]. In
this regard, a study on a mouse model of NASH found that fatty triglyceride lipase
(ATGL) deficiency inhibited TG catabolism and reduced the release of FFAs, thus providing
protection against liver injury [80]. In addition, it has been observed that monounsaturated
oleic acid (OA) can promote the development of hepatic steatosis but is less toxic than
saturated FFAs, such as palmitic acid (PA) and stearic acid [81]. These lipids and their
metabolites that can cause cellular damage are called lipotoxic substances, which include
saturated PA, ceramides, bile acids, and free cholesterol. Ceramides have been reported to
affect IR and inflammatory pathways in mouse models and in patients with NASH [78]. The
structure of bile acids is hydrophobic and inherently toxic to cells. It has been demonstrated
that bile acids disrupt cell membranes by dissolving phospholipids, cholesterol and fatty
acids in lipid bilayers [82]. Free cholesterol can activate SREBP-2 to upregulate LDL
receptors, thereby reducing the biotransformation of cholesterol to bile acids [83]. These
lipotoxic substances may lead to apoptosis, inflammation, increased liver fibrosis, and the
development of steatosis to NASH.
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situation. Lipotoxicity will aggravate mitochondrial dysfunction and endoplasmic reticulum (ER)
stress caused by free fatty acids (FFAs). Lipotoxicity can also induce Kupffer cells and hepatic stellate
cells to produce a wider range of inflammatory reactions and liver fibrosis.

Lipotoxicity has different effects on different cells. The mechanism of lipotoxicity de-
scribed earlier in this paper acts on hepatocytes, the major component of hepatic parenchy-
mal cells. However nonparenchymal cells such as hepatic stellate cells (HSCs) and Kupffer
cells (KCs) also play very important roles in the progression of NASH. HSCs are the
main cell population involved in hepatic fibrogenesis and are the main cause of NASH
progression. It has been found that activation of TLR4 by lipotoxic substances promotes
inflammatory and fibrotic signaling in HSCs [84]. KCs cells regulate the inflammatory
response of the hepatic microenvironment and participate in the development of liver
disease by secreting proinflammatory cytokines. Elevated concentrations of the oxidized
LDL in NASH patients produce inflammation by KCs cells [85].

3. Potential Natural Ingredients for the Treatment of NAFLD

Based on the fact that there are no Food and Drug Administration (FDA)-approved
drugs for the treatment of NAFLD, we summarize the natural products that have the effect
of alleviating NAFLD. The exploration of natural products may be a broad direction for
the treatment of NAFLD. Here, we classify the relevant natural products according to the
pathogenesis of NAFLD, which can be classified according to their different functions,
including regulation of lipid metabolism, improvement of oxidative stress, improvement
of ER stress, and alleviation of inflammation (Figure 6). These natural products are divided
into bioactive species (Table 1) and bioactive compounds (Table 2). The chemical structures
of the bioactive compounds for relieving NAFLD are shown in Figure 7.

3.1. Regulating Lipid Metabolism

Excessive calorie intake will activate the DNL, resulting in increased lipid accumu-
lation. Adenosine monophosphate (AMP)-activated protein kinase (AMPK), the main
cellular energy sensor, has been implicated as a key regulator of hepatic lipid and glucose
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metabolism [86]. Recently, emerging evidence indicates that many plant-derived natural
products are capable of ameliorating lipid metabolism by targeting AMPK.

Antrodan is a type of β-glucan extracted and purified from Antrodia cinnamomea
T. T. Chang & W. N. Chou [49], a precious edible fungus native to Taiwan [87]. Antro-
dan has been reported to reduce the plasma levels of malondialdehyde, total cholesterol,
triglycerides, GOT, GPT, uric acid, glucose and insulin, and to upregulate the leptin and
adiponectin in a high-fat and high-fructose diet mouse model. Protein expression levels
were measured after the administration of the drug, and the results showed that Antrodan
improved the effects of NAFLD mice by activating the AMPK pathway [49]. Emodin
extracted from Radix Polygoni Multiflori (Fallopia multiflora (Thunb.) Harald) significantly
reduced the contents of TG, TC and FFAs in zebrafish with NAFLD. This study shows that
emodin alleviates NAFLD by modulating the AMPK signaling pathway, increasing IR sen-
sitivity and FAO [88]. Flavonoids A-D with similar structures extracted from Lomatogonium
rotatum (L.) Fries ex Nym. (belonging to Gentianaceae) have the effects of reducing blood
lipids and inhibiting obesity. Four types of flavonoids can effectively improve serum TC
and TG levels. Among them, flavonoid C can also improve HDL and LDL levels at the same
time, and it has the strongest ability to improve serum lipid parameters. Only the flavonoid
B cannot improve serum HDL levels. In addition, it was found that the four flavonoids
stimulated AMPK in different degrees and decreased the expression level of FAS pro-
tein [89]. Another potential treatment for NAFLD is oxyresveratrol, a naturally occurring
polyhydroxylated stilbene that is abundant in mulberry wood (Morus alba L.). Gene- and
protein-level assays showed that it was able to upregulate the expression level of p-AMPK
and downregulate the expression level of SREBP-1c, suggesting that the regulation of this
extract is mediated by the AMPK/SREBP-1c pathway [90]. Cynandione A, isolated from
ethyl acetate extract of Cynanchum wilfordii (Maxim.) Hemsl., is a bioactive phytochemical
that has been found to be beneficial for the treatment of several diseases. It has been re-
ported that it can also activate AMPK and inhibit the expression of SREBP-1c protein, which
can improve NAFLD by inhibiting hepatic DNL [91]. Gomisin N derived from Schisandra
chinensis (Turcz.) Baill. can also play a role in improving lipid metabolism by activating
AMPK [92]. Moreover, activation of AMPK signaling was observed in both tomatidine [93]
and licochalcone A [94] during these studies, and all of them have a well-regulated effect
on lipid metabolism. These studies revealed that AMPK has a very important function in
the regulation of lipid metabolism.
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Figure 6. Related targets of natural products in the treatment of NAFLD. Abbreviations: AMPK,
(AMP)-activated protein kinase; ACC, acetyl-CoA carboxylase; SREBP-1c, sterol regulatory element-
binding protein 1c; FAS, fatty acid synthase; PPAR, peroxisome proliferation-activated receptor;
CPT1, carnitine palmitoyltransferase 1; CD36, cluster of differentiation 36; FATP2, fatty acid transport
proteins 2; FATP5, fatty acid transport proteins 5; Nrf2, nuclear factor erythroid-derived 2-like 2;
PERK, protein kinase RNA-like ER kinase; ATF4, activating transcription factor 4; ATF6, activating
transcription factor 6; IRE1, inositol-requiring enzyme 1; CHOP, CCAAT-enhancer-binding protein
homologous protein; SIRT1, silent information regulator 1; JNK, c-Jun N-terminal kinase; HIF-1α,
hypoxia-inducible factor 1α.
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Poria cocos (Schw.) Wolf is an edible, pharmaceutical mushroom with remarkable
biological properties, including anti-tumor, anti-inflammation, anti-oxidation, anti-ageing,
and anti-diabetic effects. It can significantly activate AMPK and autophagy-related protein
expression and inhibit ER stress-related protein expression when acting on HepG2 cells
and HFD-fed obese mouse, suggesting that it can alleviate liver steatosis through AMPK-
activated autophagy [95]. Curcuma longa L. is a flowering plant of the ginger family
(belonging to Zingiberaceae). C. longa restricted the expression of fatty acid transport-
related, including cluster of differentiation 36 (CD36) and fatty acid transport proteins
(FATP2 and FATP5), thus reducing the expression levels of SREBP-1c, ACC, FAS, PPARα
and CPT1, which played a role in reducing lipid accumulation. In addition, the activation
of the AMPK signal was also observed in this study [96]. Citrus unshiu Marc. peel extracts
contain compounds that potentially improve dyslipidemia. The study demonstrates that
Citrus peel inhibits fatty liver development and hepatotoxicity in HFD-induced NAFLD
and also prevents abnormal lipid accumulation in vivo by regulating AMPK activation and
the alleviation of mTORC1-ER stress [97]. This experimental evidence reveals the potential
protective mechanism of AMPK in the lipid metabolism of NAFLD, thus paving the way
for developing new strategies to prevent complications of NAFLD.

3.2. Alleviating Oxidative Stress

The excessive intake of a high-calorie diet gradually leads to accumulation of mal-
onyl coenzyme A, which inhibits fatty acid β-oxidation in hepatocytes. Nuclear factor
erythroid-derived 2-like 2 (Nrf2) and PPAR play the role of antioxidation and regulat-
ing lipid metabolism in NAFLD, and they are interrelated [98]. Some natural products
can target Nrf2 and PPAR signals and alleviate the oxidative stress caused by the lack of
antioxidant capacity in the treatment of NAFLD.

Hesperetin, a citrus flavonoid belonging to the flavanone class, is abundant in oranges,
lemons and grape juice consumed in the Eastern and Western daily diet. Hesperetin
was able to increase antioxidant levels and reduce ROS levels and hepatotoxicity. This
study proposes that hesperetin alleviates hepatic steatosis, oxidative stress, inflammatory
cell infiltration and fibrosis by triggering the Nrf2 pathway [99]. Gastrodin is a water-
soluble natural compound extracted from the root of Gastrodia elata Blume. Gastrodin
significantly decreased ROS and reduced the mRNA levels of proinflammatory cytokines
both in vivo and in vitro. In addition, this study also found an activating effect of gastrodin
on NrF2 [100]. In mice with diet-induced NASH, yellow loosestrife (Lysimachia vulgaris var.
davurica (Ledeb.) R. Knuth) exerts antioxidant and anti-inflammatory effects by activating
NrF2 signaling [101]. Having the same function as the natural products mentioned above,
geniposide also regulates antioxidant capacity by modulating NrF2. The study proved
the protective effect of geniposide on lipid accumulation via enhancing the ability of
antioxidative stress and anti-inflammation [102].

Xyloketal B is a unique condensed ketone compound isolated from the mangrove
fungus Xylaria sp. in the South China Sea. The treatment of NAFLD mainly enhances FAO
by upregulating PPARα [103]. The watery extract of chicory (Cichorium intybus L.) seed can
improve lipid accumulation by upregulating PPAR protein expression levels. The extract
increased expression of genes related to antioxidant pathways that protect the liver from
ROS formed in the FAO pathway [104]. Crataegus azarolus var. aronia L. prevented the
increase in serum and hepatic lipids and reduced hepatic levels of ROS. The study also
noted that Crataegus aronia could reverse HFD-induced hepatic steatosis by the activation of
AMPK, which leads to subsequent inhibition of SREBP1/2 and activation of PPARα [105].

The food-derived compound apigenin regulation of PPARγ target genes is dependent
on the activation of Nrf2. This study also suggests that apigenin may bind to Nrf2 to
co-regulate lipid metabolism and oxidative stress [106]. Scutellarin is a flavonoid glyco-
side having antioxidative stress activity. Scutellarin reduces lipid content and enhances
antioxidant capacity in in vitro and in vivo models, possibly related to the activation of
PPARγ and Nrf2 [107]. Alpinetin is a novel plant flavonoid isolated from Alpinia katsumadai
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Hayata, which is a traditional Chinese medicine. The same effect as scutellarin, the anti-
lipid accumulation effect of alpinetin is through activation of PPAR and Nrf2 signals and
reduction in the expression of hepatic lipogenic proteins [108].

3.3. Alleviating Endoplasmic Reticulum (ER) Stress

The ER is a major intracellular organelle involved in lipid metabolism in hepatocytes
and plays a crucial role in lipid accumulation in NAFLD. ER stress is closely associated with
hepatic oxidative stress and leads to severe liver injury through mechanisms such as activa-
tion of cell death signals, dysregulation of autophagic fluxes and hepatic inflammation.

Coffee (Coffea arabica L.) is the most consumed beverage worldwide. Coffee improves
ER stress and mitochondrial functional impairment, ensuring proper protein folding and
degradation in the liver [109]. Amomum villosum var. xanthioides (Wall. ex Baker) T.L.Wu
& S.J.Chen is a traditional Chinese herb. It also alleviates NAFLD caused by ER stress by
increasing antioxidant capacity [110].

The aqueous extract of Eucommia ulmoides Oliver leaves restores abnormal lipid
metabolism in HFD-fed mice. The improvement of NAFLD is achieved by inhibiting
ER stress, enhancing lysosomal function and autophagy flux [111]. The two active compo-
nents of Eucommia ulmoides Oliver, aucubin and geniposide, can inhibit ER stress. Its active
components can enhance lysosomal activity and reduce ER stress and liver dyslipidemia in
in vivo and in vitro models [112].

Ixeris dentata (Thunb.) Nakai is a traditional herb for treating hepatitis, indigestion and
diabetes. I. dentata can significantly reduce ER stress of hepatocytes induced by palmitic acid.
Specifically, it can inhibit the expression of PERK, eIF2α phosphate and CHOP, and it can
reduce the accumulation of triglyceride and cholesterol in hepatocytes [113]. Tanshinone
IIA is one of the effective components of the traditional Chinese medicine Salvia miltiorrhiza
Bunge. Tanshinone IIA not only inhibited the expression of PERK, eIF2α phosphate and
CHOP, but also alleviated ER stress-induced apoptosis in hepatocytes [114]. In addition,
Vigna nakashimae (Ohwi) Ohwi and H.Ohashi extract has been shown to alleviate ER stress
and hepatocyte apoptosis. Specifically, it can reduce hepatic ACC, ATF4 and caspase-3
induced by HFD [115].

3.4. Alleviating Inflammatory Reaction

Lipid toxicity is an inflammatory reaction caused by abnormal lipid metabolism,
which leads to cell dysfunction and cell death. The effect of natural products on improving
lipid toxicity is related to regulating lipid metabolism, improving antioxidant capacity and
inhibiting hepatocyte apoptosis.

Resveratrol is a natural polyphenol compound found in grapes and red wine. Treat-
ment with resveratrol has been reported to improve lipid metabolism and reduce pro-
inflammatory features in the liver of nonalcoholic fatty liver and HFD-induced mouse [116].
Cynanchum atratum Bunge is a kind of herbal medicine that has the functions of detoxifi-
cation, diuresis and fever reduction. C. atratum regulates lipid metabolism and inhibits
liver inflammatory factors by activating AMPK [117]. Lycopus lucidus Turcz. ex Benth.
is a perennial plant belonging to the Lamiaceae family. It reduced lipid accumulation
and regulates fatty acid oxidation by activating AMPK and PPAR signaling to alleviate
inflammatory responses [118]. Atractylenolide III is the major bioactive component found
in Atractylodes macrocephala Koidz. The study showed that Atractylenolide III amelio-
rated liver injury and liver lipid accumulation in HFD-induced NAFLD mouse models
by activating the AMPK/SIRT1 pathway [119]. Salvianolic acid A is a natural polyphenol
compound extracted from Salvia miltiorrhiza Bunge (known as Danshen in China). Similar to
Atractylenolide III, it alleviates the inflammatory response caused by lipotoxicity through
the AMPK/SIRT1 pathway [120].
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Table 1. Potential bioactive species for the treatment of NAFLD.

Biological Function
of NAFLD N Bioactive Species. Application Model Ref.

Regulating lipid
metabolism

(1) Poria cocos HFD-fed mouse, OA plus PA stimulated HepG2 cells [95]

(2) Curcuma longa HFD-fed mouse, OA plus PA stimulated HepG2 cells [96]

(3) Citrus unshiu peel HFD-fed rat, PA stimulated AML 12 cells [97]

Alleviating
oxidative stress

(4) Lysimachia vulgaris
var. davurica Methionine-choline deficiency (MCD)-fed mouse [101]

(5) Cichorium intybus Streptozotocin-induced rat, Streptozotocin and
niacinamide-induced rat, OA stimulated HepG2 cells [104]

(6) Crataegus azarolus
var. aronia HFD-fed rat [105]

Alleviating
endoplasmic

reticulum stress

(7) Coffea arabica HFD-fed rat [109]

(8) Amomum villosum
var. xanthioides Tunicamycin stimulated mouse and Huh7 cells [110]

(9) Eucommia ulmoides leave HFD-fed rat [111]

(10) Ixeris dentata PA stimulated HepG2 cells [113]

(11) Vigna nakashimae HFD-fed mouse [115]

Alleviating
inflammatory reaction

(12) Cynanchum atratum high-fat and high-fructose diet (HFHFD)-fed mouse [117]

(13) Lycopus lucidus HFD-fed mouse, OA plus PA stimulated HepG2 cells [118]

Table 2. Potential bioactive compounds for the treatment of NAFLD.

Biological Function
of NAFLD N Bioactive Compounds Application Model Ref.

Regulating
lipid metabolism

(1) Antrodan High-fat diet (HFD)-fed mouse [49]

(2) Emodin Egg yolk powder-fed Zebrafish [88]

(3) Four flavonoids extracted from
Lomatogonium rotatum High fructose-fed rats [89]

(4) Oxyresveratrol HFD-fed mouse, liver X receptor α (LXRα) stimulated
HepG2, Hep3B and Huh-7 cells [90]

(5) Cynandione A LXRα stimulated HepG2 cells [91]

(6) Gomisin N HFD-fed mouse, LXRα or palmitic acid (PA) stimulated
HepG2 cells [92]

(7) Tomatidine HFD-fed mouse, Oleic acid (OA) stimulated FL83B [93]

(8) Licochalcone A HFD-fed mouse, OA stimulated HepG2 cells [94]

Alleviating
oxidative stress

(9) Hesperetin HFD-fed rat, OA stimulated HepG2 cells [99]

(10) Gastrodin HFD-fed mouse, high-fat and high-carbohydrate diet
(HFHC)-fed rat, OA stimulated HL-7702 cells [100]

(11) Geniposide tyloxapol-induced mouse, OA plus PA stimulated
HepG2 cells [102]

(12) Xyloketal B HFD-fed mouse, MCD-fed mouse, OA plus PA stimulated
HepG2 cells [103]

(13) Apigenin HFD-fed mouse, OA plus PA stimulated mouse
Hepa1-6 cell [106]

(14) Scutellarin HFD-fed mouse, OA stimulated HepG2 cells [107]

(15) Alpinetin HFD-fed mouse, high concnetration of fructose stimulated
HL-7702 cell [108]



Int. J. Mol. Sci. 2022, 23, 15489 13 of 18

Table 2. Cont.

Biological Function
of NAFLD N Bioactive Compounds Application Model Ref.

Alleviating endoplasmic
reticulum stress

(16) Aucubin HFD-fed rat, PA stimulated HepG2 cells [112]

(17) Geniposide HFD-fed rat, PA stimulated HepG2 cells [112]

(18) Tanshinone IIA PA stimulated HepG2 cells [114]

Alleviating
inflammatory reaction

(19) Resveratrol HFD-fed mouse [116]

(20) Atractylenolide III HFD-fed mouse, OA plus PA stimulated HepG2 cells [119]

(21) Salvianolic acid A HFHC-fed mouse, PA stimulated HepG2 cells [120]

(22) Silibinin MCD-fed mouse, OA plus PA stimulated mouse
NCTC-1469 cells [121]

(23) Honokiol MCD-fed mouse, OA plus PA stimulated mouse
NCTC-1469 cells [122]

(24) Ursolic acid HFD-fed mouse [123]

(25) Hairy calycosin HFD-fed rat [124]

Silibinin is a flavonolignan isolated from the fruit and seeds of Milk thistle (Silybum
marianum (L.) Gaertn.). Silibinin prevents NASH by modulating the JNK pathway. It not
only promoted β-oxidation in liver and reduced lipid accumulation, but also regulated
antioxidant enzyme activity and oxidase activity to reduce oxidative stress [121]. Honokiol
extracted from Magnolia officinalis Rehd. et Wils. also improved NAFLD lipid accumulation
and oxidative stress by activating the JNK pathway [122]. Ursolic acid is a natural penta-
cyclic triterpene carboxylic acid that can improve NASH by inhibiting hypoxia-inducible
factor 1α (HIF-1α) signal [123]. Chinese herbal monomer hairy calycosin is a flavonoid
extracted from Radix astragali (Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.)
Hsiao). Hairy calycosin can effectively control the lipid peroxidation in liver tissues of
rats with NAFLD and improve the steatosis and inflammation of liver tissue, inhibiting
apoptosis of hepatocytes [124].

4. Conclusions

This paper provides a review of the current state of research on the pathogenesis of
NAFLD and summarizes the natural products in the recent literature that have modulating
effects on in vitro and in vivo models of NAFLD. The development of NAFLD is mostly
associated with lipid accumulation, oxidative stress, ER stress and lipotoxicity. It is interest-
ing to note that these active compounds act in a multi-targeted manner, such as regulating
the levels of AMPK, PPAR, SREBP-1c, FAS, ACC, SIRT1, Nrf2, JNK and other proteins to
improve NAFLD. These natural products may provide a new way for the research and
discovery of new drugs for the treatment of NAFLD.

At the same time, we also face some issues. The existing natural product research lacks
consistent standards and norms, resulting in immature evaluation systems and unclear
potential mechanisms. In addition, the extraction technology of effective components of
many natural products is not yet mature. This leads to a significant decrease in bioavail-
ability. Therefore, more work needs to be done to apply natural products to the treatment
of NAFLD.
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