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Abstract: In recent years, incredible endeavors have been devoted to the design and self-assembly
of discrete metal–organic cages (MOCs) with expanding intricacy and functionality. The controlled
synthesis of metal–organic supramolecular cages with large branched chains remains an interesting
and challenging work in supramolecular chemistry. Herein, a tetrahedral metal–organic supramolec-
ular cage (ZnII

4L4) containing 12 dendritic carbazole arms is unprecedentedly constructed through
coordination-driven subcomponent self-assembly and characterized in different ways. Interestingly,
tetrahedral supramolecular Cage-1 exhibited the potential for aggregation-induced emission (AIE)
performance and stimulus-responsive luminescence features, and it achieved color-tunable photo-
luminescence due to the introduction of dendritic carbazole arms. Crucially, owing to the great
photophysical properties of Cage-1 in solution, Cage-1 was enabled to act as a fluorescent ink for the
vapor-responsive recording and wiping of information.

Keywords: metal–organic supramolecular cage; self-assembly; aggregation-induced emission

1. Introduction

Supramolecular chemistry is an emergent subject that is widely known and exten-
sively studied on account of its unique properties and potential applications in biological
imitation [1–3], gas encapsulation [4], organic photoreactions [5,6], catalysis [7,8], molecular
recognition [9–11], and so on. Coordination-driven self-assembly [12–21] is a simple and effi-
cient way of constructing three-dimensional (3D) supramolecular complexes, such as metal–
organic nanocages [22,23], metal–organic frameworks [24,25], metallacycles [20,26,27], etc.
A multitude of metal–organic supramolecular cages have been handily constructed in a va-
riety of shapes, such as octahedrons [28], tetrahedrons [29], spheres [30], square prisms [31],
triangular prisms [32], spirals [33], capsules [34], etc. In addition, breakthrough research has
been conducted in the design strategy of metal-ion coordination-induced supramolecular
materials over the last two years [35,36]. Nevertheless, complex supramolecular cages with
large branched chains remain highly underexplored.

Incorporating an aggregation-induced emission (AIE) fluorophore [37,38] and com-
bining piezochromic or vapochromic chromophores [39–41] are common strategies for the
preparation of advanced optical materials. As is well-known, the phenomenon of AIE
was initially discovered by Tang’s group in 2001, and they subsequently proposed the
corresponding luminescence mechanism: that the restriction of intramolecular rotation
(RIR) caused the energy of the excited state to be released as a form of radiation, such as
fluorescence or phosphorescence [42]. Based on this, AIE theories have been used to design
advanced optical materials. In particular, gas-sensitive optical materials based on AIE show
unique advantages in the fields of anticounterfeiting and data encryption [43–45].
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Dendrimers are monodisperse, highly branched macromolecules that are constructed
from an interior core with a regular array of branching units. Carbazole is attractive as a typ-
ical dendrimer that has strong potential for luminescence and a dendritic structure [46–48].
Therefore, novel dendrimers based on carbazole as a modification unit, with a tetrahedral
metal–organic supramolecular cage (ZnII

4L4) formed by coordinated self-assembly as the
core, may exhibit fascinating photophysical capabilities. To our knowledge, the modifica-
tion of tetrahedral supramolecular cages with novel dendrimers based on carbazole is very
rare. Herein, the synthesis of ligand LA with a dendritic carbazole arm and the obtained
tetrahedral supramolecular Cage-1 (ZnII

4L4) with 12 dendritic carbazole arms (containing
36 carbazole molecules) via coordinated self-assembly is presented. Its photophysical
properties have also been researched.

2. Results and Discussion

Both ligand LA and ligand LB were synthesized with excellent yields (Scheme 1a,b).
Ligand LA was synthesized in seven steps. Commercially available carbazole was selected
as the starting substrate for the synthetic route. Under acidic conditions, iodine was formed
by comproportionation with potassium iodide and potassium iodate, which then reacted
with the carbazole to obtain Compound 1 for a 60% yield. Intermediate 2 was obtained by
converting the amidogen in Compound 1 to the p-toluene sulfonyl group by treatment with
NaH (60%) and 4-Methoxybenzenesulfonyl chloride (TsCl) for a 79% yield. Under inert
gas protection, Compound 3 was obtained from carbazole and Compound 2, catalyzed by
Cu2O in N,N-dimethylacetamide (DMAc) at 170 ◦C for 24 h, via the Ullmann condensation
reaction for a yield of 67%. Subsequently, the N-Ts bond in Compound 3 was cleaved
in an alkaline environment to obtain Compound 4 for an 86% yield. Compound 5 was
synthesized via the Ullmann coupling reaction using Compound 4 and 4-iodo-benzoic
acid methyl ester as ingredients for a 51% yield. Compound 5 was hydrolyzed under
alkaline conditions to obtain Compound 6 for a 57% yield. Then, the key ligand, LA, was
synthesized from Compound 6 and Compound 7, catalyzed by 4-dimethyl-aminopyridine
(DMAP) in dichloromethane (DCM) at room temperature for 8 h, via the ester condensation
reaction for a yield of 68%. Notably, the slow volatility of the solution of acetonitrile and
chloroform (v:v = 1:1), which contained ligand LA, at room temperature provided crystals
suitable for X-ray crystallographic analysis (Scheme 1c, Figure S17). Finally, ligand LB
was prepared from Compound 9 and Compound 10 through a Suzuki coupling reaction
under the catalysis of tetra-triphenylphosphine palladium for a yield of 44%. The chem-
ical structures of all the synthesized compounds were determined by NMR and ESI-MS
(Figures S1–S12).

Owing to the successful characterization of ligands LA and LB, the tetrahedral
supramolecular Cage-1 (ZnII

4L4) with 12 dendritic carbazole arms was designed and
synthesized using Zn(NTf2)2 as the coordination metal (Scheme 2, Figure S13). In general,
the coordinated self-assembly of the metal–organic supramolecular cages was carried out
in acetonitrile solution [49]. Thus, LA, LB, and Zn(NTf2)2 self-assembled in acetonitrile
solvent were applied in an initial attempt to form a supramolecular cage. We observed
the experimental phenomenon, and the reaction system showed a heterogeneous state in
acetonitrile. Unfortunately, the target supramolecular cage had difficulty forming under
such circumstances. Since LB and Zn(NTf2)2 have great solubility in CH3CN and LA has
excellent solubility in DCM solvent, the mixed solvent (CH3CN: DCM = 1:1) was used
as a condition for the self-assembly to proceed. As the reaction progressed, the solution
gradually changed from a homogeneous system to a heterogeneous system, which also
hindered the formation of the target supramolecular cage. Ultimately, through continuous
attempts, it was discovered that LA, LB, and Zn(NTf2)2 could remain homogeneous in ace-
tone and maintain such a system until the end of the reaction. Accordingly, metal–organic
supramolecular Cage-1 was successfully obtained by coordinated self-assembly under
this condition. Subsequently, the proportions of LA, LB, and Zn(NTf2)2 were retained for
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control, and we then concluded that LA: LB: Zn(NTf2)2 = 3.0:1:1.2 was the best proportion
for the self-assembly of metal–organic supramolecular Cage-1.
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ligand LA.

The function of Zn(NTf2)2 is indispensable in the self-assembly of tetrahedral supramolec-
ular cages. In the absence of Zn(NTf2)2, it is extremely difficult to form dynamic imine
bonds on Cage-1. However, in the presence of Zn(NTf2)2, the appearance of the Schiff base
hydrogen signal implied the formation of dynamic imine bonds (Figure 1c). The disappear-
ance of the hydrogen signal from the aldehyde group of ligand LA indicated that LA was
completely reacted and formed the dynamic imine bonds (Figure 1b,c). After the methylene
(Ha, Hb) and methyl (Hc) groups on ligand LB formed Cage-1, this brought part of the
hydrogens into the cavity of Cage-1; thus, part of the hydrogen was shielded, moved to the
high field, and then split into Ha′, Ha′′, Hb′, Hb′′, Hc′, and Hc′′ (Figure 1c,d). The splitting
of this signal proves the successful preparation of Cage-1. In summary, Zn(NTf2)2 not only
acts as a coordination metal, but also as a catalyst in the process of Cage-1 formation; the
presence of Schiff base hydrogen and the splitting signal of the methylene (Ha, Hb) and
methyl (Hc) groups on Cage-1 support the presence of Cage-1 as well.
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Scheme 2. The synthesis of Cage-1.

To probe its stability, neat solid Cage-1 was characterized by thermogravimetric
analysis (TGA). The TGA trace of neat solid Cage-1 (Figure S20) showed no significant loss
of mass between room temperature and 324 ◦C, above which, decomposition was observed.
In addition, powder X-ray diffraction (PXRD) of Cage-1 revealed no distinct sharp peaks,
consistent with the presence of amorphous material (Figure S19). Moreover, the stretching
vibration peak of an imine double bond (1688.2 cm−1) can be clearly observed in the Fourier-
transform infrared (FTIR) spectrum of Cage-1 (Figure S21); moreover, the disappearance
of the stretching vibration peaks of the amino group (3457.2 cm−1, 3371.4 cm−1, and
3216 cm−1) in the FTIR spectrum of LB (Figure S22) and the carbonyl stretching vibration
peak of pyridine-formaldehyde (1706.3 cm−1) in FTIR spectrum of LA (Figure S23) can
be observed, indicating that ligands LA and LB successfully formed an imine bond in the
presence of Zn(NTf2)2, forming Cage-1 through coordination-driven self-assembly.

Furthermore, in addition to nuclear magnetism resonance (NMR), electrospray ioniza-
tion mass spectrometry (ESI-MS) was likewise employed to screen the formation of organic–
metal supramolecular Cage-1 (Figures 1c and S14). Figure 2a shows that the ESI-MS of
Cage-1 revealed two sets of peaks with continuous charge states of 7+ and 8+, which were
attributed to the successful departure of NTf2

− counterions. Experimental isotope patterns
for the two peaks were highly consistent with the theoretical isotope patterns, indicating
that tetrahedral metal–organic supramolecular Cage-1 was constructed successfully via
coordination-driven self-assembly. However, there is a fly in the ointment: A small amount
of unattributable data was found via ESI-MS, suggesting the existence of polydispersity
and multiple charge states in the dendritic carbazole arms of Cage-1, in contrast to those of
the other cages prepared via coordinated self-assembly (Figure S13). After deconvolution,
the average molar mass of self-assembled supramolecular Cage-1 was 14087.4 Da, which
is a positive match with the expected chemical composition [C832H564N68O56F48S16Zn4],
manifesting that no other undesirable complexes or isomers existed. The 2D DOSY spec-
trum provides powerful supporting data for detecting whether a compound is a single
structure. Therefore, the ordinate signal in the 2D DOSY spectrum indicated that there was
a single compound in the system, rather than a mixture of multiple compounds (Figure 2b).
Furthermore, the diffusion coefficient (D = 1.78 × 10−10 m2/s) of Cage-1 was obtained via
the DOSY spectrum, and then the estimated dynamic radius (r = 26.5 Å) of Cage-1 could
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be calculated using the Stokes–Einstein equation (Figure S24). In short, ESI-MS and 2D
DOSY further proved that the existence of Cage-1 was real and singular.
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Figure 1. (a) The structure of Cage-1; (b) 1H NMR (CD3CN: CDCl3 = 1:1, 600 MHz, 298 K) spectrum
of ligand LA; (c) 1H NMR (CD3CN: CDCl3 = 1:1, 600 MHz, 298 K) spectrum of Cage-1; (d) 1H NMR
(CD3CN, 600 MHZ, 298 K) spectrum of ligand LB.
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Figure 2. (a) ESI-MS spectra of Cage-1; (b) 2D DOSY spectrum of Cage-1.

We compared the 1H NMR of metal–organic supramolecular Cage-2 [50], which
had the same tetrahedral structure (Figure 3b), and it was preferable for supporting the
successful synthesis of Cage-1. As shown in Figure 3c,d, the several characteristic signal
peaks (Schiff base hydrogen, methylene hydrogen, and methyl hydrogen) were not much
different from metal–organic Cage-2, only moving about 0.2–0.5 ppm to the low field, which
might have been brought about by the distinction of the deuterium reagent. Therefore, the
comparison with the 1H NMR of Cage-2 also suggests the formation of Cage-1.

Numerous efforts to obtain complete data for the single-crystal X-ray analysis of Cage-
1 were unsuccessful; therefore, a simulated molecular model of Cage-1 was constructed
(Figures 4a,b and S18). The analysis of the simulated molecular model revealed that
the structure of Cage-1’s supramolecular cage was exactly consistent with the expected
tetrahedral architecture, in which the truxene units, dendritic carbazole arms, and Zn (II)
centers constructed the faces, the extended “tails”, and the vertices, respectively. Half of the
ethyl chain of the benzene ring pointed into the cavity, while the rest pointed outward. The
distance between any two adjacent zinc ions in the tetrahedron was 24.2 Å, as measured by
Materials Studio software.
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Figure 3. (a) The structure of Cage-1; (b) The structure of Cage-2; (c) 1H NMR (CD3CN: CDCl3 = 1:1,
600 MHz, 298 K) spectrum of Cage-1; (d) 1H NMR (CD3CN, 600 MHz, 298 K) spectrum of Cage-2.

Ligand LB has a solvent effect and aggregation-induced emission enhancement (AIEE)
behavior due to its origin in the different solubility of the ligand in diverse solvents and
different stacking modes in diverse solvents [50]. Carbazole derivatives are known to show
a solvent influence on the difference in fluorescence color and good AIE behavior [38].
Thus, because of the twisted structure of ligand LA, which has a dendritic carbazole arm,
it ought to hold a solvent-effect-induced fluorescence variation and AIE behavior as well.
Consistent with expectations, similar phenomena were observed for ligand LA: the solvent
effect caused spectral variations in its absorbance and fluorescence. Owing to electrons
performing n-π* transitions in the large conjugated system, the UV–Vis absorption of ligand
LA occurs at 280–350 nm (Figure S15a). The fluorescence emission spectra of ligand LA
manifested diverse photoluminescence intensity and maximum emission wavelengths in
different solvents, such as toluene, EA, chloroform, and 1,4-dioxane (Figure S15b). Addi-
tionally, the fluorescence spectra of ligand LA in different ratios of chloroform (desirable



Int. J. Mol. Sci. 2022, 23, 15580 8 of 14

solvent) and ethyl ether (undesirable solvent) mixtures were examined. The photolumi-
nescence intensity of ligand LA was gradually augmented, accompanied by an apparent
hypochromatic shift of the maximum emission wavelength from 533 nm to 464 nm, along
with an increasing fraction of ethyl ether in the chloroform—ethyl ether solvent mixture,
showing good AIE behaviors (Figure 5a,b).
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Figure 5. (a) Fluorescence emission spectra of ligand LA in varying proportions of chloroform–ethyl
ether solvent mixture; (b) Fluorescence intensity of ligand LA at 340 nm in the varying proportions of
chloroform–ethyl ether solvent mixture (c = 1.0 × 10−6 M, λex = 340 nm, Slit = 3, 3).

In consideration of the great solvent effect and AIE properties of ligands LA and
LB, these two ligands were introduced to the supramolecular cage, and the fluorescence
properties of Cage-1 were subsequently investigated. Initially, the ultraviolet absorption
spectrum of Cage-1 was examined. The data obtained from the test showed that, compared
with THF and acetone, the absorbance of methylene chloride and chloroform at 380–525 nm
was significantly enhanced, indicating that nanometer aggregation occurred in these minor
polar solvents. Then, Cage-1 exhibited different photoluminescence effects in a limited
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number of benign solvents (THF, chloroform, DCM, and acetone), which also indicated
that Cage-1 had diverse fluorescence responses to diverse solvents (Figure S16b–d). Cage-1
exhibited different fluorescence intensities in diverse fractions of an acetone (solubilizing
solvent)–ethyl ether (insolubilizing solvent) mixture. As shown in Figure 6, when the
percentage of ethyl ether was 0% to 60%, the fluorescence intensity of Cage-1 showed a
slow growth trend. Surprisingly, when the percentage of ethyl ether was increased to
70%, the fluorescence intensity of Cage-1 suddenly increased by a factor of 2.5, which was
believed to be caused by the restriction of intramolecular rotation (RIR). However, when
the acetone/ethyl ether exceeded 70%, the cage began to precipitate gradually, such that the
fluorescence data (the percentage of ethyl ether >70%) were inaccurate, which prevented us
from exploring its unabridged AIE behavior. In brief, Cage-1 showed a considerable solvent
effect in a limited solvent and demonstrated the ability of aggregation-induced emission.
Meanwhile, it also demonstrated great potential for tunable photoluminescent materials.
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Figure 6. (a) Fluorescence emission spectra of Cage-1 in the varying proportions of acetone–ethyl
ether solvent mixture; (b) Fluorescence intensity of Cage-1 at 340 nm in the varying proportions of
acetone–ethyl ether solvent mixture (c = 1.0 × 10−6 M, λex = 340 nm, Slit = 2, 2).

Considering that Cage-1 had fluorescence-enhancement properties when the cage
was aggregated, its application as a fluorescent ink was further studied. As illuminated in
Figure 7, “ZZU” (Zhengzhou University) was written on the filter paper with a solution
(chloroform: acetonitrile = 1:1) containing Cage-1. When the solvent had completely evapo-
rated, “ZZU” was extremely hard to see on the filter paper, indicating that solid Cage-1 did
not exhibit fluorescence. Interestingly, after the filter paper was moistened with chloroform
vapor, “ZZU” appeared as a bright, fluorescent orange color, and the orange fluorescence
was still bright when the chloroform solvent had evaporated. Subsequently, when the
filter paper was moistened again with acetonitrile steam, the fluorescence disappeared
immediately. Importantly, “ZZU” reappeared when the wet filter paper became dry. The
reversibility of the color could be achieved once more on this basis. Therefore, metal–
organic supramolecular Cage-1 may be used as an anticounterfeiting ink and applied in
vapor-responsive information recognition.
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3. Materials and Methods
3.1. Materials

All reagents were purchased from Sigma-Aldrich, Shanghai, China, Fisher, Shanghai,
China, Across, Shanghai, China, and Alfa Aesar, Tianjin, China, and they were used without
further purification. All solvents were dried according to standard procedures, and all of
them were degassed under Ar for 30 min before use. All air-sensitive reactions were carried
out under an inert Ar atmosphere.

3.2. Measurements

Column chromatography was conducted using SiO2 (VWR, 40–60 µm, 60 Å), and
the separated products were visualized by UV light. NMR spectra data were recorded on
a 600 MHz Bruker NMR spectrometer in CDCl3, DMSO, and CD3CN, with TMS as the
reference. The UV–Vis spectra were recorded on a dual-beam UV–Vis spectrophotometer
(TU-1901), PERSEE, Beijing, China. Emission spectra in the liquid state were recorded
on a Horiba-FluoroMax-4 spectrofluorometer, HORIBA, Edison, NJ, USA; a 1 cm quartz
cuvette was employed as the vessel for the recording of the fluorescence emission spectra.
The crystal structure of ligand LA was recorded on a Rigaku XtaLAB Pro, Beijing, China.
ESI-MS was recorded with a Waters Synapt G2-Si mass spectrometer, USA. High-resolution
electrospray ionization mass spectrometry (HR-ESI-MS) experiments were performed with
a Waters Q-Tof Micro MS/MS high-resolution mass, USA, spectrometer in ESI mode. Pow-
der X-ray Diffraction (PXRD) was recorded on an X’Pert PRO, Nalytical,Almelo, Powder
X-ray diffraction instrument. The Fourier Transform Infrared FT-IR spectra were recorded
on a Spectrum TWO FT-IR spectrophotometer, PerkinElmer, Llantrisant, UK. The TGA was
recorded on NETZSCH STA 2500, Germany.

3.3. Materials Synthesis

Compound 5 was synthesized according to the method in the literature [51].
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3.3.1. Preparation of Compound 5

Compound 4 (497.19 mg 1.0 mmol), 1-iodo-4-methbenzoate (335.296 mg, 1.28 mmol),
Cu2O (422.713 mg, 2.98 mmol), and DMAc (3 mL) were filled sequentially into a seal
tube under a nitrogen atmosphere and heated to 160 ◦C in an oil bath for 24 h. Then,
the mixture was cooled to room temperature and filtrated. The filtrate was poured into
60 mL H2O and stirred for 20 min. The crude products were collected by filtration and
purified by chromatography (silica gel, petroleum ether/ethyl acetate, V:V = 10: 1) to give
322.2 mg (51%) of a white solid. m.p.: 253–254 ◦C. 1H NMR (600 MHz, CDCl3) δ 8.39 (d,
J = 8.5 Hz, 2H), 8.28 (d, J = 1.8 Hz, 2H), 8.15 (d, J = 7.8 Hz, 4H), 7.84 (d, J = 8.5 Hz, 2H),
7.70 (d, J = 8.7 Hz, 2H), 7.63 (dd, J = 8.7, 2.0 Hz, 2H), 7.39 (dd, J = 3.6, 1.4 Hz, 8H), 7.27 (m,
4H), 4.01 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 166.2, 141.7, 141.4, 140.1, 131.7, 131,0, 129.6,
126.6, 126.5, 125.9, 124.4, 123.2, 120.3, 119.8, 111.3, 109.6, 52.5. HRMS (ESI+, CHCl3) m/z:
[M + H]+ calcd for C44H29N3O2: 632.2333; found: 632.2331.

3.3.2. Preparation of Compound 6

A mixture of Compound 5 (623.5 mg 0.99 mmol), 4.3 mL methanol, 8.6 mL THF, and
4.3 mL 0.8 M aqueous NaOH was stirred and refluxed for 8 h. After cooling to room
temperature, the mixture was poured into 449 mL H2O and acidified by addition of 9.2 mL
35% HCl and stirred for 20 min. It was filtered to collect a white solid product: 348 mg
(57%). m.p.: 287–289 ◦C. 1H NMR (600 MHz, DMSO) δ 13.23 (s, 1H), 8.72 (s, 2H), 8.29 (dd,
J = 42.7, 6.7 Hz, 6H), 8.02 (d, J = 6.7 Hz, 2H), 7.76 (dd, J = 64.1, 7.5 Hz, 4H), 7.38 (dd, J = 48.1,
38.0 Hz, 12H). 13C NMR (151 MHz, DMSO) δ 167.2, 162.8, 141.5, 140.9, 140.0, 132.0, 131.0,
127.1, 126.7, 126.6, 124.6, 123,0, 121.0, 121.0, 120.2, 112.0, 110.2. HRMS (ESI+, CHCl3) m/z:
[M + H]+ calcd for C43H27N3O2: 618.2179; found: 618.2176.

3.3.3. Preparation of Ligand LA

Compound 6 (154.00 mg, 0.25 mmol), Compound 7 (44.8 mg, 0.36 mmol), dicyclohexyl-
carbodiimide (154.75 mg, 0.75 mmol), and 4-dimethylaminopyridine (9.16 mg, 0.075 mmol)
were added to a Schlenk flask. After the removal of air and backfilling with argon, 5 mL
dichloromethane was added. After being stirred at room temperature for 8 h, the sol-
vent was removed under reduced pressure and purified by chromatography (silica gel,
dichloromethane/petroleum ether, V: V = 10:1) to give 122.0 mg (68%) of a light-yellow
solid. m.p.: 181–183 ◦C. 1H NMR (600 MHz, CDCl3) δ 10.13 (s, 1H), 8.82 (d, J = 2.3 Hz,
1H), 8.58 (d, J = 8.3 Hz, 2H), 8.31 (s, 2H), 8.15 (dd, J = 17.3, 8.1 Hz, 5H), 7.98 (d, J = 8.3 Hz,
2H), 7.90 (dd, J = 8.4, 2.3 Hz, 1H), 7.77 (d, J = 8.7 Hz, 2H), 7.67 (d, J = 8.6 Hz, 2H), 7.40 (d,
J = 5.8 Hz, 7H), 7.31–7.27 (m, 4H).13C NMR (151 MHz, CDCl3) δ 192.0, 163.3, 150.6, 150.4,
144.0, 142.8, 141.7, 139.8, 132.6, 131.3, 130.1, 127.3, 126.9, 126.6, 126.0, 124.7, 123.3, 122.7,
120.4, 119.9, 111.3, 109.6.

3.3.4. Preparation of Cage-1

Zn(NTf2)2 (7.5 mg, 12 µ mol, 1.2 equiv) was added to a solution of ligand LB (7.8 mg,
10 µ mol, 1.0 equiv) and ligand LA (22.4 mg, 31 µ mol, 3.1 equiv) in acetone (3.0 mL), and
the whole reaction mixture was stirred at room temperature for 8 h and cooled at room
temperature. The reaction mixture was poured into 4.5 mL ether to produce a precipitate.
The precipitate was collected by centrifugation. The precipitate was washed twice with
acetone: ether (V: V = 1: 2). Then, an orange solid cage, Cage-1, (29.4 mg, 21%) was obtained.
1H NMR (600 MHz, CD3CN) δ 9.23 (s, 1H), 8.64 (d, J = 8.1 Hz, 1H), 8.55 (d, J = 7.9 Hz,
1H), 8.46 (d, J = 7.9 Hz, 2H), 8.26 (s, 2H), 8.05 (t, J = 9.9 Hz, 6H), 7.84 (d, J = 21.3 Hz, 2H),
7.60–7.57 (m, 2H), 7.55 (s, 2H), 7.50 (d, J = 7.4 Hz, 2H), 7.42 (d, J = 8.3 Hz, 2H), 7.25−7.08 (m,
14H), 3.01 (s, 1H), 2.82 (s, 1H), 1.63 (s, 1H), 0.22 (s, 3H), −1.05 (s, 3H).

4. Conclusions

In summary, tetrahedral metal–organic supramolecular Cage-1 with 12 dendritic car-
bazole arms was resoundingly constructed through self-assembly driven by coordination,
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followed by detailed 1H NMR and ESI-MS spectrometry characterization. Owing to the
tunable fluorescence rendered by the dendritic carbazole arms and truxene-based amine,
Cage-1 was confirmed as exhibiting the potential for AIE behavior, accompanied by an
interesting solvatochromic fluorescent behavior. Fundamentally, Cage-1 could be used
as anticounterfeiting, fluorescent ink for the hiding and identification of vapor-response
information. This study enriches our insight into supramolecular chemistry involving AIE
and the development of luminescent materials.
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