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Abstract: The spread of tumor cells throughout the body by traveling through the bloodstream
is a critical step in metastasis, which continues to be the main cause of cancer-related death. The
detection and analysis of circulating tumor cells (CTCs) is important for understanding the biology
of metastasis and the development of antimetastatic therapy. However, the isolation of CTCs is
challenging due to their high heterogeneity and low representation in the bloodstream. Different
isolation methods have been suggested, but most of them lead to CTC damage. However, viable
CTCs are an effective source for developing preclinical models to perform drug screening and model
the metastatic cascade. In this review, we summarize the available literature on methods for isolating
viable CTCs based on different properties of cells. Particular attention is paid to the importance of
in vitro and in vivo models obtained from CTCs. Finally, we emphasize the current limitations in
CTC isolation and suggest potential solutions to overcome them.
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1. Introduction

CTCs are cells that detach from the primary tumor site and enter the bloodstream [1].
According to the “seed and soil” theory, these cells are defined as “seeds” that can cause
metastasis [1]. The identification of CTCs remains a technical challenge due to their
extremely high phenotypic heterogeneity and the low representation of these cells in the
bloodstream (1–10 cells per billions of other blood cells) [2]. Even after successful isolation,
the maintenance of tumor cell viability remains a key issue. Thus, effective approaches
with high sensitivity and specificity are urgently needed for the isolation of CTCs [3–5].

The isolation of viable CTCs is useful for investigating the mechanisms of metastasis
and improving anticancer treatment [6]. The preservation of cell integrity and viability
also provides information about the genetic and molecular features of CTCs. In particular,
a sufficient amount of viable CTCs is needed for multiomic analysis, namely, single-cell
sequencing, to obtain reliable data that reflect the characteristics of CTCs in the body.
Obtaining viable CTCs enables the creation of preclinical models for drug screening and
modeling of the metastatic cascade, including migration, invasion, and extravasation [7,8].
CTC-derived cell lines provide an opportunity to identify new markers for isolating CTCs
from the blood and to develop additional predictive and prognostic criteria [9]. CTC
cultures allow us to evaluate the response to anticancer therapeutics and to individualize
the treatment as well as opening up doors for the development of drugs aimed at the
prevention of metastasis. CTC cell lines and xenografts (CDX) are also necessary to better
understand the functional properties of CTCs obtained from cancer patients and to identify
metastasis-initiating cells [10]. In general, CTC in vitro, ex vivo and in vivo models pro-
vide opportunities to determine the biological properties of primary tumors and future
metastatic cells, thus opening new horizons for basic and translational research.
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The existing methods for isolating CTCs can be divided into two main types: isolation
based on physical factors (centrifugation and filtration) and isolation based on immunoaffin-
ity, i.e., the presence of specific proteins on the cell surface [11]. These methods are not
mutually exclusive and can be combined [12]. The CellSearch system, which is based on
immunoaffinity, was the first to be approved by the US Food and Drug Administration
(FDA) in 2004, and it is the most commonly used method for capturing CTCs [13–15].
However, CellSearch isolates cells that only express common epithelial markers—EpCAM
and cytokeratins (CK 8, 18, and/or 19). CTCs that are negative for non-epithelial markers,
for example, due to epithelial–mesenchymal transition, are not detected by this method.
Moreover, the frequency of capturing dead cells by CellSearch is high [16]. In contrast, other
methods, such as different microfluidic systems and filter-based approaches, do not depend
on biological markers and isolate a high percentage of viable CTCs [17–19]. However, the
standardization and clinical implementation of the developed technologies for the isolation
of CTCs remain important tasks in cancer research and clinical practice.

The present review provides an overview of the current state of the development of
relevant methods for isolating CTCs with high throughput and viability. Methods that are
not suitable for obtaining viable CTCs such as CellSearch, Ariol system, AdnaTest, and
others are not reviewed here.

2. Circulating Tumor Cells: Features and Clinical Significance

The analysis of CTCs is an effective instrument for understanding the mechanisms of
cancer metastasis [20]. However, only limited CTCs survive and invade distant sites [21]. The
identification of such metastasis-associated CTCs is one of the key challenges and can reveal
molecules that are critical for metastasis and for the development of antimetastatic therapy.

CTCs possess high heterogeneity, which is similar to primary tumor cells [22]. CTCs
have specific physical, genetic, and phenotypic properties that differentiate them from blood
cells (Figure 1) [21]. CTCs are larger (8–25 µm) than normal blood cells (5–20 µm) [23,24]
and demonstrate higher unit membrane capacitance and lower cytoplasm conductivity
as compared to leukocytes [25]. Similar to blood cells, CTCs possess high deformability,
which is related to their ability to undergo epithelial–mesenchymal transition [26,27].
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Figure 1. Cell properties used for viable CTC isolation and further applications. Viable CTCs are
isolated from the blood sample using various methods based on biological, physical or combined
features of cells and further used in molecular, in vitro, and in vivo research.

CTCs are also represented by hybrid cells that are formed by the fusion of tumor cells
with other cells, such as leukocytes, macrophages, fibroblasts, and mesenchymal stem cells.
Circulating hybrid cells demonstrate high viability in the bloodstream due to their ability
to avoid immune recognition, increased drug resistance, and metastatic potential [28].

CTCs express surface adhesion molecules of epithelial origin, such as EpCAM and
various cytokeratines (e.g., CK 5, 7, 8, 18, and 19) [22,29]. However, CTCs may also have
a mesenchymal phenotype or possess epithelial/mesenchymal hybrid properties [30].
For instance, CTCs can simultaneously express both epithelial (EpCAM and/or CK) and
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mesenchymal markers (N-cadherin, Vimentin, Twist, Snail, Zeb, and others) [31]. In
addition, CTCs can harbor “stemness” properties, whose identification is based on the
assessment of the expression of CD44, CD24, ALDH1, and CD133 proteins [32–34]. CTCs
can also have cancer-specific markers such as human epidermal growth factor receptor 2
(HER2), estrogen receptors, prostate-specific membrane antigen and others [20].

In the bloodstream, the majority of CTCs are influenced by detrimental shear stress
or they undergo anoikis, a programmed cell death due to the detachment of the cell [20].
Several CTCs interact with platelets, neutrophils, macrophages, myeloid-derived suppres-
sor cells, or cancer-associated fibroblasts to escape the immune system and enhance their
survival [20,35,36].

Although detecting CTCs in peripheral blood is challenging, CTCs are highly sig-
nificant in clinical applications. The presence of CTCs is a prognostic factor in many
cancers [37–41]. The amount of CTCs correlates with cancer aggressiveness, increased
metastasis risk, and frequency of relapses [42–46]. CTCs expressing mesenchymal or
stemness-related markers are associated with poor survival [47,48]. CTCs are also potential
biomarkers for monitoring the response to anti-cancer therapy [49–51]. Several studies
have identified CTCs at the early stages of tumor development, which demonstrates their
importance for early cancer diagnosis, and shown that CTCs provide clinically important
information to map tumor heterogeneity and tumor evolution [52–55].

3. Methods for the Isolation of Viable CTCs

CTC isolation methods are based on the cell’s physical properties (e.g., size and
surface charge) and biological features, i.e., expression of specific surface proteins [56].
Methods based on the combination of these properties have also been developed (Figure 2,
Tables 1–3).
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methods are provided.

3.1. Isolation of CTCs Based on Cell Physical Properties

Methods based on the physical factors (Figure 2, Table 1) allow the isolation of viable
CTCs with high capture efficiency without using fluorescent labels [57]. These so-called
“label-free” methods attract attention because no cell loss is observed as compared to
methods that use CTC-specific markers [58]. The isolation of CTCs based on physical
properties helps to distinguish CTCs from other cells in peripheral blood by cell size
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and electrical properties [57]. The main obstacle of these methods is associated with the
clogging of mechanical microfilters and microfluidic systems and with the adhesion of
peripheral blood cells to the filter surface [57]. The increased fluid pressure inside the filters
can damage the cells. In addition, long-term contact with the filter surface can lead to
irreversible adhesion of trapped cells, resulting in reduced cell isolation efficiency [59].

Different size-based methods for viable CTC isolation have been developed, most
of which are based on the use of membrane microfilters and microfluidic technologies.
The isolation by size of epithelial tumor cells (ISET) system with a modified filtration
buffer isolates viable CTCs with no antibody-related bias and no/minimum cell loss. This
method detects both EpCAM+ and EpCAM− CTCs. ISET is very labor intensive and can
also enrich fixed CTCs [60,61]. Viable CTCs can also be isolated by two other devices,
one of which consists of a three-dimensional (3D) palladium (Pd) filter with 8 µm-sized
pores in the lower layer and a 30 µm-sized pocket in the upper layer, whereas the other
device (MetaCell) is based on the pass of peripheral blood through a porous polycarbonate
membrane [62,63]. The 3D Pd filter can isolate EpCAM+CD45− CTCs, which present as
small clusters and single cells, as well as cells with EpCAM+CD45+ and EpCAM−CD45−

phenotypes. However, this filter is difficult to manufacture and requires high-precision
lithography with electroforming technology [62]. MetaCell and 3D Pd filter ensure the high
viability and active growth of CTCs in vitro [62–65]. Another size selection method is the
centrifugation-force-based CD-PRIME platform that captures CTCs selectivity by their size
on a membrane in a chamber. After membrane removal, these CTCs can be used for in vitro
experiments [66]. CTCs isolated by this method include cells with EpCAM+CK+CD45−

and EpCAM−CK−CD45+/− phenotypes. This platform is fully automatic and easy to
use, but requires special equipment [66]. The effective capture of viable CTCs was also
demonstrated by fluid-assisted separation technology (FAST), which selectively separates
CTCs by size through the pores in the membrane [19,67], and the ScreenCell method based
on non-invasive blood filters for CTC and CTC cluster enrichment [68]. The ScreenCell
device contains 7.5 µm pores and uses a vacutainer to transfuse blood through the filter
from the upper chamber [68]. The composition of the cells after isolation by the ScreenCell
included cells with the pan-CK+/CK7+CD45− phenotype [68]. This method does not
require expensive equipment and special operator skills. Another 3D microfilter device
consists of two layers of parylene-C (poly(monochloro-p-xylylene) membrane with pores
and ensures the capture of viable CTCs [69].

CTCs can be isolated by microfluidic chips with micro-ellipse filters [70]. This ap-
proach is based on the transport of blood samples through the ellipse constriction matrix,
preventing the entry of large, rigid tumor cells and allowing small plastic cells to pass.
The application of frictionless gradual micro-ellipse filters provides highly reproducible
and sensitive capture of CTCs and ensures their viability [70]. The Parsortix is an epitope-
independent microfluidic system composing of a microscale stepped spacer structure with
a cross-sectional gap that progressively reduces the size of the fluid path [71–73]. The Par-
sortix allows the isolation of viable CK+CD45−CTCs in a liquid suspension with extremely
high purity for further molecular and functional analysis [17,74]. However, cells can be de-
formed during isolation under the action of mechanical forces. The CTCs isolated with the
Parsortix are large (15.6 ± 2.0 µm), suggesting that the Parsortix may miss small CTCs [75].
Size-based spiral microfluidic technology can also isolate the viable CTCs through the
use of hydrodynamic forces that present in the curvilinear microchannels [76]. This tech-
nology is capable of the high-speed processing of large volumes of blood and isolating
CTC clusters with elevated viability [77,78]. The deterministic lateral displacement (DLD)
method utilizes a periodically-arranged micropillar array to produce a specific streamline
pattern. Cells that are larger than the critical point can be displaced from their original
lateral position at the device inlet. Cells that are smaller than the critical point move in a
zigzag mode through the pillar array [79]. This method provides high-throughput and
clog-free isolation through a cascaded microfluidic design [80]. The present platform not
only isolates CTCs, but also identifies tumor fusion (hybrid) cells and enables the analysis
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of CTCs at single-cell resolution [80]. The challenge of CTCs of different sizes has been
overcome by a microfluidic device, the “Labyrinth”, which utilizes inertial forces to focus
CTCs into separate streamlines. This differential focus is formed by the balance between
the inertial lift and Dean forces, which affects the cells so that they flow in the direction of
the focusing stream [81,82]. The single-cell immunoblotting (ieSCI) microfluidic system
based on zigzag channel-based label-free and high-efficiency cell sorting was shown to
isolate CTCs from breast cancer patients. These CTCs were used for direct analysis or
single-cell immunoblotting [83]. Other studies showed that an inertial microfluidic chip
can isolate viable CTCs from the blood and seminal fluid of prostate cancer patients [84,85].

Table 1. Cell size-based methods for isolating viable CTCs.

Methods Cancer Type Further Applications Advantages (+)/
Disadvantages (−) References

Membrane
microfilters

ISET
Non-small cell lung,
colorectal cancers,

melanoma

Whole-genome
sequencing

+ 80–90% sensitivity
+ Isolation of CTC clusters
− High loss of small cells

[60,61,86,87]

3D palladium filter Breast cancer FISH, KRAS mutation
analysis

+ 85% cell purity
– High loss of small cells [62]

MetaCell Colorectal, lung cancers CTC culturing, gene
expression analysis

+ Depletion of more than 95% of
leukocytes

+ Isolation of CTC clusters
– High loss of small cells

[18,65,88]

CD-PRIME Pancreatic cancer NA
+ 76% sensitivity

– Contamination with leukocytes
– High loss of small cells

[66]

FAST Colorectal, breast,
stomach, lung cancers KRAS mutation analysis + 95.9 ± 3.1% sensitivity

– High loss of small cells [19,67]

ScreenCell Laryngeal, pancreatic
cancers FISH, ddPCR

+ Fast isolation (<30 min)
+ Isolation of CTC clusters
– High loss of small cells

[89,90]

3D microfilter device NA NA + 86.5 ± 5.3% capture efficiency
– High loss of small cells [69]

Microfluidic
technologies

Micro-ellipse filter
Breast, colorectal,

non-small cell lung
cancers

Immunofluorescence
analysis

+ 90% capture efficiency
– Contamination with leukocytes

– Clogging of filters
[70,91]

Parsortix Breastcancer

Mouse xenograft
models, transcriptome

or genome analysis,
FISH

+ 66–96% capture efficiency
+ Isolating CTC clusters

– Contamination with blood cells
– High loss of small cells

[71–73]

Spiral microfluidic
technology Glioblastoma FISH

+ Fast isolation (15 min)
+ Isolation of CTC clusters

+ 90% recovery rate
+ 1.7 mL min processing rate

– High loss of small cells

[76,77]

DLD Lung cancer Transcriptome analysis

+ 96% capture efficiency
+ Depletion of more than 99% of leukocytes

+ 98% viability
+ 1 mL min processing rate

– High loss of small cells
– Contamination with blood cells

[79,80]

Labyrinth Non-small cell lung,
liver cancers FISH

+ Isolation of CTC clusters
+ Depletion of more than 95% of leukocytes

– High loss of small cells
[81,92]

ieSCI-chip Breastcancer Protein analysis at
single-cell resolution

+ 89.92 ± 3.37% capture efficiency
+ Fast isolation (6 min)

+ 1.4 mL min processing rate
[83]

Inertial microfluidic
device

Prostate, laryngeal,
thyroid, floor of the

mouth, non-small cell
lungcancers

NA
+ 89%±3.8% capture efficiency

+ Fast isolation (20 min)
– Contamination with blood cells

[84,85]

Dielectric
permittivity

DEP-FFF NA
Immunofluorescence,

FISH, and gene
mutation analysis

+ 70–75% capture efficiency
– High loss of small cells [93,94]

ODEP Head and neck cancer NA
+ 81.6–86.1% cell purity

+ Isolation of CTC clusters
– High loss of small cells

[95,96]

NA, not available.
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In contrast to the various size-based methods, there are other approaches for CTC
isolation that focus on cell surface charge. For example, the dielectrophoretic field-flow-
fractionation (DEP-FFF) method isolates viable CTCs at a high rate due to their dielectric
properties, which are different from those of non-tumor cells [93]. A similar approach for
viable CTC capture is negative selection followed by optically-induced dielectrophoresis in
a microfluidic chip (ODEP). This device significantly increases the purity of the resulting
fraction of CTCs while maintaining their viability. The ODEP method isolates EpCAM+

CTCs and EMT-transformed cancer cells [95].
Thus, size-based methods are the most common approach for CTC isolation. These

methods have a high throughput but the main limitation is the heterogeneity of the CTCs
size. One promising method is the capture of CTCs based on their dielectric properties,
providing a very good bandwidth and purity. However, the main disadvantage is the
presence of Joule heating, which occurs when fluid flows through pores and can lead to
cell damage and decrease the sensitivity of the device [97].

3.2. Isolation of CTCs Based on Cell Biological Properties

Methods based on cell biological properties (Figure 2, Table 2) include positive selec-
tion with targeting markers on tumor cells or negative selection and targeting common
non-tumor markers to remove other cells [56]. Techniques based on positive selection are
less effective for the isolation of CTCs with low EpCAM and CK expression, which have
been described in several cancers [98,99].

Besides the CellSearch system mentioned above, there are other marker-based methods
for the positive selection of CTCs. For example, CTCs can be captured by magnetic
nanoparticles coated with an antifouling hydrogel layer that inhibits the adhesion of
nonspecific cells. EpCAM antibodies covalently grafted onto the surface of the hydrogel
layer provide high specificity for CTC capture (MNPs@hydrogel-anti-EpCAM). Testing this
method on mimic clinical blood demonstrates high specificity, velocity capture, and CTC
viability after glutathione treatment [100]. An aptamer-trigger-clamped hybridization chain
reaction (atcHCR) method has been developed for in situ identification and the subsequent
cloaking/decloaking of CTCs by porous DNA hydrogels. This method captures viable
CTCs directly through the EpCAM with minimal cell damage [101]. The release of cells
from the hydrogel is quite gentle, thus the isolated cells are not damaged.

Currently, there are no universal markers that can be used to detect and enrich all
CTCs. For example, CTCs undergoing EMT are EpCAM-negative and cannot be isolated
by an anti-EpCAM specific assay [21]. In this case, negative selection, e.g., CD45 depletion,
is a more optimal approach for CTC isolation [56]. A well-known approach for negative
selection of CTCs is the RosetteSep, which obtains viable single CTCs and CTC clusters by
removing unwanted CD45-positive cells bound to tetrameric antibodies and precipitated
in a Ficoll-Paque density gradient by centrifugation [68]. However, cell isolation by the
RosetteSep takes a long time and requires manual processing, thus limiting the robustness
and reproducibility of the results. In addition, a new approach for the isolation of mesenchy-
mal CTCs based on magnetic nanoparticles has been recently proposed [102]. In particular,
N-cadherin-conjugated magnetic nanoparticles (NP@MNP) via biotin and streptavidin
interactions have high capturing efficiency and can maintain cell viability [102].

The undoubted advantage of positive selection is the high purity of the resulting CTC
fraction, and the disadvantage is the impossibility of using a panel of markers that can
cover all CTC populations. On the contrary, the advantage of methods based on negative
selection is the capture of all possible populations of CTCs, but at the same time, a large
number of non-target cells are isolated.

3.3. Combined Methods

CTC isolation may also be based on both the cell’s physical and biological features [103].
Such combined methods can be based on microfluidics systems or without them (Figure 2,
Table 3). A microfluidic RBC (red blood cells) chip has been developed based on the
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DLD model. In this device, CTCs are captured by a layer of RBCs with modified EpCAM
antibodies on their surface and with dual-terminal functionalized DNA, 5′-Chol-DNA-
Biotin-3′ as linkers [104]. Altered erythrocytes have a high affinity that enables them to
recognize and capture CTCs effectively.

Moreover, the layer of RBCs prevents CTCs from damage during cell-microcolumn
collision. CTCs can be gently released by destruction of the RBC layer with lysis buffer [104].

Table 2. Methods for isolating viable CTCs based on cell biological properties.

Methods Cancer Type Further Applications Advantages (+)/Disadvantages
(–) References

Positive selection

MNPs@hydrogel-anti-
EpCAM NA NA

+ 96 % viability
+ Fast isolation (25 min)

– Isolation of only
EpCAM-positive CTCs

[100]

atcHCR NA NA
+ Isolating CTC clusters

– Isolation of only
EpCAM-positive CTCs

[101]

NP@MNPs NA scRNAseq

+ Capture of mesenchymal CTCs
+ 85% capture efficiency

– Isolation of only
N-cadherin-positive CTCs

[102]

Negative selection RosetteSep Liver, breast cancers scRNAseq, CTC
culturing

+ Isolation of CTC clusters
+ Fast isolation (40 min)

+ CTC marker-free isolation
– High number of untargeted cells

[68,105,106]

NA, not available; scRNAseq, single-cell RNA sequencing.

Table 3. Combined methods for isolating viable CTCs.

Methods Cancer Type Further Applications Advantages (+)/Disadvantages
(–) References

Based on cell biological
properties and

microfluidic approaches

RBC-chip Colorectal cancer ddPCR

+ 96.5% sensitivity and specificity
+ 96.1% viability

– Isolation of only
EpCAM-positive CTCs

[104]

CTC-iChip
Breast, prostate, lung
cancers, melanoma,

glioma
CTC culturing

+ 89.2 ± 5.7% capture efficiency
+ Capable of enrichment of CTCs

with either positive or negative
selection

– Multistep nature of the protocol
– Loss of CTCs associated with

leukocytes

[107–109]

HER2-GEDI Breast, gastric cancers CTC culturing

+ No any blood processing is
required

+ Utilization of only 1 mL of
blood

– Isolation of only HER2-positive
CTCs

[110]

Isoflux Gastroesophageal
cancer KRAS mutation analysis

+ 87% capture efficiency
– Isolation of only

EpCAM-positive CTCs
[111,112]

Herringbone-Chip Lung cancer CTC culturing

+ One step method
+ 95% capture efficiency

+ Isolation of CTC clusters
– Isolation of only EpCAM- and

EGFR-positive CTCs

[113]

Fluorescent
microspheres

Colorectal, breast,
non-small cell lung

cancers
NA + 90% capture efficiency [91]

Based on cell biological
properties and

non-microfluidic
approaches

AccuCyte-
RareCyte/PIC & RUN

Prostate, breast, lung
cancers

scRNAseq, CTC
culturing

+ 90% capture efficiency
+ 91.6% viability

– The presence of false-positive
CTCs

[114,115]

Neu-IMNs Breast cancer
PCR, Sanger

sequencing, CTC
culturing

+ 96.82% capture efficiency
+ 90.68% purity

– Contamination with leukocytes
[116]

NA, not available; scRNAseq, single-cell RNA sequencing.
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The method isolates EpCAM+CD45−CTCs with a high capture efficiency. Another
method, the CTC-iChip system, is an inertial separation device for the removal of RBCs and
platelets followed by high-gradient magnetic cell sorting for the depletion of white blood
cells [107,109]. This system is fully automatic and is not subject to operator error, but it re-
quires a long time for sample processing (6–7 h) [107]. Combined methods for the isolation
and detection of viable CTCs also include microfluidic methods with immunomagnetic
microbeads coated with CTC-specific markers, for example, the Herringbone-Chip and
Isoflux systems with anti-EpCAM and EGFR microbeads and a HER2-based microfluidic
device [110,117]. Furthermore, optical force and fluorescent microspheres have been inte-
grated to isolate the viable CTCs. Fluorescent microspheres with a high-refractive index,
capture and transfer CTCs to the collection channel, where the latter are detected by a
fluorescent microscope and sorted [118].

CTCs can also be isolated by centrifugation in AccuCyte separation tubes followed
by CTC labeling (EpCAM, HER2 and EGFR) and detection on glass slides using fluores-
cence and isolation by needle (RareCyte) [115]. This combined method, which is called
PIC&RUN, demonstrates good performance due to its use of the positive and negative
selection of CTCs. However, the main limitation of this method is the relatively long
processing time (more than 2 h) due to semi-automatic scanning [115]. Another promis-
ing strategy is to coat neutrophil membrane-derived vesicles onto the high-performance
biomimetic immunomagnetic nanoparticles (Neu-IMNs), which increases the efficiency of
CTC isolation by enhancing the interaction between CTCs and neutrophils and improving
their viability through soft interaction between neutrophil membranes [116]. This method
isolates CK+CD45−CTCs, is easy and inexpensive, and only takes about an hour.

Thus, the combined approaches are partially capable of solving the problems of meth-
ods based on cell physical and biological properties, but they are not without drawbacks
and still need to be optimized to improve specificity, the sensitivity, and throughput of
CTC isolation.

4. Viable CTCs in In Vitro, Ex Vivo and In Vivo Studies

CTC-derived in vitro models are an effective instrument for the development of
metastasis-targeting therapy [88,119,120]. Several studies have demonstrated successful
examples of the establishment of cell cultures from CTCs [88,113]. For instance, gastroin-
testinal CTC lines (UWG01CTC and UWG02CTC) have been obtained using a microfluidic
device IsoFlux, and completely reflect the genotypic and phenotypic heterogeneity of
CTCs [121]. CTC-iChip-derived breast cancer lines were maintained in vitro for >6 months.
Cultured CTCs shared cytological features with the matched primary CTCs, but had an
increased proliferative signature [119].

Lung CTC line CTC-TJH-01, which was obtained by combined microfluidic Herringbone-
Chip and immunomagnetic microbeads, demonstrated an intermediate epithelial/mesenchymal
phenotype and the stem cell-like characteristics of CTCs. The analysis of this cell line
showed a high expression of CXCL5 and low expression of CX3CL1 as a mechanism of CTC
escape from the immune system [113]. Successful CTC cultures have also been developed
from esophageal, bladder and pancreatic cancers using the MetaCell method [18,64,122].
Nine permanent lines of colon cancer were obtained from CTCs collected at different
points in the treatment time using the RosetteSep Human Circulating Epithelial Tumor
Cell Enrichment Cocktail. These cell lines showed different gene expression profiles and
reflected changes in the cell phenotypes during therapy [123–125].

CTCs are also used to develop ex vivo models that are cultivated on biological tissue
in an artificial environment with minimal change in natural conditions. However, such
models are not without limitations. In particular, an ex vivo model with nanoemulsions to
preserve the natural conditions, obtained from RosetteSep-derived breast cancer CTCs lost
epithelial features and acquired stem or mesenchymal properties, as well as showed a gene
expression profile that was distinct from the primary CTCs [106].
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CTCs are a heterogeneous population of cells containing genomic, transcriptomic and
proteomic features that reflect a patient’s tumor biology and can represent micrometastatic
disease in vivo [126]. Mouse models with inoculated CTCs, i.e., CDX, provide an under-
standing of the mechanisms of cancer metastasis [127]. The response of CDX models to
standard chemotherapy is consistent with the patient’s response rate, indicating their appli-
cability for the development of novel therapeutics [128]. Serial CDX models established
at different time points along with patient’s disease progression can be used for studying
the mechanisms of the evolution of drug resistance [128]. Transcriptome sequencing of
small cell lung cancer (SCLC) CDX revealed that the MYC signature negatively correlates
with sensitivity to etoposide and platinum-based chemotherapy [128,129]. Single-cell se-
quencing of treatment-naïve and cisplatin-resistant SCLC CDX models found increased
intra-tumoral heterogeneity, including the heterogeneous expression of therapeutic targets,
between different cellular subpopulations following treatment resistance. In addition, the
role of MYCL and NFIB genes in SCLC dissemination and the role of MYC and MYCL
genes in drug resistance has been shown [129].

CTCs are injected at different sites depending on the type of cancer being stud-
ied, but most commonly in the heart, tail vein, or subcutaneously in the back for easy
follow-up. CDX models have been established in breast, pancreatic, lung, and prostate
cancers, and liver metastasis [82,113,128,130,131]. However, a sufficient number of vi-
able CTCs is needed to develop in vivo models [132]. In this case, satisfactory in vivo
models have been obtained with the RosetteSep isolation of CTCs [132]. In particular,
melanoma CDX obtained from RosetteSep-isolated CTCs was used for studying patient
response to the trametinib inhibitor of mitogen-activated protein kinases, MEK1 and
MEK2 [133]. The issue of a small amount of CTCs is also overcome by using several pas-
sages from one mouse model to another [130]. For example, flow-sorted lineage-negative
(CD45−CD34−CD105−CD90−CD73−) CTCs derived from peripheral blood samples from
triple-negative breast cancer patients were injected intracardiacally in anesthetized NOD
scid gamma mice. The obtained liver metastasis cells were injected intracardiacally into
other mice [130]. Thus, this CDX model reproduces liver metastasis in serial CDX gen-
erations, displaying similar genomic profiles and the phenotypes of disseminated tumor
cells [130].

Obtaining CTCs using the patient-derived xenografts (PDX) is another approach that
compensates for the deficiency of methods for isolating CTCs directly from patients [129].
PDX models were originally generated from the primary tumors of patients. This approach
has been successfully demonstrated using the tumors of patients with non-metastatic non-
small cell lung cancer and castration-resistant prostate cancer [129,131]. CTCs obtained
from PDX models are used to create CDX models, which are suitable for the investigation
of drug response and metastasis as well as tumor cell heterogeneity. Such a method is
useful for the development of a personalized strategy to combat metastases. It is known
that the efficiency of creating PDX models is greater than that of CDX [126]. Therefore,
obtaining a CDX model from PDX is a good methodological technique. However, PDX and
CDX models only partially represent the patient’s tumor, as mice are characterized by a
suppressed immune system that limits the study of metastasis processes [129].

In general, in vivo, ex vivo and in vitro models open up new opportunities in the field
of translational and fundamental research (Figure 3). However, it should be noted that not
all cells survive during the process of obtaining cell lines and xenografts, and some cells
change genetically and phenotypically. Although CTC cell lines may share features with
the primary tumor, there is a high probability that distinct clones will be selected [125].
High cell death in the bloodstream and a loss of some cells during isolation also limit the
reliability and accuracy of CTC in vitro and in vivo models. Moreover, even successful
isolation of viable CTCs may lead to obtaining non-target cells and to skewed results,
especially in the case of different molecular analyses. For instance, our recent work showed
a large number of non-target cells in samples enriched by the RosetteSep method [134].
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Therefore, there is an urgent need to improve both CTC isolation methods and approaches
for the development CTC in vivo, ex vivo and in vitro models.
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5. Challenges and Trends

Progress in the isolation of CTCs has already been achieved in regard to technological
developments and clinical oncology. All the methods described above can isolate viable
CTCs for further research; nevertheless, they require improvement. Methods based on
physical factors, such as the selection of cells by size, pass other tumor cells and clog filters,
resulting in decreased throughput. Methods based on positive selection miss cells with dif-
ferent cellular phenotypes, e.g., CTCs in individual functional states (EMT-, mesenchymal-
or stem-like). These methods also use a limited panel of markers that cannot cover the entire
variety of CTCs. Methods based on negative selection also need to be refined due to the
high content of non-target cells and because they skip hybrid CTCs, which are composed
of two or more different cell types. Overall, all these methods should not affect CTCs by
pH, pressure, and other physical factors, thereby isolating intact CTCs. It is important to
note that due to the large phenotypic and genotypic diversity of CTCs, an ideal method for
their isolation may never be developed.

Obviously, the genetic profile and functional phenotypes of CTCs, as well as their
role in cancer metastasis and applicability as a model for screening and monitoring drug
response, can only be completely revealed in the case of isolation of the maximum possible
amount of CTCs. However, this issue still remains a great challenge because of the technical
limitations discussed above. In addition, current methods are being developed to isolate
CTCs from the venous circulation rather than arterial blood, which can be a better source of
CTCs [135–137]. Another problem limiting the use of CTCs, especially in preclinical models,
is high cell death during isolation. To achieve an increase in living target cells, technologies
are needed to handle large sample volumes and improve the enrichment and purification
by using both physical and biological CTCs parameters. Such an approach seems to be
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promising in regard to compensating for the disadvantages of different isolation methods,
but it can be time-consuming and negatively influence the CTC viability.

Thus, an ideal CTC isolation method has not been established yet. Each of the available
methods can be used for specific tasks and has its own advantages and disadvantages.
For example, CTCs are rapidly isolated by the ieSCI-chip, an inertial microfluidic device,
and spiral microfluidic technology. The simplest and cheapest methods are RosetteSep,
NP@MNPs, and MNPs@hydrogel-anti-EpCAM. Other methods such as the CTC-iChip,
Herringbone-Chip, and Neu-IMNs are highly efficient for obtaining CTC-derived cell lines.
In general, the choice of method for CTC isolation should be based on the experimental
objectives, accessible equipment, the researcher’s skills, funding, and other criteria.

6. Conclusions

There is still a crucial need to develop new technologies for the isolation of CTCs,
especially living cells, which are of most interest for assessing anticancer drug efficacy and
studying the mechanisms of cancer metastasis in vitro, ex vivo and in vivo models.
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