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Abstract: This review investigates the association between vitamin D and sleep disorders. Vitamin
D is an essential nutrient known to play an important role in the growth and bone health of the
human body, but it also appears to play a role in sleep. The goal of our review is to examine the
association between vitamin D and sleep disorders in children and adolescents. We summarize
the evidence about the role and the mechanism of action of vitamin D in children and adolescents
with sleep disorders such as insomnia, obstructive sleep apnea (OSA), restless legs syndrome (RLS),
and other sleep disorders. Systematic electronic database searches were conducted using Pubmed
and Cochrane Library. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guideline was followed. The studies that met the established inclusion criteria were ana-
lyzed and compared. Results suggest a strict relationship between vitamin D deficiency in children
and sleep disorders. There is evidence that vitamin D is implicated in the different neurochemical
mechanisms involved in sleep regulation and mainly in the serotonergic and dopaminergic path-
ways. This might be responsible for the association of vitamin D deficiency and restless sleep, sleep
hyperhidrosis, OSA, and RLS.

Keywords: vitamin D; sleep; insomnia; obstructive sleep apnea; restless legs syndrome; parasomnias

1. Introduction

Vitamin D is a fat-soluble vitamin, mainly synthesized in the body through ultraviolet
B (UVB) exposure on the skin or taken orally through food and/or supplements. According
to the definition of the Endocrine Society we can define the following categories: deficiency
(<20 ng/mL); insufficiency (between 20 and 29 ng/mL); and sufficiency (≥30 ng/mL) [1].
Vitamin D deficiency/insufficiency is a global epidemic, estimated to affect over one billion
people worldwide [2], including children [3].

Even if its principal function is bone homeostasis regulation, vitamin D is also involved
in several other conditions, such as cardiovascular diseases, cancer, diabetes mellitus, and
autoimmune disorders [4]; recently, an increasing number of studies are showing the link
between vitamin D and sleep. Low vitamin D levels have been reported to be associated
with shorter sleep duration [5], and adequate levels of vitamin D seem to be necessary for
the maintenance of sleep, reducing the number of nocturnal awakenings [6].

Although the exact mechanism by which vitamin D affects sleep regulation is still
unclear, the key to this link seems to be the expression of vitamin D receptors (VDRs) in areas
of the brainstem that are involved in sleep regulation [7,8]. Previous studies have shown
that VDRs are expressed in both developing and adult rat brains [9]; in the human brain, the
VDR distribution has been described as strikingly similar to that detected in rodents [10].
VDRs are expressed in the cortical and subcortical areas involved in sleep control, such
as: (a) the prefrontal cortex, which mediates normal sleep physiology, dreaming, and
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sleep-deprivation phenomena and is activated during Non-Rapid Eye Movement (NREM)
and deactivated during Rapid Eye Movement (REM) sleep [11]; (b) the cingulate gyrus,
which is activated by breathing and blood pressure changes affected by sleep apnea [12];
(c) the hippocampal dentate gyrus, where neurogenesis is significant in adults [13] and is
influenced by sleep deprivation, that reduces proliferation of progenitor cells [14]; (d) the
caudate nucleus, which is downregulated in disturbed sleep and insomnia, especially
during executive functioning [15]; (e) the lateral geniculate nucleus, which plays a major
role in ponto-geniculo-occipital waves during REM sleep [16]; and (f) the substantia nigra,
where the dopaminergic pathway is closely involved in the regulation of the sleep–wake
cycle and is implied in idiopathic REM sleep behavior disorder [8,17].

Vitamin D might exert its effects on neurocognition based on several mechanisms
mediated by sleep, including induction of neuroprotection, modulation of oxidative stress,
regulation of calcium homeostasis, and suppression of inflammation [18]. Vitamin D has
been proposed to act as a membrane antioxidant. In fact, it increases the gene expression
levels of antioxidants agents [19] and decreases cytokine generation via inhibitory effects
on the activation and expression of nuclear factor kappa B (NF-κB) and other related
genes [20].

Similar to the other steroid hormones, vitamin D binds to its nuclear receptors, VDRs,
and retinoid X receptors (RXRs), to effect transcriptional changes. Pertinent to sleep, VDRs
and RXRs have been shown to downregulate transcription of RelB gene, a gene encoding a
family of transcription factors; collectively referred to as NF-κB [21] that plays a pivotal
pro-inflammatory role, both in terms of the production of sleep-regulating substances, such
as IL-1 and tumor necrosis factor alpha (TNF-a), but also in terms of the selective activation
of inflammatory pathways known to occur in the setting of intermittent hypoxia, as in
obstructive sleep apnea (OSA) [22,23].

Since the vitamin D receptor is expressed on immune cells (B cells, T cells, and antigen
presenting cells) and these immunologic cells are all capable of synthesizing the active
vitamin D metabolite, vitamin D can modulate the innate and adaptive immune responses.
Deficiency in vitamin D is associated with increased autoimmunity as well as an increased
susceptibility to infection [24].

On the other hand, substances of the immune system, in particular the cytokines IL-1
and TNF, and prostaglandin (PG) D2 are involved in the regulation of physiological sleep
in animals, and sleep duration (short and long) and disturbances (including insomnia) are
linked to dysregulation of inflammatory markers, immune cell counts, and cellular aging
markers. In disorders characterized by immune dysregulation, immune-therapy may not
only be used to improve disease activity, but also to directly improve sleep [25,26]. Similarly,
vitamin D supplementation should be considered for the prevention and treatment of
immune diseases as well as for improving sleep quality.

Melatonin has also been suggested to act as a mediator of the neuro-immunomodulatory
properties of vitamin D [27]. Alongside Vitamin D, melatonin participates in the regulation
of circadian rhythms and sleep, immune response, and bone metabolism [28,29]. Melatonin
and its metabolites exhibit a wide spectrum of both direct and indirect physiological effects
in humans [30–34]. First, these compounds scavenge free radicals and other non-radical
Reactive Oxygen Species/Reactive Nitrogen Species (ROS/RNS) directly, reducing the
level of oxidative stress and, thus, show antioxidant abilities preventing inflammation.
Second, these biomolecules participate in immunomodulation, improve immune defense,
and exhibit other physiological activities, e.g., regulate circadian rhythms, body tempera-
ture, increase physical performance and glucose uptake in muscles, and prevent against
lipid accumulation, among others [35–39]. Importantly, melatonin is effective in adjusting
the sleep–wake cycle and improving the quality of sleep. Melatonin stabilizes circadian
rhythms and exerts its chronobiotic effects by acting on the plasma membrane trough G
protein-dependent receptors type 1 and type 2 called MT1 and MT2, and its rhythmic
release is regulated by a central circadian rhythm generator [40].
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1.1. Vitamin D and the Serotonergic System

Soon after the time of its discovery, over 40 years ago, the serotonergic system was
implicated in the regulation of the sleep–wake cycle. While early studies indicated that
serotonin (5-HT) was associated with the initiation and maintenance of sleep, later studies
indicated that serotonergic neurons also play a role in inhibiting sleep. The complex effects
of 5-HT on the regulation of sleep are due in part to the fact that 5-HT can act at different
areas of the brain that have been associated with the control of sleep and wake.

In addition, the recent discovery of multiple 5-HT receptors within the mammalian
brain has led to the finding that different 5-HT receptors are selectively involved in the
regulation of the different sleep states [41,42]. Based on electrophysiological, neurochemical,
genetic, and neuropharmacological approaches, it is currently accepted that 5-HT functions
predominantly to promote wakefulness and to inhibit REM sleep. However, under certain
circumstances this neurotransmitter contributes to the increase in sleep propensity [43].
Serotonin is synthetized in the brain from its precursor tryptophan, an essential amino
acid obtained from the diet [44,45] through the action of tryptophan hydroxylase and
participates in the regulation of circadian rhythms [46–48].

Vitamin D plays a key function in the regulation of the serotonergic pathway [18,49,50]
and in melatonin production, confirming the importance of vitamin D in sleep but also in
mood regulation [50,51]. Furthermore, the presence of VDRs in limbic structures, including
hippocampus, amygdala, and prefrontal cortex, suggests that vitamin D could be also
associated with the regulation of mood and emotional behavior [52]. In detail, vitamin D
can influence the serotoninergic pathway in the brain and in the peripheral tissues binding
the vitamin D response elements (VDREs) on the tryptophan hydroxylase genes (THP1
and THP2), involved in serotonin production. Vitamin D inhibits the expression of THP1 in
the peripheral tissues and increases the expression of THP2 in the brain [50,53]. A special
isoform of the enzyme tryptophan hydroxylase, TPH2, converts the amino acid tryptophan
into 5-hydroxytryptophan, a precursor of serotonin. TPH2 is entirely restricted to neurons
of the raphe nuclei and the enteric nervous system and is the enzyme responsible for
producing all of the serotonin in the brain [54].

Serotonin in the brain promotes prosocial behavior and correct assessment of emotional
social cues [55]. This seems to explain the link between vitamin D levels, serotonin, sleep,
and mood regulation [53]. Regarding sleep, vitamin D exerts an important function acting
on the THP1 expression in the pineal gland. Through THP1 expression, the pineal gland
converts serotonin into melatonin during evening and nighttime [56,57]. According to the
daily variation in natural light exposure [58], the variation of serum vitamin D levels, from
relatively high during daytime to relatively lower during nighttime, may be necessary
for optimal TPH1 expression in the pineal gland for melatonin regulation. It may be the
case that disturbances in these daily variations could have an influence on sleep timing
and/or quality [51]. In addition, vitamin D regulates the conversion of tryptophan into
5-HTP [50] and regulates the production of melatonin also for its action on tryptophan
hydroxylase [59].

1.2. Vitamin D and the Dopaminergic System

On the other hand, vitamin D plays an important function in the dopaminergic system
participating in the regulation of the nervous system development and function [60].
Dopamine neurons in the midbrain and their target neurons in the striatum were shown to
express vitamin D receptor proteins, and vitamin D receptors are present in the nucleus of
tyrosine hydroxylase-positive neurons, in both, human and rat substantia nigra [61]. Oran
et al. [62], observed how rat primary dopaminergic neurons had a dose-responsive increase
in number when vitamin D3 (the hormonally active form of vitamin D) was added to culture
media, suggesting that vitamin D might increase the number of dopaminergic neurons by
upregulating the expression of glial-derived neurotrophic factor. In addition, it has been
reported that vitamin D affects the nigrostriatal dopaminergic pathway by increasing the
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levels of dopamine or its metabolites and by protecting dopaminergic neurons against
toxins [63,64].

Treatment with vitamin D could increase dopamine concentration and its metabolites
in the substantia nigra and protect mesencephalic dopaminergic neurons against toxins that
cause a decrease in the glutathione content, which might lead to selective dopaminergic
neuron death [65,66]. In fact, it seems that vitamin D may participate in the antioxidant
mechanism controlling brain homeostasis [67]. Vitamin D has been recently reported to
enhance the intracellular glutathione concentration in the central nervous system [68].

Exposing rat cultured mesencephalic neurons for 24 h to a mixture of L-buthionine
sulfoximine (BSO) and 1-methyl-4-phenylpyridium ions (MPP) resulted in a relatively selec-
tive damage to dopaminergic neurons [69]. This damage was accompanied by a reduction
in intracellular glutathione levels. Low doses of Vitamin D3 protect cultured dopaminergic
neurons against this toxicity. Generation of ROS by this toxicity has been attenuated in
cultures being pretreated with low concentrations of Vitamin D3. These data suggest that
low doses of Vitamin D3 are able to protect mesencephalic dopaminergic neurons against
BSO/MPP induced toxicity that causes a depletion in glutathione content [63].

It is interesting to notice that dopaminergic dysfunction, together with iron dysregula-
tion are the main pathophysiologic mechanisms involved in the development of Restless
Legs Syndrome (RLS) [70]. Vitamin D may be involved in the pathogenesis of RLS because
of its effects on the dopaminergic system, through VDRs present in the nucleus of neurons
that are positive for tyrosine-hydroxylase in the substantia nigra. In fact, Vitamin D defi-
ciency can be considered a risk factor for RLS. The incidence of RLS, indeed, is increased in
adult patients with vitamin D deficiency [61,70,71] and a significant inverse correlation was
found between vitamin D levels and severity of RLS [72]. Interestingly, infants diagnosed
with iron-deficiency anemia simultaneously show low levels of serum vitamin D [73]. The
addition of vitamin D to their diet might improve blood and tissue iron concentration.

Therefore, due to his effect at the gene and receptor levels, it is not surprising that
vitamin D might exert a clinical effect on sleep and sleep disorders. The impact of vitamin
D on sleep has been well described in adults; its deficiency has been associated with
multiple sleep disorders such as OSA, RLS, changes in sleep duration, and worsening of
sleep quality [22]. Adult patients return to normal sleep cycles with vitamin D levels at
60–80 ng/mL suggesting the need to reach levels higher than the normal accepted values
of 30 ng/mL for the treatment of sleep disorders.

Regarding the pediatric population, there are only few studies on the correlation
of vitamin D deficiency and sleep disorders. Due to the beneficial effect of vitamin D
supplementation in adults, it might be expected that vitamin D supplementation might
also improve sleep in children and adolescents with sleep disorders. In this review we
aimed to outline the experimental evidence of the role of vitamin D in the regulation of
sleep, mainly duration and quality of sleep and in sleep disorders, such as OSA, RLS, and
insomnia in children and adolescents [74,75].

2. Materials and Methods
2.1. Search Strategies and Selection of the Studies

The review was conducted according to the PRISMA guidelines. Two electronic
databases (PubMed and Cochrane Library) were systematically analyzed. For both
databases, search terms included the following combination of keywords: “vitamin and
sleep OR vitamin D and insomnia OR vitamin D and OSA OR vitamin D and RLS OR
vitamin D and parasomnias”. Retrospective-cohort, cohort, prospective, observational
cross-sectional, case-control, prospective and comparative, multi-center cross-sectional,
and longitudinal studies were included in the present systematic review. No restrictions
were applied to the publication period or to the country in which the study was conducted.
No filters were used to avoid the loss of potentially interesting documents. Following
the PRISMA method, we screened the articles by means of keywords, titles, and abstracts.
Before proceeding, duplicate documents were filtered out. After the first screening, we
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excluded irrelevant articles; subsequently, we carried out an analysis of the full text articles
to select the most appropriate ones. In the first instance, we also evaluated articles that
would give us a more complete picture of the mechanisms of action and the relationship
between vitamin D and sleep, even in the adult population, which has been studied more
often. We afterwards excluded reviews, articles that dealt with the adult population or in
which sleep data were not relevant to our research or articles in which a close correlation
between sleep and vitamin D was not explicitly tested. The study selection flowchart is
illustrated in Figure 1.
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2.2. Data Extraction and Quality Assessment

Three authors (O.B., F.P. and K.B.) independently assessed the articles and extracted
the data and disagreements were resolved through discussion. Extracted Information
included: (1) title; (2) the last name of the first author; (3) publication year; (4) objective;
(5) study design details; (6) study population characteristics; (7) methods; and (8) results.
The content and methodology of the studies were analyzed qualitatively, summarizing the
main findings according to the study purpose. To ensure reliability, articles selected by the
first author were assessed by a second independent researcher. Furthermore, the level of
evidence was assessed. Papers that seemed to meet the inclusion criteria but caused doubt
due to ambiguities were analyzed once more by a third investigator until consensus was
reached. In view of the scarcity of papers in the available literature, none of the studies was
excluded due to quality issues.
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3. Results and Discussion

We identified 748 articles, of which 601 were excluded because they were not relevant
for our research; therefore, we assessed 147 full-text articles for eligibility, from which we
excluded 133 because they focused on the adult population or because the sleep data were
not pertinent. Ultimately, we included 14 articles in our review. Table 1 shows a summary
of the main data reported by the studies included: type of study, objective, sample, methods,
and results. For the purpose of this review, we divided the included articles in three main
groups based on the sleep disorder considered (sleep duration and quality of sleep, OSA,
and other sleep disorders).
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Table 1. Summary of the main data reported by the studies considered in this review.

Study Objective Design Population Methods Results

Al-Shawwa et al.
2020

Relationship between sleep
architecture and vitD status.

Retrospective cohort
study. 39 children PSG and pediatric sleep

questionnaires.

51 with vitD deficiency (25(OH)D < 30 ng/mL).
Children with vitD deficiency: decreased TST and
sleep efficiency, and later weekday and weekend

bedtimes.

Deng et al., 2020

Association between vit D in
cord or venous blood and

sleep–wake patterns at two
years of age.

Prospective cohort
study. 29 children

25(OH)D assessed in cord blood and
venous blood at two years of age.

Sleep–wake patterns measured with
BISQ and Acti-Watch.

Venous but not cord blood 25(OH)D level at two
years age positively associated with sleep

duration.

Gong et al., 2018
Association between

25(OH)D levels and sleep
duration.

School-based
prospective study.

800 Chinese
adolescents
(8–14 years)

Anthropometric measured by trained
research staff. Serum 25(OH)D and
lipids measured in the laboratory.

Sleep habits and health-related
behaviors assessed by questionnaire.

25(OH)D levels positively correlated with sleep
duration. Insufficiency/deficiency of vitD

(25(OH)D < 20 ng/mL) significantly associated
with increased probability of short sleep.

Yong et al., 2019

Association between
cord-blood vitD levels at

birth and night-sleep
duration trajectories between

2 and 5–6 years old.

Cohort study. 264 children

Cord-blood 25OHD determined by
radio-immunoassay at birth, and
night-sleep trajectories between 2

and 5–6 years obtained by
group-based trajectory modeling
method. Associations assessed by

multinomial logistic regression
adjusted for maternal and child

characteristics.

Trajectories short sleep (<10.5 h) was found in 5%,
medium–low sleep (10.5–11.0 h) in 46%,

medium–high sleep (≈11.5 h) in 37%, long sleep
(≥11.5 h) in 4% and changing sleep (decreased

from ≥11.5 to 10.5–11.0 h) in 8%, respectively. The
mean 25OHD level was 19, 12, 19, 14, and 16,

respectively. On adjusted analysis, decrease in
25OHD level correlated with the odds of

belonging to the shorter sleep trajectories.

Kheirandish-
Gozal et al.,

2014

Association between OSA
and plasma 25(OH)D and

risk of metabolic dysfunction
and systemic inflammation.

Observational
cross-sectional study.

176 obese and
non-obese children
with and without

OSA

PSG and fasting blood draw the
morning after. Lipid profile,

homeostatic model of insulin
resistance and high-sensitivity

C-reactive protein assays and plasma
25(OH)D assessed.

25(OH)D levels reduced in pediatric OSA (also in
Afro American and in obese children); possible

role in modulating the degree of insulin resistance
and systemic inflammation.
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Table 1. Cont.

Study Objective Design Population Methods Results

Shin et al., 2018
Relationship between vitD
and associated factors in

children ATH.

Retrospective
cross-sectional study.

88 children with
sleep-disordered

breathing

Four groups based on adenoidal
and/or tonsillar hypertrophy.

Demographic data, the sizes of
tonsils and adenoids, serum

25(OH)D level, BMI, and allergen
sensitization patterns.

Children with ATH had decreased 25(OH)D).
Children with vitD deficiencies higher frequency

of ATH. Inverse correlation between serum
25(OH)D levels and age, tonsil and adenoid size,
and height. Tonsil and adenoid size, and BMI-z

score associated with 25(OH)D levels, after
controlling for age, sex, height, and mite

sensitization.

Ekinci et al., 2017

Serum vitB12 and vitD
correlation with self-reported

sleep quality of pediatric
FMF patients.

Case-control study. 63 children with
FMF

Self-administered PSQI. The patients
divided into subgroups depending

on vitD concentrations (≥20 and <20
ng/mL) or to vitB12 concentration

(≥200, <200 pg/mL).

vitB12 levels not correlated with PSQI scores.
Significant correlation between vitD and total

PSQI scores and daytime sleepiness. Total PSQI
score, sleep disorders and daytime sleepiness
sub-scores higher in patients with vitD < 20

ng/mL. vitD possibly protective against sleep
disorders and poor sleep.

Zhao et al., 2021

vitD status by demographic
and lifestyle factors including
dietary supplementation and

physical activity.

Population based,
cross-sectional,

multicenter study.

5289 children aged
0–5 years

Stratified cluster random-sampling
method in 12 Children’s Health Care

Centers from 10 cities in Jiangsu
Province, China.

Prevalence of vitD deficiency 30.1%. Higher risk
of vitD deficiency associated with: older age, girls,
survey conducted in spring, location in southern

Jiangsu province, residence in urban, outdoor
activity < 2 h/day. Lower risk associated with:

parity ≥ 2 times, vitD supplementation from birth
to 6 months, vitD supplementation starting ≤ 1

month after birth, vitD and calcium
supplementation in the last 3 months, and dose of
vitD supplementation > 400 IU/day. Higher risk

of vitD deficiency with preference for sweets,
meat consumption > 150.0 g/day1, milk

consumption < 250 mL/day, sleeping < 10 h/day.
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Table 1. Cont.

Study Objective Design Population Methods Results

Ozgurhan et al.,
2016

Risk of OSA in subjects with
vitD deficiency.

Prospective and
comparative study.

176 obese and
non-obese children
with and without

OSA

Two groups based on 25(OH)D
levels: low level (<20 ng/mL) group
(n = 120) and control (>20 ng/mL)

group (n = 120). Risk of developing
OSA assessed by Berlin

Questionnaire.

No statistically significant differences between the
low level and control groups in terms of gender,
age, and BMI z-score distributions. 24 subjects

with high risk of developing OSA (17 subjects in
the low-level group and 7 subjects in the control

group). Risk of developing OSA significantly
higher in the low-level group. BMI z-score

significantly higher in high-risk groups than
low-risk groups.

Cui et al., 2021 vitD in the treatment of
children with OSA. Case-control study. 50 children: 30 with

OSA, 20 controls

In all subjects: sex, age, triglyceride,
total cholesterol, HDL, LDL, serum

25-OHD levels, and Conners’
parental scale were measured. In

children with OSA: BMI, AHI, and
minimum oxygen saturation.

Children with OSA treated with
Rocaltrol (0.25 g/QD) for 4 weeks
and reanalyzing their triglycerides,
total cholesterol, HDL, LDL, serum

25(OH)D levels, sleep AHI,
minimum oxygen saturation, and

Conners’ parental scale.

Children with OSA frequently obese, with
dyslipidemia, and vitD deficiency, with

behavioral and cognitive dysfunction. No
significant changes in BMI, triglycerides, total

cholesterol, HDL, LDL, sleep AHI, and minimum
oxygen saturation after vitD treatment, but the
serum 25-OHD level significantly improved, as

well as conduct problems, learning problems, and
hyperactivity index decreased.

Sung et al., 2020 Factors associated with EDS
and vitD level. Case-control study.

618 children: 111
with EDS and 507
healthy controls

Physical examination, acoustic
rhinometry, and blood sampling.

Parent-filled questionnaires. Korean
version of Pediatric Daytime

Sleepiness Scale (PDSS).

Children with low 25(OH)D3 (<20 ng/mL) and
HDL-C (<40 mg/dL) levels with increased risk of
EDS. 25(OH)D3 level, exercise, and BMI were over

three. High levels of 25(OH)D3 and HDL
cholesterol and performing regular exercise

associated with decreased risk of EDS.
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Table 1. Cont.

Study Objective Design Population Methods Results

Valtuena et al.,
2013

Environmental, individual,
and genetic factors associated

with 25(OH)D levels.

Multi-center
cross-sectional study. 1006 children

Measures of body composition,
biochemical markers, socioeconomic

status, dietary intake, physical
activity, fitness, sleep time, and

vitamin D genetic polymorphism
(rs1544410).

In males, 25(OH)D levels independently
influenced by winter season, higher latitudes, BMI

z-score and retinol concentration. In females,
25(OH)D levels independently influenced by
winter season, sleep time, supplement intake,

flexibility, body fat %, BMI z-score, higher
latitudes, and handgrip strength. Season, latitude,
fitness, adiposity, sleep time, and micronutrient

supplementation were highly related to 25(OH)D
concentrations.

Işıkay et al., 2018
Prevalence and associated
factors of RLS in children

with CD.

Cross-sectional study:
case-control study.

494 children: 226
with CD and 268

controls

Demographic data, educational
status and routine laboratory data of
children including complete blood
count, ferritin, vitB12, folate and

25(OH)D levels. RLS prevalence and
associated symptoms by a 30-item

questionnaire.

Prevalence of RLS not increased in children with
CD. Age at onset of RLS symptoms significantly

younger and more severe in CD.

Barceló et al., 2021

Inter-relationship between
serum 25(OH)D levels and

metabolic profiles, sleep
parameters, and paternal and

maternal vitD status.

Familial longitudinal
study.

137 Caucasian
families (children
and their parents)

Measurement of serum 25(OH)D
levels, serum glucose, lipids, liver
enzymes, parathyroid hormone,

insulin, and glycated hemoglobin
and evaluation of overnight PSG.

VitD insufficiency (<30 ng/mL) and deficiency
(<20 ng/mL) in 40.9% and 17.5%, respectively.

Risk of vitD insufficiency increased by both
paternal and maternal insufficiency. Serum

25(OH)D concentration associated with AHI and
respiratory arousal index.

Legenda: PSG = polysomnogram; vitD = vitamin D; 25(OH)D = 25-hydroxy vitamin D; TST = total sleep time; BISQ = Brief Infant Sleep Questionnaire; OSA = obstructive sleep apnea;
ATH = adenotonsillar hypertrophy; BMI = body mass index,; vitB12 = vitamin B12; FMF = familial Mediterranean fever; PSQI = Pittsburg Sleep Quality Index; AHI = apnea/hypopnea
index; EDS = excessive daytime sleepiness; HDL = and high-density lipoprotein; LDL = low-density lipoprotein; RLS = restless legs syndrome; CD = celiac disease.
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3.1. Vitamin D and Sleep Duration and Quality of Sleep
3.1.1. Association between Sleep Duration and Plasma Vitamin D Levels in Children

Gong et al. [76], examined the association between 25-Hydroxyvitamin D (25(OH)D)
levels and sleep duration among 800 Chinese adolescents aged 8–14 years. They analyzed
anthropometric measurements by trained research staff, serum vitamin D and lipids were
measured in the laboratory, and sleep habits and other health-related behaviors were tested
by questionnaires. Nearly one-third (32.8%) of the subjects were sleep insufficient (sleep
duration < 9 h per day), and 30.3% were vitamin D insufficient (serum level < 20 ng/mL).
There was a small correlation between sleep duration and the concentration of vitamin D
in this study (r = 0.11, p < 0.05). The authors finally suggested that vitamin D status could
be a potential biomarker of insomnia or lack of sleep in children.

Al-Shawwa et al. [75] examined the relationship between sleep architecture and vi-
tamin D status in children. They conducted a retrospective-cohort study with 39 pa-
tients aged 2–17 years (mean age 6.6 years; 46% female) in a tertiary care children’s
hospital over a 1-year period. They included children who underwent an in-laboratory
overnight polysomnogram and had a 25(OH)D level obtained within 120 days from the
sleep study. Patients with OSA or central sleep apnea were excluded. Twenty children
(51%) had vitamin D deficiency (25(OH)D level < 30 ng/mL) and had less total sleep time
(470.3 ± 35.6 min vs. 420.3 ± 61.7 min; p = 0.004) and poorer sleep efficiency (91.9 ± 5.6%
vs. 84.5 ± 9.5%; p = 0.015) compared to children with sufficient vitamin D. In addi-
tion, children with vitamin D deficiency had later weekday bedtimes (21:02 ± 1:01 h vs.
20:19 ± 0:55 h; p = 0.037) and later weekend bedtimes (21:42 ± 0:59 h vs. 20:47 ± 1:08 h;
p = 0.016). This study suggests that vitamin D deficiency in children is associated with
objectively measured decreased sleep duration and poorer sleep efficiency. Furthermore,
vitamin D deficiency was associated with delayed bedtimes, suggesting that vitamin D and
circadian rhythm could be related.

Sung et al. [77], examined 618 10- to 12-year-old children, 111 (18.0%) with excessive
daytime sleepiness (EDS), and 507 (82.0%) healthy controls. The two groups had no
significant differences in age, sex, body mass index (BMI) z-score, weight status, birth
weight, and presence of allergic diseases. Children with low vitamin D levels (<20 ng/mL)
had an increased risk of EDS (adjusted OR = 1.73; 95% CI 1.06–2.81; p = 0.028). Low vitamin
D level, lack of exercise, and high BMI were the most important factors contributing to EDS,
of which low vitamin D level was the strongest one. Additionally, vitamin D deficiency had
a strong relationship with shorter sleep duration and less sleep efficiency after adjusting for
BMI and age, but no relationship with sleep stages, periodic limb movements, and arousal
index at polysomnography [75]. The authors finally suggested that vitamin D level might
play a crucial role in predicting the severity of EDS, and vitamin D supplements could be
used, as an example, to treat school children with EDS.

Valtuerna et al. [78] and Zhao et al. [79], evaluated the factors associated with vitamin
D deficiency in adolescents and preschool children and found out that sleep duration was
one of the most relevant factors associated with vitamin D serum levels. Valtuerna et al. [78]
examined 1006 European adolescents (aged 12.5–17.5 years) in a multicenter study measur-
ing body composition, biochemical marker, socioeconomical status, dietary intake, physical
activity, fitness, sleep time, and vitamin D genetic polymorphism in a stepwise multivariate
linear regression analysis stratified by gender. The results showed that sleep duration
was one of the factors that strongly influenced vitamin D concentrations in adolescents
(together with latitude, season, adiposity, fitness, and micronutrient supplementation).

In the Jiangsu Bone Health Study, Zhao et al. [79] assessed the vitamin D status with
its demographic and lifestyle factors in 5289 children during the first 5 years of life in a
population-based cross-sectional multicenter study in China. The prevalence of vitamin D
deficiency was 30.1%. Children with sleep duration < 10 h had higher odds of vitamin D
deficiency and a lower 25(OH)D concentration (all p < 0.05).

In summary, vitamin D deficiency has been shown to be associated with decreased
sleep duration and poorer sleep efficiency, as well as with delayed bedtimes [75]. Moreover,



Int. J. Mol. Sci. 2022, 23, 1430 12 of 18

children with reduced vitamin D serum levels have a higher risk of EDS when compared
with the general population [77]. Since vitamin D levels influence sleep duration, sleep
duration can also influence vitamin D serum concentration [78], suggesting a bidirectional
relationship between vitamin D and sleep duration. Although this relationship seems to be
quite strong, other factors might influence sleep duration and quality, so that vitamin D
deficiency not alone, but in coaction with other factors, might cause sleep disorders.

3.1.2. Correlation between Cord Blood Vit D Levels and Sleep Features of Preschool
Children

Yong et al. [80], explored the association between cord-blood vitamin D level at birth
and night-sleep duration trajectories in children aged between 2 and 5–6 years, in a non-
clinical cohort. They analyzed 264 children presenting available data for both vitamin
D measures determined at birth and sleep trajectory (using parental self-administered
questionnaires). They showed that the vitamin D pool of the fetus and newborn depends
on their mother vitamin D status; for this reason, hypothetically, vitamin D supplementation
during pregnancy might reduce vitamin D deficiency in infants and might favor both brain
development and healthy sleep in children. This article also suggests that a low vitamin D
level at birth is associated with increased odds of children aged between 2 and 5–6 years to
be persistent short sleepers.

Deng et al. [81], explored the association between vitamin D in cord blood or in venous
blood and children’s sleep–wake patterns at two years of age. Data were obtained from
209 children in a birth cohort, Shanghai Sleep Birth Cohort Study. Vitamin D was assessed
in cord blood and venous blood samples by electrochemiluminescence immunoassay.
Children’s sleep–wake patterns were measured with the Brief Infant Sleep Questionnaire
and objectively with actigraphy. The prevalence of vitamin D deficiency (defined as
<50 nmol/L) was 50.4% in cord blood and 28% in venous blood. This suggested that the
cord blood vitamin D level was not significantly associated with children’s sleep at two
years of age. On the other hand, children with vitamin D deficiency had shorter reported
and actigraphic night sleep duration and total sleep duration than those with normal
vitamin D concentration, so vitamin D level was positively associated with night and total
sleep duration.

In conclusion, not the cord blood but rather the venous blood vitamin D level was
associated with children’s sleep–wake patterns, at two years of age. To summarize, from
these studies we can deduce that mothers’ vitamin D levels during pregnancy are important
for the determination of the vitamin D pool of the fetus and of the newborn. Indeed, low
vitamin D levels at birth expose children between 2 and 6 years to an increased risk to be
persistent short sleepers [80]. Nevertheless, Deng et al. [81] showed that not the cord blood
vitamin D level but rather the venous blood vitamin D level was associated with children’s
sleep–wake patterns, at two years of age.

3.2. Vitamin D and OSA

OSA in children is a disease characterized by recurrent episodes of partial or complete
upper airway obstruction associated with arousals, awakenings, and/or oxyhemoglobin
desaturations during sleep. It may also be associated with disruption of ventilation and
normal sleep patterns [82]. If inadequately diagnosed/treated in children, it can be asso-
ciated with behavioral problems, learning difficulties, cardiovascular complications, and
growth retardation [83,84]. OSA is a relatively common disorder in childhood affecting
up to 3% to 4% of all children. Two studies (Kheirandish-Gozal et al. [74] and Ozgurhan
et al. [85]) demonstrated a linear relationship between vitamin D levels and risk of OSA.
In their study, Kheirandish-Gozal et al. [74] hypothesized that OSA might be associated
with lower vitamin D levels and increased risk of metabolic dysfunction and systemic
inflammation.

The role of vitamin D in systemic inflammation has been investigated in adults. Lower
vitamin D serum levels have been associated with an increased risk of respiratory infection
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and an increased incidence of allergic rhinitis. Recurrent respiratory infections and immune
system dysregulation may promote the development of tonsillar hypertrophy and chronic
rhinitis, both of which increase the risk of OSA. Furthermore, OSA has been described as a
low inflammatory state disease and vitamin D might be helpful by inhibiting the secretion
of proinflammatory T-helper cell 1 cytokines IL-2, IFN-g, and TNF-a and enhancing the
production of anti-inflammatory Th2 cytokines (IL-3, IL-4, IL-5, and IL-10) [86].

In another study, Ozgurhan et al. [85], evaluated the risk of OSA in two groups of
children according to their levels of vitamin D: a low-level vitamin D group (<20 ng/mL)
and a control group (>20 ng/mL). The risk of developing OSA as determined by the Berlin
Questionnaire was found to be statistically higher in the low-level vitamin D group when
compared with the control group (p = 0.030). The percentage of patients at high risk of
developing OSA was 14.16% for the low-level vitamin D group and 5.83% for the control
group.

Another interesting study by Zicari et al. [87] assessed the association between mean
platelet volume (MPV), vitamin D, and C Reactive Protein (CRP) in patients with OSA,
primary snoring (PS), and a control group. MPV levels were higher in subjects with OSA
and PS when compared to controls; platelet count (PLT) and CRP levels were also higher
while vitamin D levels were lower in children with OSA and PS when compared to the
control group.

Other studies hypothesized that vitamin D might play a role in modulating behavioral
and cognitive dysfunctions in children with OSA [88,89]. Cui et al. [90] found that triglyc-
erides, total cholesterol, low-density lipoprotein, and body mass index of the OSA group
were clearly higher than those of the control group, while the level of serum vitamin D and
high-density lipoprotein was clearly lower. The supplementation of vitamin D determined
an improvement of the vitamin D level and a decrease in the indexes of conduct problems,
learning problems, and hyperactivity. Vitamin D supplementation had no therapeutic effect
on obesity and dyslipidemia of OSA children but had obvious protective and improving
effects on neuron damage caused by hypoxia [91].

Another interesting fact that emerges from our review is that the level of vitamin D
in parents can play a role in determining the blood levels of vitamin D in children with
snoring problems. This correlation was analyzed by Barceló et al. [92] who assessed the
interrelationship between serum vitamin D levels and metabolic profiles, sleep parameters
and paternal and maternal vitamin D status in a sample of snoring children referred to a
sleep unit. Significant associations were found between serum vitamin D concentrations
in children who snored and their parents. The prevalence of vitamin D insufficiency of
the parents varied significantly based on the children’s vitamin D status and was greater
in parents whose children had vitamin D insufficiency: overall in 64.9% of fathers and
63.2% of mothers. In children with vitamin D deficiency, an inverse correlation between the
apnea–hypopnea index and respiratory arousal index and vitamin D concentrations was
also observed. This study suggests that a familial status of vitamin D could be used as an
indicator for the early identification of children at risk of unhealthy sleep and/or metabolic
complications.

3.3. Other Studies on Specific Diseases

Two studies analyzed vitamin D levels in specific pediatric groups: with celiac disease
(CD) and with Familial Mediterranean Fever (FMF). In the first study, the goal was to deter-
mine the prevalence of RLS in children with CD and to investigate the associated factors for
RLS, such as iron and vitamin D levels. CD is an immune-mediated enteropathy triggered
by ingestion of dietary gluten in genetically predisposed individuals [93]. Işıkay et al. [94]
studied 226 children with CD and 268 control children showing that RLS prevalence was
similar in both groups (3.5% vs. 3.0%, respectively). In children with CD, RLS severity was
negatively correlated with serum ferritin, folic acid, or 25(OH)D levels. The CD group with
RLS showed also iron deficiency anemia.
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The second study investigated the correlation between serum levels of vitamin B12
and vitamin D with the self-reported quality of sleep of pediatric patients with FMF. FMF is
the most common autoinflammatory disorder, inherited in an autosomal recessive manner
and characterized by recurrent fever and serositis. Ekinci et al. [95] selected 63 children
with FMF divided into subgroups depending on vitamin D serum concentrations: ≥20 and
<20 ng/mL and vitamin B12 serum concentrations: ≥200 and <200 pg/mL. Information on
sleep quality were obtained using self-administered Pittsburg Sleep Quality Index (PSQI)
questionnaire. Total PSQI score, sleep disorders, and daytime sleepiness sub-scores were
statistically higher in patients with serum vitamin D levels below 20 ng/mL. Vitamin D
deficiency was present in 36.5% of patients and low levels of vitamin D correlated with
poorer sleep quality.

4. Conclusions

The present systematic review, to our knowledge, is the first to assess the association
between Vitamin D and sleep disorders in children. However, some potential limitations
should be recognized: (a) the number of studies eligible for our review was small and with
different study designs; (b) most of the studies were cross-sectional; and (c) there was a
high heterogeneity of the studies linked to different assessment of sleep and of vitamin D
deficiency. Nevertheless, this review demonstrates that Vitamin D has both a direct and
an indirect role in the regulation of sleep and that vitamin D deficiency < 20 ng/mL is
associated with a higher risk of sleep disorders in children. However, although vitamin D
deficiency has been associated with sleep disorders, evidence is still scarce to concretely
support the role of vitamin D supplementation in the prevention or treatment of sleep
disorders in children. Therefore, high-quality prospective cohort studies and well-designed
randomized controlled trials (RCTs) are needed to verify this relationship and to determine
the effect of vitamin D supplementation in children with sleep disorders.
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