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Figure S1.  PKCε mediates 5-HT1A-R-linked stimulation of Erk in undifferentiated HN2-5 cells. 
 

Figure S2.  Fluoxetine and 8-OH-DPAT both cause a significant increase in neurogenesis relative to 
carrier-treated mice.  Mean BrdU, NeuN (++) cell number in the DG per hippocampal section calculated from 
nine sections per mouse and four or five mouse pups per treatment showed that the D and Flx groups harbored 
significantly higher BrdU, NeuN (++) cells than the carrier-treated. (One-way ANOVA: F(5,21) = 36.47, p < 
0.0001) and post-hoc tests showed that the D and Flx groups were significantly higher (p < 0.05) than the 
carrier-treated group.  BrdU, NeuN (++) cell numbers in the D and Flx groups were not significantly different. 
 
Drug Concentrations:  As shown in Figure S1, the widely-used PKCε inhibitor Myr-εV1-2 (M) [1-3] 
significantly inhibited the PKCε-evoked stimulation of P-Erk at 0.4 μM (400 nM) in the HN2-5 cells.  Based on 
this, we maintained 400 nM M in the hippocampus.  As for the 5-HT1A-R antagonist WAY100635 (W), it has 
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been shown to rapidly degrade in vivo [4]. The optimum effect of this antagonist in cultured cells were studied 
in our in vitro (organotypic cultures and cultured cells) and in vivo studies [5-7], which prompted us to use 10 
μM W in the hippocampus based on its rapid degradation in vivo.  As for the optimum concentration of U0126 
(10 μM), our studies were based on a comprehensive ex vivo analysis [8] and also our prior studies involving 
organotypic cultures and in vivo analysis [5]. 
 The concentration used of the high-affinity antagonist WAY100635 (10 μM) may need some 
justification. The question of affinity (low Kd) versus drug potency has been a point of much controversy 
because the potency is dependent on how long a drug with low Kd remains bound to a receptor and the turnover 
rate of the drug.  As explained in an ACS Chemical Neuroscience article, this “bound” time is not dependent on 
Kd [9].  Thus, even though 8-OH-DPAT displays a Kd which is in the fraction of nM range, about a 100 nM 
concentration of this drug is required for optimal potency. This is further complicated by the turnover rates of 8-
OH-DPAT and WAY100635.  Whereas the half-life of 8-OH-DPAT is 143 minutes, that of WAY100635 is 
only 33 minutes [4].  Thus, Harsing and coworkers have used10 mM of WAY100635 to antagonize the 5-HT1A-
R in rats to show that serotonin release from raphé neurons in raphe nuclei slices depends on 5-HT7-R signaling 
and not appreciably on 5-HT1A-R signaling [10].   

As for the volume injected, the average hippocampal volume of a P6 C57BL6 mouse was obtained as 5 
µl by isolating the hippocampi, weighing, and then using mean brain tissue density as 1.02 mg/ml.  Drug 
concentrations were made for the observed mean volume of 5 μl of a P6 hippocampus. The total volume of the 
infusate was 0.5 μl for all the drugs or vehicle (0.1 M PBS plus). The final concentrations were as shown below 
under “Stock and final concentrations of drugs”.  As shown in our earlier report, similar infusion of a solution 
of Coomassie Blue confirmed that the infused drug mainly bathed the hippocampal structure [11]. 
 

Stock and final concentrations of drugs:  
8-OH-DPAT:  1 μM stock solution in PBS for the final concentration of 100 nM in the hippocampus.  

 WAY 100635:  100 μM stock solution in PBS for the final concentration of 10 μM in the hippocampus.  
 Myr-εV1-2: 4 μM stock solution in PBS for the final concentration of 400 nM (0.4 μM) in the 
hippocampus [1-3].  
 U0126: From a stock solution of 20 mM in DMSO, 0.5 µl was diluted in 99.5 µl of PBS to obtain a 100-
µM working stock (containing 0.5% DMSO).  Next, 0.5 µl of this working stock was infused into the 
hippocampus to obtain the final concentration of 10 µM of U0126 in the hippocampus. 
 Fluoxetine:  The use of 18 mg/Kg of fluoxetine has been described earlier [12]. Since the density of 
brain tissue is 1.05 g/ml, which is quite close to that of water, we approximated this value to 18 mg/L, which 
was about 52 μM.  A 520-μM solution in PBS (0.5 μl) was injected per P6 hippocampus to achieve the final 
concentration of 52 μM in the whole hippocampus. 
 
 Maintaining low DMSO concentration in the injected hippocampus:  Each infusate, whether 8-OH-
DPAT, WAY100635, M, U0126, or carrier (vehicle), contained the same volume of DMSO, which yielded a 
final intrahippocampal concentration of ≤ 0.05% DMSO. 
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