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Abstract: For decades, intensive chemotherapy (IC) has been considered the best therapeutic option
for treating acute myeloid leukemia (AML), with no curative option available for patients who are not
eligible for IC or who have had failed IC. Over the last few years, several new drugs have enriched
the therapeutic arsenal of AML treatment for both fit and unfit patients, raising new opportunities
but also new challenges. These include the already approved venetoclax, the IDH1/2 inhibitors
enasidenib and ivosidenib, gemtuzumab ozogamicin, the liposomal daunorubicin/cytarabine for-
mulation CPX-351, and oral azacitidine. Venetoclax, an anti BCL2-inhibitor, in combination with
hypomethylating agents (HMAs), has markedly improved the management of unfit and elderly
patients from the perspective of improved quality of life and better survival. Venetoclax is currently
under investigation in combination with other old and new drugs in early phase trials. Recently
developed drugs with different mechanisms of action and new technologies that have already been
investigated in other settings (BiTE and CAR-T cells) are currently being explored in AML, and
ongoing trials should determine promising agents, more synergic combinations, and better treatment
strategies. Access to new drugs and inclusion in clinical trials should be strongly encouraged to
provide scientific evidence and to define the future standard of treatment in AML.
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1. Introduction

Acute myeloid leukemias (AMLs) comprise a heterogeneous group of conditions that
are characterized by the uncontrolled proliferation of a transformed malignant hematopoi-
etic myeloid cell, inevitably leading to bone marrow failure.

Intensive chemotherapy (IC), consisting of anthracycline and cytarabine in induction
treatment, high or intermediate doses of cytarabine as consolidation followed by allogeneic
stem cell transplantation (HSCT) in high/intermediate-risk patients, has been considered
as the gold standard in the treatment of AML for decades.

However, with a median age at diagnosis of 68 years, a high percentage of AML
patients are not eligible for such an intensive therapeutic program [1]. Moreover, AML
with myelodysplastic-related changes and therapy-related AML are associated with poor
prognostic cytogenetic features, such as a complex karyotype and TP53 mutation, and are
more frequent in the elderly; they show very unsatisfactory response rates to conventional
IC, making it suitable neither for all patients nor for all diseases [2].

In recent decades, the hypomethylating agents (HMAs) azacitidine and decitabine
have become the preferred low-intensity options in AML treatment for unfit patients, allow-
ing about one-third of treated patients to reach remission and transfusion independence,
improving their overall survival (OS) and quality of life [3-5]. In particular, azacitidine
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has shown better outcomes compared to IC in poor cytogenetic risk patients and less
myelotoxicity compared to decitabine [6,7].

Recent advances in the genetic characterization of AML and in understanding the
molecular mechanisms at the basis of leukemogenesis has allowed for a better prognostic
assessment of the disease and opened the way to the exploration of new tailored therapeutic
strategies based on patients’ risk profiles.

In parallel, owing to advances in drug manufacturing, bioengineering, and cellular
therapy, more potent and selective agents and more advantageous formulations of old
drugs are now available.

This progress is driving AML treatment from a ‘one fits all’ strategy to a precision
therapy dimension, providing a real paradigm shift in the treatment of leukemia patients.

With this work, we aimed to write a narrative review of the recent advances in AML
treatment and describe the landscape of future possibilities in this setting.

The most relevant papers were chosen after an extensive PubMed query; oral commu-
nications were selected from international hematology congresses (ASH and EHA congress).
The main keywords used in the search strategy were adult acute myeloid leukemia, new
drugs, target therapy, and immunotherapy.

2. Harnessing the Apoptosis Pathway

The B-cell lymphoma 2 (BCL-2) family proteins finely regulate the intrinsic cel-
lular apoptosis pathway (Figure 1). In normal conditions, cell death is prevented by
the BCL-2 family anti-apoptotic proteins BCL2 and MCL1 through the sequestration of
pro-apoptotic molecules.

PRO APOPTOTIC ANTI APOPTOTIC
SIGNALS SIGNALS
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APR-246 Anti-MDM?2
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BIM
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Figure 1. Pro and anti-apoptotic signals and drugs acting on the intrinsic apoptosis pathway. Proapop-
totic signals are counterbalanced by anti-apoptotic signals to promote cell survival. Drugs can induce
apoptosis through the reactivation of mutated TP53, the inhibition of TP53 degradation, and by
blocking pro-survival molecules.

In response to cell stress or damage, the pro-apoptotic members of the BCL-2 family,
BID and BIM, sensitized by BH3-only proteins, interact with the effector proteins BAX
and BAK to provoke mitochondrial membrane permeabilization and caspase release, and,
consequently, cell apoptosis [8].
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TP53 plays a key role in the intrinsic apoptosis pathway: it is activated in stress condi-
tions, for example, with DNA damage induced by chemotherapy, and triggers apoptosis
mainly by promoting the transcription of BH3-only proteins [9].

A better understanding of mechanisms at the basis of the cellular apoptosis pathway
prompted the development of different classes of molecules with anti-leukemic activity.

2.1. BCL Inhibitors—Venetoclax

First identified in follicular lymphoma (FL), the anti-apoptotic protein BCL-2 prevents
cell death by binding the pro-apoptotic BAX/BAK proteins and protecting the integrity of
the outer mitochondrial membrane [10-12].

BCL-2 has been found to be overexpressed in AML cells and to confer resistance to
conventional chemotherapy [13,14].

While the anti-sense oligonucleotide oblimersen and the first BH3 mimetic obatoclax
showed limited efficacy in early clinical trials, the oral BCL-xL and BCL-2 inhibitor nav-
itoclax showed significant anti-tumoral activity in preclinical AML cells and xenograft
models [15,16]. Navitoclax was subsequently tested in patients affected by solid tumors
and chronic lymphocytic leukemia (CLL), confirming its preclinical efficacy but also sig-
nificant hematological toxicity, mainly thrombocytopenia [17]. To overcome this effect
caused by the inhibition of BCL-xL by navitoclax, the BCL-2 selective inhibitor venetoclax
was developed [18,19].

Venetoclax is an oral, highly selective, and potent BCL-2 inhibitor, first employed in
CLL treatment [19,20]. By binding the BCL-2 protein, venetoclax allows for the release of
pro-apoptotic proteins, restoring the apoptosis pathway [21,22].

After preclinical studies confirmed the pro-apoptotic activity of venetoclax in AML cell
lines, it was administered as monotherapy in relapsed or refractory (R/R) AML patients,
where it showed a tolerable profile but modest clinical efficacy, suggesting the need to
explore its potential combinations with other agents, particularly HMAs [23,24].

Venetoclax is already used in clinical combination with HMAs in AML patients who
are not eligible for IC, and many associations with other agents (IC and new drugs) are
currently under exploration (Table 1).

Table 1. List of studies assessing Venetoclax in association with other agents in acute myeloid
leukemia. AZA—azacitidine; BETi—BET inhibitor; CLA—cladribine; CCML—chronic myelomono-
cytic leukemia; COB—cobimetinib; DEC—decitabine; ENA—enasidenib; FLAG—fludarabine; G-
CSF—Granulocyte colony-stimulating factor; GILT—gilteritinib; HIDAC—high-dose cytarabine;
HMA—hypomethylating agent; IDA—idarubicin; IDASA—idasanutlin; IVO—ivosidenib; LINT-
AC225—lintuzumab-Ac225; LDAC—Ilow dose cytarabine; MAGRO—magrolimab; MCL1i—MCL1
inhibitor; MDS—myelodysplastic syndrome; MEKi—MEK inhibitor; MIDO—midostaurin; MIVE—
mivebresib; SAB—sabatolimab; SORA—sorafenib; TAGR—tagraxofusp; VEN—venetoclax.

Agents in Combination

with VEN Population Phase Study References
VEN plus HMA/LDAC
AZA ND AML ineligible for IC 3 27
LDAC ND AML ineligible for IC 3 33
Intensive Chemotherapy
7+3 ND AML 1b NCT03709758
7+3 ND AML and MDS-EB 3 NCT04628026
ND AML, HR-MDS, and
CLA, HIDAC, IDA MPAL 2 34
5+2 ND AML > 65 years old 1b 35
FLAG-IDA ND and R/R-AML 1b/2 36-37

CPX-351 ND AML 1b NCT04075747
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Table 1. Cont.

Agents in Combination

with VEN Population Phase Study References
‘Non-Intensive” Combinations
GILT R/R FLT3 mutated AML 1 42
R/R and ND AML/high risk
AZA plus GILT CMML/MDS FLT3-ITD or % 43
-TKD mutated
DEC and FLT3i ND or R/R FLT3 mutated 2 44
(GILT/SORA/MIDO) AML
MDS, ND, and R/R AML
IVO and AZA IDH1+ 1b/2 49
ENA R/R AML IDH2+ 1b/2 50
AZA and MAGRO YK AML' .N.D LARIC 1/2 NCT04435691
ineligible
MIVE (pan-BETi) R/R AML 1 NCT02391480
64315 (MCL1i) R/R Hematological 1 NCT03672695
malignancies
IDASA R/R AML > 60 years old 1b 77
GO R/R AML 1b 94
ND and R/R AML, MDS, or
TAGR plus AZA BPDCN 1b 111
LINT-AC225 R/R AML 1/2 119
SAB High or very high risk MDS 2 NCT04812548
>
COB (MEKi) R/R AML = 60 years old, IC 1b 207
ineligible
CA-4948 R/R AML and high risk MDS 1/2a NCT04278768

2.1.1. Venetoclax in Association with Hypomethylating Agents

Preclinical data has shown a synergistic effect of the combination of venetoclax with
HMAs and the association of venetoclax with azacitidine/decitabine has been proven
to be safe and able to produce a favorable response even in high-risk AML patients in
early trials [25,26].

In the phase III study VIALE-A, azacitidine and venetoclax produced significantly
better OS (14.7 versus 9.6 months), complete remission (CR) rates (37% vs. 18%), and
composite remission rate (CR + CRi; 66% versus 28%) compared to azacytidine alone in
AML patients who had not been previously treated and who were ineligible for IC [27].

Based on the VIALE-A study results, venetoclax received full approval from the
Food and Drug Administration (FDA) in October 2020 in combination with azacitidine,
decitabine, or low-dose cytarabine (LDAC) for the treatment of newly diagnosed (ND)
AML in patients 75 years or older or in patients with comorbidities precluding the use
of IC. Similarly, the European Medical Agency (EMA) approved the use of venetoclax in
combination with an HMA for IC-ineligible adult AML patients.

In the R/R setting, no randomized controlled trials are available; however, retrospec-
tive data show interesting results with ORR about three times higher than the conventional
salvage treatment with a single HMA, allowing in some cases to proceed to allogeneic stem
cell transplantation (ASCT) [28,29].

In one study, a ten-day decitabine schedule was associated with venetoclax and
compared to standard IC in 65 patients with R/R AML; the experimental arm showed
a better ORR (60% vs. 36%, respectively), minimal residual disease (MRD) negativity by
flow cytometry (28% vs. 13%), longer event-free survival (EFS; 5.7 vs. 1.5 months), and OS
(6.8 vs. 4.7 months) [30].

The combination of azacitidine or decitabine with venetoclax can also be effective
in AML relapse following ASCT, as shown in a retrospective analysis of 32 R/R patients
conducted by the German Cooperative Transplant Study Group that reported an ORR of
47%, of which 50% were CR [31].
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2.1.2. Venetoclax in Combination with Low-Dose Ara-C

The phase III study VIALE-C compared venetoclax plus low dose Ara-C (LDAC) with
placebo plus LDAC in ND AML patients who were ineligible for IC [32].

Although no statistically significant differences were observed in OS (7.2 for the
combination of LDAC and venetoclax versus 4.1 months in the control arm), and thus the
primary endpoint of the study was not met, venetoclax provided a 25% reduction in the risk
of death over the LDAC alone arm. A higher rate of CR/CRi was observed with venetoclax
plus LDAC vs. LDAC alone: 48% vs. 13% with CR achieved in 27% vs. 7% of the patients,
respectively. A post-hoc analysis with an additional 6 months of follow-up reported
a median OS for the venetoclax and placebo arm of 8.4 and 4.1 months, respectively [33].

2.1.3. Venetoclax in Association with Intensive Chemotherapy

Considering the improved outcome when added to the treatment of elderly or unfit
AML patients, venetoclax is under evaluation for younger and fit patients in addition to
different IC regimens.

Thus far, no published data is available concerning the association of the standard
IC backbone (7 + 3) to venetoclax. A phase Ib trial (NCT03709758) enrolling ND AML is
ongoing and a phase III randomized placebo-controlled 7 + 3 and venetoclax in ND AML
or MDS-EB will be recruiting soon (NCT04628026).

In a single arm, phase II trial at the MD Anderson Cancer Center, CLIA (cladribine
plus high-dose aracytin and idarubicin) was associated with venetoclax in ND AML, higher
risk MDS, and mixed phenotype acute leukemia patients. Composite complete response
(CCR) was achieved by 94% of patients, with 82% having undetectable MRD. At a median
follow-up of 13.5 months, the median duration of response (DOR), EFS, and OS were not
reached. The toxicity profile was excellent, with only two deaths in CR occurring in patients
receiving a concomitant FLT3 inhibitor (FLT31) [34].

In a phase Ib dose escalation study, venetoclax was associated with a 5 + 2 regimen in
51 elderly AML patients who were ineligible for IC; the authors reported noteworthy CR/CRi
rates (72% in the whole population with 94% in de novo and 43% in secondary AML) and
a median OS of 11 months. An impressive marrow blast reduction > 50% was observed in
NPM1-, IDH2-, and SRSF2-mutant AML during the venetoclax monotherapy pre-phase [35].

Di Nardo and colleagues published very promising results of a phase Ib/II trial of
venetoclax in association with FLAG-Ida in ND and R/R AML [36]. These results were
recently updated at ASH 2021: the CRc rate was 88%, with 92% of this group achieving
an MRD-negative status, and 66% of patients bridged to ASCT. The toxicity profile was
acceptable, with febrile neutropenia (39%) and pneumonia (24%) being the most frequent
adverse events (AEs). With a median follow-up of 16 months, median OS and EFS were
both not reached, with 1-year OS and EFS rates of 96% and 77%, respectively. The presence
of a TP53 mutation at diagnosis conferred a significantly inferior outcome compared to wild
type (WT) status, with an OS of 24 months compared to not reached (p = 0.03) and an EFS
of 8 months compared to not reached in the two groups (p = < 0.001), respectively [37].

All patients with a TP53 mutated at diagnosis inevitably relapsed, and two patients
who were initially TP53 WT relapsed as TP53 mutated [38].

Novel associations are still under evaluation, such as CPX 351 plus venetoclax in ND
AML without FLT3 or IDH mutations (NCT04075747) or a low-intensity dose of CPX 351
plus venetoclax in ND AML patients who are ineligible for IC. These studies are currently
recruiting and thus have no available data concerning efficacy and safety.

2.1.4. Venetoclax—Future Non-Intensive Combinations

Considering the efficacy and tolerability of combinations based on venetoclax and the
existence of driver mutations for which several drugs were recently approved, venetoclax
is being actively studied in combination trials.

The use of multiple drug combinations could likely offer deeper and prolonged
responses, owing to synergism and the simultaneous activity on different subclones of
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AML. The non-overlapping toxicities of different agents could also account for safe and
well-tolerated combinations in the elderly and in frail patients [39].

2.1.5. Venetoclax in Association with FLT3 Inhibitors

FLT3 and ITD mutations in AML seem to confer resistance to venetoclax treatment
by enhancing the expression of anti-apoptotic proteins (BCL-xL and MCL1), explaining
the relatively weak response to venetoclax-based regimens noted in patients harboring
these alterations [26,40,41].

The development of FLT3is prompted an assessment of their efficacy in combina-
tion with venetoclax and as part of triple combinations in this unfavorable subgroup of
AML patients.

In a phase I study, the association of venetoclax and gilteritinib showed a desirable
CR rate (85.4%) in 41 R/R AML patients with an FLT3 mutation, persisting also in patients
already exposed to FLT3is [42].

In a phase I/1I trial, the combination of azacitidine, venetoclax, and gilteritinib was
evaluated in R/R AML, ND AML unfit for IC, or high risk CMML/MDS FLT3-ITD or
TKD-mutated AML. This triplet resulted in a CRc rate of 100% and 69% for de novo and
R/R patients, respectively [43].

A phase II trial explored the use of a combination of decitabine, venetoclax, and
FLT3is (gilterinib, sorafenib, and midostaurin) in 25 ND or R/R FLT3-mutated AML
patients. It should be noted that eight R/R patients were previously exposed to FLT3is and
four patients previously underwent ASCT [39].

In ND and R/R patients, the CCRs were 92% and 62%, respectively, with more than
50% of responders achieving MRD negativity in both groups. The median OS was 14.5 and
6.8 months in ND and R/R patients, respectively.

The median DOR was not reached in either ND or R/R patients. Nine patients were
able to proceed to ASCT: four patients in the ND cohort and five in the R/R cohort.

A triplet combination of decitabine, venetoclax, and quizartinib was evaluated in
17 FLT3-mutated AML patients (13 R/R and four ND) who were ineligible for IC. Sig-
nificant responses were achieved in both the ND (CR 100%, with 4/4 FLT3-PCR MRD
negativity and 2/3 flow cytometry MRD negativity) and R/R group (CR 69% with 4/9 FLT3-
PCR MRD negativity and 5/9 flow cytometry MRD negativity). The sixty-day mortality
rate was 8% in the R/R setting and 0% in the ND group [44].

2.1.6. Venetoclax in Association with IDH Inhibitors

In accordance with preclinical observations reporting an increased susceptibility
to venetoclax in IDH1/2-mutated AML cells, the subgroup of AML patients harboring
IDH1/2 mutations has shown high rates of durable remissions in clinical studies associating
HMAs with venetoclax. Recently, Pollyea et al. reported a CCR of 79%, a median duration of
remission of 29.5 months, and an OS of 24.5 months in ND IDH1 /2-mutated AML [27,45-47].

A triplet strategy combining ivosidenib and venetoclax with or without azacitidine in
25 patients with IDH1-mutated myeloid malignancies was evaluated in a phase Ib/II
study; it showed an acceptable toxicity profile and high rates of MRD-negativity in
AML patients [48].

The combination of venetoclax and enasidenib is under investigation in patients with
IDH2-mutated myeloid malignancies in a phase Ib/II study (NCT04092179); preliminary
results from 11 patients, mainly R/R AML, reported a CR + CRi rate of 55% with a tolerable
toxicity profile [49].

2.1.7. Other Associations

Other associations with venetoclax are being explored in phase I-II trials, for exam-
ple, with anti-CD47 antibodies, such as magrolimab, BET-inhibitors, and antibody—drug-
conjugated anti CD-123 (NCT03113643, NCT04086264) [50,51].
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2.2. Anti-Myeloid Leukemia Cell Differentiation Protein-1 (MCL-1)

MCL-1 (myeloid leukemia cell differentiation protein-1) is a pro-survival protein that
is implicated in the intrinsic apoptosis pathway, acting by neutralizing BH3-only proteins
and preventing mitochondrial membrane permeabilization and consequent cell death [52].

High levels of MCL-1 expression are induced by FLT3 mutations in AML and are
correlated with venetoclax resistance, leukemia relapse, and poor outcomes, suggesting
a prominent role of MCL-1 as an anti-apoptotic protein in AML [53-55].

Preclinical studies have shown that anti-MCL1 treatments have a synergistic activity
with venetoclax in AML cells. Moreover, venetoclax-resistant cells keep their susceptibility
to MCL-1 inhibition, allowing for the restoration of venetoclax sensitivity [56,57].

MCL1 inhibitors, such as AMG-176 (NCT03797261), AZD5991 (NCT03218683), and
564315 in combination with venetoclax (NCT03672695), are currently under exploration in
patients with R/R hematological malignancies.

3. Reactivating TP53

TP53 mutations occur in about 10% of AML patients and confer a poor prognosis and
refractoriness to conventional IC. The response to HMAs in TP53-mutated patients is less im-
paired; hence, this class of agents is preferable as a first-line treatment option in this setting.
However, the durable response is dismal and long-term survival after ASCT is uncommon,
making TP53-mutated AML a disease with an unmet therapeutic need [30,58-60].

3.1. Eprenetapopt (APR-246)

Eprenetapopt (APR-246) induces a conformational change in mutated TP53 that con-
fers thermostability and restores the protein’s native onco-suppressive function [61].

After demonstrating its safety and good tolerability in monotherapy, a phase Ib/II
study of a combination with azacitidine provided encouraging remission rates (CR of 44%)
in refractory AML patients [62-64].

A phase III trial comparing azacitidine plus eprenetapopt to azacitidine alone in
patients with TP53-mutated MDS is currently ongoing. (NCT03745716).

3.2. Murine Double Minute 2 (MDM?2) Inhibitors

Murine double minute 2 (MDM2) is an E3 ubiquitin ligase that degrades TP53. MDMX
is an inhibitor of TP53 transactivation [65,66].

In WT TP53 AML, the overexpression of MDM2 and MDMX causes the inactivation
of TP53, providing a very strong rationale for the use of MDM2/MDMX inhibitors in
synergistic strategies and as venetoclax resensitizing agents [67].

The development of inhibitors acting on both MDM2 and MDMX has encountered
some difficulties related to the inadequate size of the molecules and their limited bioavail-
ability. Nevertheless, some MDM?2 inhibitors have been developed [68].

RG7112 was the first selective MDM2 inhibitor that showed the capacity to restore
TP53 activity and clinical efficacy in R/R AML patients in phase I studies, as monotherapy
and in combination with LDAC [69-71].

Idasanutlin (RG7388) is a second-generation MDM?2 inhibitor that is more potent,
more selective, and has a more predictable pharmacokinetic profile than RG7112 [72,73].

After some encouraging results from idasanutlin in a phase I study, the phase III study
MIRROR failed to meet the primary endpoint of survival benefit for the combination of
idasanutlin and cytarabine compared to cytarabine alone [74,75].

Idasanutlin was studied in combination with venetoclax in a phase I study in the
upfront treatment of R/R AML patients unfit for IC. This combination was associated
with an ORR of 41%, a median time to response of 1.4 months, and a median DOR of
4.9 months [76].

Other small MDM?2 inhibitors are currently undergoing clinical investigation, includ-
ing MK8242 in monotherapy, AMG323 in combination with trametinib and decitabine,
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DS3032s in monotherapy and in association with azacitidine (NCT02319369), quizartinib,
and cytarabine (NCT03552029) [77-79].

ALRN-6924, an MDM2-MDMX inhibitor, is under investigation in monotherapy and
in combination with cytarabine in a phase I study [80].

Preclinical and clinical research on targeting MDM2 and MDMX is a current field of
great interest in the treatment of AML. Challenges for MDM2 inhibitors and anti-MDM2-
MDMX development include defining the optimal dose, finding the optimal combination,
managing hematological and gastrointestinal toxicities, and defining which type of patients
could potentially reap the greatest benefits from them [81].

4. Harnessing Immunity

A more detailed knowledge of the evasion mechanisms carried out by cancer cells
to escape antitumor immunity, together with technical advances in the production of
monoclonal antibodies (mAbs), led to the conception of a plethora of drugs specifically
directed to harness immunity against AML cells (Figure 2).

Anti CTLA4
Ipilimumab

Anti TIM3
Sabatolimab

Anti PD1
Nivolumab

Anti CD33
GO; 225-Ac-lintuzulab

£ &l

Anti CD123
Tagraxofusp

Fletotuzumab

AntiCD47
Magrolimab

Figure 2. Harnessing immunity against AML blasts. Antibodies, checkpoint inhibitors, bispecific
antibodies, and CAR-T cells are possible strategies in leukemia treatment.

These comprise gemtuzumab ozogamycin, the first antibody—drug conjugate (ADC)
targeting CD33, new anti-CD33s mAbs, mAbs targeting CD123, and radiolabeled mAbs.

Checkpoint inhibitors (anti-CTLA4 and anti-PD1-PDL1), which are already largely
employed in solid oncology, have also been tested in the AML setting and may represent an
interesting treatment in combination with other agents. Alternative molecules that are able
to restore immune cytotoxic effect, such as sabatolimab, an anti-T cell immunoglobulin and
mucin domain 3 (TIM3), and magrolimab, an anti-CD47 macrophage checkpoint inhibitor,
have recently made their appearance in early phase clinical trials.

Finally, some bispecific T-cell engager (BiTE) antibodies and chimeric antigen receptor
T (CAR-T) cells adapted to myeloid leukemia targets are currently being developed.

4.1. Monoclonal Antibodies (mAb) Anti-CD33

CD33 (or siglec 3) is a transmembrane receptor expressed by myeloid cells that is
present on the surface of AML blasts in 85-90% of adult and pediatric AML patients [82].

Gemtuzumab ozogamicin (GO) is an ADC-targeting CD33 associated with calicheam-
icin, a cytotoxic component that is released into target cells [83-85].
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After an accelerated approval by the FDA for R/R AML in 2000, GO was withdrawn in
2010 due to the absence of benefit and excessive toxicity in addition to standard induction
chemotherapy in the phase III study SWOG-50106 [86-90].

More recently, a fractionated administration schedule allowed the relocation of GO as
a therapeutic option in AML [91]. In the ALFA-0701 trial (NCT00927498), fractionated GO
(3 mg/m? on day 1-4-7 of induction and day 1 of consolidation treatment) in association
with standard chemotherapy in adult ND (50-70 years old) AML patients resulted in an EFS
gain (13.6 versus 8.8 months), despite a slightly higher early mortality (4% vs. 2%) due to
hemorrhage and VOD (5%) in the GO arm compared to the control arm.

An advantage in EFS, OS, and relapse-free survival (RFS) for low and intermediate-
risk cytogenetic AML groups was confirmed by a meta-analysis including 3300 patients
from five randomized controlled trials that corroborated the clinical benefit of GO in these
categories of patients [91].

Potential GO toxicity was considered to be outweighed by the gain in EFS, leading to
the reapproval of the drug by the FDA in 2017 for newly-diagnosed CD33-positive AML in
adults and relapsed or refractory CD33-positive AML in adults and pediatric patients aged
2 years and older.

The EMA approved GO for adults (>15 years old) with de novo CD33+ AML in
combination with daunorubicin and cytarabine.

4.1.1. New Perspectives on Gemtuzumab Ozogamycin

Several phase I and II studies are currently exploring the benefit of associating GO
with other drugs, such as azacitidine, CPX-351, venetoclax, and other conventional drugs,
in the induction phase of treatment.

In a retrospective study on 17 R/R AML patients, the combination of GO and azac-
itidine provided an overall response rate of 76.9%, emerging as a possible bridge to
transplant treatment [92].

GO plus venetoclax was revealed to be safe in a phase Ib trial and the effectiveness of
this combination is currently under investigation [93].

The combination of GO with the poly (ADP-ribose) polymerase inhibitors olaparib
and talazoparib showed an intense antileukemic effect in preclinical models and could be
included in novel combinations suitable for clinical trials in the near future [94-96].

In the phase I MOSAIC trial, GO was associated with midostaurin and standard
3 + 7 chemotherapy in upfront AML with a cCR of 91% [97].

Finally, advances in cellular therapy may open new opportunities for GO. Currently,
an ongoing trial is evaluating post-transplant GO administration after an allogeneic engi-
neered hematopoietic stem cell transplant lacking CD33 (NCT04849910).

Next generation anti-CD33s are under development, including vadastuximab talirine
(SNG33A), a humanized murine anti-CD33 IgG1 mAb coupled with two molecules of
pyrrolobenzodiazepine, which showed good tolerability in monotherapy and an encour-
aging CCR (CR + CRi 73%) in a study on 53 elderly AML patients who were ineligible
for IC [98,99].

4.1.2. Anti-CD123—Tagraxofusp

CD123 is a component of the interleukin 3 receptor (IL-3Rx) expressed by hematopoi-
etic stem cells that transmit, through the JAK2/STAT pathway, a signal for survival
and proliferation [100].

CD123 has been found to be extensively overexpressed not only in AML but also in
other hematological malignancies, such as blastic plasmacytoid dendritic cell neoplasm
(BPDCN), MDS, systemic mastocytosis, chronic myeloid leukemia (CML), acute lym-
phoblastic leukemia (ALL), and hairy cell leukemia (HCL) [101-107].

Tagraxofusp (SL-401) is an anti-CD123 antibody conjugated to diphtheria toxin that
has shown efficacy in the treatment of BPDCN [108].
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In a phase I study, SL-401 was employed in 45 AML patients and showed a good safety
profile but limited efficacy [109].

The combination of tagraxofusp with azacitidine or with azacitidine and venetoclax
was tested in a phase Ib trial in AML, MDS, and BPDCN patients. Twelve AML patients
received doublet and 14 AML patients triplet therapy, with CR or CRi in eight ND AML
patients. No R/R AML patients responded in either of the two groups [110].

4.1.3. Radiolabeled Monoclonal Antibodies

Radiolabeled mAbs can deliver ionizing radiation to target cells in a far more precise
manner than the classical irradiation technique, leading to the development of different
mADbs labeled with radioisotopes that decay via the emission of alpha or beta particles [111].

While humanized, the unconjugated anti-CD33 mAb lintuzumab did not confer
a survival benefit in AML treatment as monotherapy and in association with IC; it has been
employed for the delivery of radionuclides [112-114].

The radioconjugate x-emitters bismuth-213 (213Bi-) and actinium-225 (225Ac-) conju-
gated with lintuzumab have shown antileukemic efficacy as single agents in R/R AML and
in association with cytarabine [115-117]. Moreover, 225Ac-lintuzumab has been shown
to reverse resistance to venetoclax in AML models. A phase I/1I study of venetoclax and
lintuzumab-225Ac in R/R AML patients is currently ongoing (NCT03867682) [118].

4.2. Checkpoint Inhibitors

Regulatory T cells expressing PD1/TIM3 are increased in leukemic bone marrow and
AML blasts have been found to express PDL1, making T cell harnessing through checkpoint
inhibitors (CPI) an attractive therapeutic strategy in AML [119].

4.2.1. Anti-CTLA4 and Anti-PD1

The anti-CTLA4 agent ipilimumab was explored in a phase I study on 12 R/R AML
patients post ASCT; it allowed a complete response lasting greater than one year in five cases,
despite reported immune-mediated toxic effects and graft versus host disease (GVHD) [120].

While the antileukemic activity of PD1 inhibition alone seems to be low, the observa-
tion that HMAs, among their immunomodulatory effects, induce an increased expression
of inhibitory molecules (PD1 and CTLA4), provided the rational to obtain a synergistic
effect by combining HMAs and CPI [121,122].

The combination of nivolumab and azacitidine seems to be more effective for R/R
AML patients in early salvage conditions (patients with less than two prior lines of therapy)
compared to HMA alone. In this setting, in a non-randomized, open-label, phase II study,
Daver and colleagues reported a median OS of 10.5 months and a 12-month OS of 50% [123].

Encouraging results have also been reported for the combination of azacitidine and
pembrolizumab, which was tested in a phase Il trial in R/R and ND AML patients greater
than 65 years old, with a particularly notable efficacy in the ND setting (CCR = 47%,
8/22 pts) [124].

The triplet consisting of azacitidine, nivolumab, and ipilimumab was shown to slightly
improve OS in R/R AML patients. Single-cell immunophenotype profiling could help in
selecting and predicting the response to CPI [125,126].

4.2.2. Anti-T Cell Immunoglobulin and Mucin Domain 3 (TIM3)

T-cell immunoglobulin and mucin domain 3 (TIM3) is a transmembrane co-inhibitor
receptor expressed by T cells that leads to T-cell exhaustion [127].

The blockage of TIM3 and PD1 with antibodies improves the anti-cancer T cell response
in vitro and in murine models [128,129].

Galectin-9, a TIM3 ligand, is produced by leukemia stem cells (LSCs) and protects them
from T cell targeting. Moreover, LSCs—but not hematopoietic stem cells (HSCs)—have
been found to express TIM3, which seems to be activated in an autocrine manner, leading
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to the accumulation of beta catenin in the intracellular compartment and the promotion of
a self-renewal signal [130].

In fact, sabatolimab, a humanized IgG4 anti TIM3 mADb, is the only TIM3 inhibitor
currently being studied in AML and MDS clinical trials in monotherapy or in combination
with other drugs (e.g., venetoclax, HMAs); it has shown promising response rates and
manageable toxicities [131].

4.3. Anti-CD47 Antibodies—Magrolimab

CD47 is a transmembrane protein that transmits a “do not eat me” signal. CD47
expression counterbalances pro-phagocytosis signals in malignant cells, allowing for the
evasion of macrophage phagocytosis [132].

CD47 is expressed in AML cells and its inhibition has shown a capacity for eliminating
LSCs in preclinical models (Figure 3) [133].
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Figure 3. AML blasts avoid phagocytosis through CD47-SIRP« interaction, transmitting a ‘do-not-
eat-me’ signal that cancels the malignant cell’s ‘eat-me’ signal expression. Magrolimab (anti-CD47)
interferes with the CD47 and SIRP« interaction, abolishing this escape mechanism and inducing blast
phagocytosis.

The IgG4 anti-CD47 magrolimab showed a satisfactory tolerability profile with limited
antileukemic activity as monotherapy in R/R AML patients in a phase I trial [134].

The observation that azacitidine upregulates the ‘eat me’ signal on leukemic cells,
increasing magrolimab efficacy, provided the rationale for testing their association [135].

In a recent phase Ib trial, the combination of magrolimab with azacitidine showed
a 64% and 91% CCR in untreated AML and high risk MDS patients non eligible for IC, re-
spectively. Interestingly, 74% of CCR was found in the TP53-mutated AML subgroup [136].

A phase III study evaluating the combination of magrolimab with azacitidine
(NCT04778397) and a phase I study evaluating the combination magrolimab, azacytidine,
and venetoclax are currently ongoing. (NCT04435691).

4.4. Bi-Specific T-Cell Engagers (BiTEs)

Bispecific antibodies are compounds capable of binding two different targets, usually
expressed by different cells. Particularly, bispecific T-cell engagers (BiTEs) are agents whose
action is triggered by the engagement of both antigen sites, determining T-cell activation
with subsequent killing of the target cell and increased pro-inflammatory cytokine release,
independent of the costimulatory signal [137,138].

This technology started to be investigated more than 50 years ago; however, its clinical
development and application in a hematological setting is much more recent and is mainly
related to lymphoproliferative disorders [139-141].
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The first bispecific antibody approved for use in a hematological malignancy was
blinatumomab, which granted the indication for treatment of relapsed or refractory (R/R)
acute lymphoblastic leukemia (ALL) in 2014.

The first BiTE designed and employed for AML treatment was AMG330, which targets
the antigens CD33 on tumor cells and CD3 on T cells; preliminary data showed important
in vitro antileukemic activity and particularly the capacity of avoiding key mechanisms for
tumor resistance, such as CD33 downregulation [142].

The preliminary results of a phase I trial with AMG330 for R/R AML showed an ORR
of 19% with an acceptable toxicity profile characterized mostly by cytokine release syn-
drome (CRS; 67% all grades, 13% grade 3—4) and an AE correlating with blast count at the
baseline and dose level. This drug presents a short half-life of approximately two hours,
needing continuous intravenous administration [143].

A modified CD33/CD3 BiTE is AMG673, which presents a longer half-life than
AMG330, permitting an intermittent schedule of intravenous administration. Efficacy data
reported in the phase I trial showed a decrease in blast count in 44% of evaluable patients;
however, 50% of patients experienced CRS (27% of grade 3, no grade 4 observed) [144].
Other CD33/CD3 BiTEs currently under investigation are AMV564, which seems to be
correlated with less CRS in the preliminary data of a phase I trial, and JNJ-67371244, for
which no data are available yet [145].

Vibecotamab (XmAb14045) has been conceived to target CD3 and CD123 and was
tested in a phase I study in 63 heavily pre-treated R/R AML patients.

Efficacy was reported only for the two highest dose level studies in the trial (1.3 and
2.3 ng/kg weekly) with CR/CRi in three of thirteen AML patients, of which two could
proceed to transplant.

The main toxicities were CRS (77%, with 11% of grade > 3), fatigue, neutropenic fever,
and peripheral edema [146].

A different type of molecule called DART (dual-affinity re-targeting) was recently
developed; it differs from BiTE due to the presence of variable domains of heavy and
light chains which engage the target antigens on two separate polypeptides [147]. This
configuration provides a more stable molecule due to the presence of an additional disulfide
bridge and seems to also give an advantage in terms of efficacy when compared to the
BiTE format [148].

The first DART investigated in AML was flotetuzumab (MGDO006 or S80880), which
binds to CD3 and CD123; the phase I/1I trial showed a CR/CRi rate of 27% and a me-
dian OS of 10.2 months, independent from cytogenetic risk category. Grade 3 CRS was
observed in 8% of patients and mostly reversible and frequently treated with the early
employment of tocilizumab. The recommended dose was 500 ng/kg/day by continuous
intravenous administration [149].

4.5. Chimeric Antigen Receptor T Cells (CAR-Ts)

One of the most innovative approaches in modern oncohematologic immunotherapy
is represented by chimeric antigen receptor T cells (CAR-Ts). This technology is based on
engineered synthetic receptors permitting the regulation of T cell activity to recognize and
eliminate neoplastic cells expressing a specific target antigen. The induced activity of CARs
is independent from the presence of co-stimulatory proteins or MHC receptors [150].

Despite its great impact in lymphoproliferative disorders, leading to the approval of
several CAR-T compounds by EMA and FDA in the last years, the development of this
immunotherapy for AML treatment has been slower and less successful, due to adverse
microenvironmental conditions and the reduced number of target antigens selectively
expressed by AML cells, determining suboptimal efficacy and increased toxicity [151].

Two promising target antigens are CD33, which is highly expressed on both AML
and healthy stem cells, and CLL-1 (or CLEC12A), a more selective agent for leukemic
blasts. In the first phase I trial using dual CD33-CLL-1 CAR-T cells on 9 R/R AML patients,
a 4-week evaluation reported an interesting MRD negative rate of 78%, using flow cytome-
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try, with six patients proceeding to ASCT. CRS was common, but was mostly of grade 1-2
(75% of cases) and efficaciously managed with corticosteroid treatment [152].

Another widely studied AML antigen is CD123; in a phase I trial using a CD123
CAR-T cell treatment, the data showed significant antileukemic activity with manageable
CRS [153]. CD38 CAR-T cells are currently under investigation in a phase I/1I trial: this
antigen, well known for its implication in plasma cell dyscrasias, has also been found to be
highly expressed in AML blasts [154].

In a phase I/1I trial with six patients, four of them achieved CR or CRi, with a median
PFS of 6.4 months. CRS was highly manageable, mostly of grade 1-2 (83% of patients) [155].

A further improvement of CAR-T technology is the universal CAR-T platform (UniCAR):
this CAR is designed to recognize a peptide motif included in the second component of
the molecule, called the targeting module, which confers specificity against the antigen of
choice. Three AML patients were treated with UniCAR-T-CD123 with encouraging efficacy
(one PR, two CRi) and toxicity (two cases of grade 1 CRS) results [156].

5. New Formulations, Old Drugs
5.1. CPX-351 (Vyxeos)

CPX-351 is a liposomal formulation with a 1:5 molecular ratio of daunorubicin and
cytarabine that optimizes drug delivery, with preferential uptake by LSCs compared to
normal HSCs [157-159].

In a phase III trial including 309 patients from 60 to 75 years old with ND high-risk
AML, CPX-351 showed a significantly improved median OS and higher ORR compared
to the classic 7 + 3 approach, despite a longer time to neutrophil and platelet count re-
covery [160]. CPX-351 was approved by the FDA and EMA for ND and therapy-related
(TR) AML, and real-world data confirmed the efficacy of CPX-351 in monotherapy, with
promising outcomes after HSCT [161].

Ongoing trials are exploring the role of CPX-351 beyond TR-AML (MDS, LMMC,
myelofibrosis, and myeloproliferative neoplasms) and its associations with other drugs
(venetoclax, gilteritinib, palbociclib, glasdegib, and GO).

5.2. Oral Azacitidine (Oral-Aza)

The well-known HMA azacitidine has been recently developed in an oral form, which
is administered in an extended doses schedule of 14 or 21 days, that exercises anti tu-
moral activity through hypomethylating and immunomodulatory effects which are not yet
fully understood [162,163].

The oral formulation of azacitidine allows a prolonged schedule of administration,
which consequently extends the exposure of AML cells to the drug, sparing inconveniences
related to injections and promoting a particular hypomethylating profile and weaker
cytotoxic effects [164-167].

A phase I study showed that oral-aza, administered daily for 14- and 21-day affords
38% and 57% greater azacitidine exposure, respectively, in comparison with the classical
injectable schedule (75 mg/m? for 7 consecutive days) [168,169].

An ORR of 22% in AML patients was reported by phase II AZA-MDS-004 study, in
which oral-aza was administered for 21 days [170].

Nowadays, the approval of oral azacitidine in the EU, USA, and Canada for AML
patients in RC1 or RCil after IC who are not eligible for ASCT is based on the results
provided by the QUAZAR AML-001 study. In this trial, oral-aza maintenance after IC
significantly prolonged OS (24.7 versus 14.8 months) and RFS (10.2 versus 4.8 months) in
AML patients older than 55 years, compared to a placebo [171].

6. Tyrosine Kinase Inhibitors (TKIs) and the RAS Pathway Inhibitors
6.1. FLT3 Inhibitors

Over the last two decades, several TKIs have been developed to treat patients with
FLT3 gene mutations (Figure 4). Approximately 30% of AML patients carry a mutation
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at diagnosis, whether an internal tandem duplication (FLT3-ITD) or a point mutation in
the tyrosine kinase domain (FLT3-TKD). These patients are historically associated with
a bad prognosis, a high risk of relapse, and low cure rates. FLT3is have been evaluated in
frontline treatment, salvage settings, or as maintenance treatment after ASCT [172].
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Figure 4. FLT3 and KIT inhibitors and the RAS-RAF-MEK-ERK signaling pathway and its inhibitors.

New clinical trials are now exploring the use of first and second-generation FLT3is
in association with non-intensive treatments in frontline or R/R settings and the use of
second-generation FLT3is in association with IC in a frontline setting.

6.1.1. Midostaurin

Midostaurin is a first-generation FLT3i now approved by the FDA and EMA in associ-
ation with standard IC for ND AML based on the results from the RATIFY Trial [173].

The trial randomized 717 patients to receive classic IC and midostaurin or classic IC
and a placebo. The CR rate was 58.9% and 53.6% while the median 4-year OS was 51.4%
and 44.3% in the midostaurin and placebo groups, respectively. The safety profile was
similar in both groups, and this has recently been confirmed in the RADIUS-X expanded
access program [174].

Midostaurin in association with azacitidine was evaluated in 54 patients in a phase
I/11 study of AML and MDS unfit for IC or R/R after previous treatments: the ORR was
26%, with a CR + CRi rate of 13%. The median OS was 22 weeks [175].

6.1.2. Sorafenib

Sorafenib is another first-generation FLT3i. It has been tested in phase II and III trials
in ND AML in association with IC with discordant outcomes [176,177].

Very interesting results have been published in the post-transplant setting. The SOR-
MAIN study is the only prospective RCT in this setting, randomizing 83 adult patients
with FLT3-ITD AML in CR post ASCT to receive sorafenib or a placebo. The 2-year RFS
was 85% and 53.3% in the sorafenib and placebo groups, respectively (p = 0.013), and the
OS was significantly longer in the sorafenib arm (p = 0.03) [178].

6.1.3. Gilteritinib

Gilterinib is a highly selective second-generation FLT3i with activity against AML
cells harboring FLT3-ITD and TKD mutations. Significant results in R/R patients lead to its
experimental use in the frontline setting.

The phase III ADMIRAL trial led to the approval of gilteritinib in monotherapy in R/R
FLT3-mutated patients. Gilteritinib was compared to salvage chemotherapy in 371 patients.
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The median OS was improved in the gilteritinib arm (9.3 vs. 5.6 months; p < 0.001), as was
the CR rate (34% vs. 15.3%). It should be noted that 88% of patients were not pre-exposed
to other FLT3is [179].

The phase III trial LACEWING study (NCT02752035) evaluated gilteritinib with
azacitidine compared to azacitidine alone in ND FLT3-mutated AML patients who were
ineligible for IC. Higher CRc rates were observed in the experimental arm, but a similar OS
was reported in both arms [180].

As already discussed, gilterinib has been tested in association with venetoclax and
in triplet with azacitidine and venetoclax for R/R and ND AML patients with interesting
results [42,43].

6.1.4. Quizartinib

In the QUANTUM-R phase III study, which compared the second-generation FLT3
inhibitor quizartinib to salvage chemotherapy in R/R FLT3-ITD AML, quizartinib showed
a survival benefit with an OS of 6.2 months compared to 4.7 in the control arm [181].

Quizartinib is currently approved in Japan for the treatment of R/R FLT3-ITD-
mutated AML.

In a phase I/II trial, the combinations of quizartinib with azacitidine or LDAC
were evaluated in ND or RR FLT3-ITD MDS-AML patients, producing a median OS of
19.2 months (quizartinib/azacitidine) and 8.5 months (quizartinib/LDAC) in the frontline
setting and 10.5 months (quizartinib/azacitidine) and 6.4 months (quizartinib/LDAC) in
the R/R setting [182].

Quizartinib was also evaluated in a triplet therapy in association with azacitidine and
venetoclax in ND and R/R AML FLT3-ITD-mutated patients who were ineligible for IC.
All five patients in the ND cohort achieved CRc. The CRc rate among R/R patients was
65%, with an encouraging OS of 7.5 months and a 1-year OS of 34%. It should be noted that
68% of these patients received gilteritinib and that RAS/MAPK mutations were associated
with primary and secondary resistance [183].

6.2. KIT Inhibitors

The KIT gene encodes for a membrane receptor tyrosine kinase (CD117) that is fre-
quently mutated in core-binding factor AML, suggesting a possible role of KIT inhibition
in AML treatment (Figure 4) [184,185].

The BCR/ABL inhibitors dasatinib and radotinib have been shown to promote AML
cell death by targeting c-KIT in AML cell lines and murine models, suggesting a potential
role in clinical application [186,187].

6.3. RAS Pathway Inhibitors

Rat sarcoma (RAS) proto-oncogenic proteins have been largely studied in recent
decades, and RAS mutations have been found to play a role in about 30% of human
cancers [188].

The three highly homologous RAS proteins (KRAS, NRAS, and HRAS) are acti-
vated through a GTP phosphorylation process and promote cell survival and proliferation
through the RAS/RAF/MEK/ERK pathway (Figure 4) [189].

RAS mutations are found in approximately 15-40% of AML diagnoses, and the most
frequent mutated RAS protein in myeloid malignancies is NRAS [190-195].

Once synthesized, RAS proteins undergo cytosolic modifications before being col-
located to the membrane surface where they are effective. One of these modifications is
prenylation, which requires an enzyme called farnesyltransferase (FT) [196].

Tipifarnib (R115777) is an inhibitor of FT that has been tested in R/R AML, with
reported clinical responses in 29% of patients (10 out on 34) with two CR [197,198].

In phase I studies, tipifarnib was shown to be safe in combination with IC and with
bortezomib in patients with ND AML [199].
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To target the RAS pathway, a RAF inhibitor has also been developed (LY3009120) and
has shown synergistic proprieties with cytarabine in RAS-mutated AML cell lines [200].

Acting on the same signal transmission pathway, some MEK inhibitors have been de-
veloped and studied in early phase trials. Their clinical development is still at an immature
stage and their role will likely be in combination with other agents.

The MEK inhibitor binimetinib has been shown to be safe in RAS-mutated AML, with
very limited activity as monotherapy and in combination with the ATP-competitive pan-
AKT inhibitor GSK2141795 (targeting the PI3K/PTEN/AKT/mTOR pathway) [201,202].

Trametinib is another MEK inhibitor that showed activity in RAS-mutated AML in
a phase I/1I study [203].

Cobimetinib, a third MEK inhibitor, is currently being studied in combination with
venetoclax [204].

Downstream in the same pathway, ERK activation was shown to confer resistance to
TKI; the association of trametinib with midostaurin showed a synergistic effect and could
emerge as a new exploitable strategy in FLT3-mutated AML patients [205,206].

7. Isocitrate Dehydrogenase Inhibitors

IDHs belong to a group of enzymes that catalyze the oxidative decarboxylation of
isocitrate to alfa-ketoglutarate (x-KG), generating NADPH.

Mutations involving arginine in the active site of IDH1/2 (R132 in IDH1 and R140
or R172 in IDH2) result in mutant IDH1/2 proteins that have acquired the capability of
converting o-ketoglutarate in 2-hydroxyglutarate (2-HG) [207,208].

2-HG acts as a competitive inhibitor of x-KG, interfering with a-KG-dependent en-
zymes, which play a role in several metabolic processes and DNA methylation, and pro-
duces a characteristic hypermethylated DNA phenotype (Figure 5) [209,210].
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Figure 5. IDH1/2 mutant converts «-ketoglutarate into 2-hydroxyglutarate, which interacts with
«-KG-dependent enzymes and leads to DNA hypermethylation. IDH1/2 inhibitors prevent «-KG
production and restore a normal DNA methylation profile.

IDH1 and IDH2 mutations are found in approximately 8% and 12% of AML cases,
respectively, frequently co-occurring with FLT3/NPM1 mutations [211,212].

It should be noted that IDH mutations have been also described in other malignan-
cies (glioblastoma, chondrosarcoma, cholangiocarcinoma, and angioimmunoblastic T cell
lymphoma) [209,213-215].

The prognostic impact of IDH1/2 mutations in AML is still a matter of debate [216].

Enasidenib (AG-221) and ivosidenib (AG-120), which are IDH2 and IDH1 inhibitors,
respectively, target IDH-mutated proteins.

Enasidenib was proven to be well tolerated and safe as a single agent and capable of
inducing responses in R/R IDH2-mutated AML patients in a phase I/1I study, with an ORR
of 40.3% and a median DOR of 5.8 months [217]. These results led to enasidenib approval
for R/R IDH2-mutated AML in the USA.

Unfortunately, the phase III trial IDHENTIFY (ClinicalTrials.gov (accessed on
7 February 2022), NCT02577406), which compared enasidenib to conventional treatments
(best supportive care alone or in combination with azacytidine or low-dose or intermediate
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dose cytarabine) in R/R IDH2-mutated AML patients was announced to have missed the
primary endpoint of OS in the enasidenib arm [218].

In an ND setting, a phase 1/1I clinical trial investigating enasidenib monotherapy in
39 ND IDH2-mutated AML patients reported an ORR of 30.8% with a CCR of 21% and
a median OS of 11.3 months [219].

Ivosidenib monotherapy was tested in a phase I study in 268 IDH1-mutated AML
patients, with 179 patients in the R/R setting. CR + CRi was obtained in 30.4% of treated
patients, with a global DOR of 6.5 months that reached 9.3 months in CR patients and a low
rate of AEs of grade 3—4 (mainly QT prolongation in 7.8%, IDH differentiation syndrome in
3.9%, and thrombocytopenia in 3.4% of cases) [220].

Resistance to ivosidenib has been found to be correlated with receptor tyrosine kinase
pathway mutations in this population of R/R AML patients [221].

Both in the ND and R/R settings, enasidenib and ivosidenib are under investigation
in association with other agents.

Compared with azacitidine alone, Dinardo et al. showed that the combination of
enasidenib with azacitidine resulted in a better and greater-than-additive effect on ORR
(74% versus 36%) and a better CRR (54% versus 12%) [222].

The safety and clinical activity of the combination of ivosidenib with azacitidine was
evaluated in a phase b study in patients with ND IDH1-mutated AML who were ineligible
for IC.

This association, beside good tolerance without dose-limiting toxicities, reported
interesting and encouraging results concerning clinical efficacy, with an ORR of 78.3%,
a CR rate of 61%, and a median time to first response of 1.8 months (range, 0.7-3.8 months);
the median duration of CR, CR/CRh, and overall response were not reached [223].

The association of both agents with standard IC in ND AML in a phase I study did
not delay hematological recovery compared with historical data. Ivosidenib-treated and
enasidenib-treated patients had encouraging 12-month survival probabilities of >75%,
considering the high portion of secondary AML (~30%) and a majority of elderly patients
(more than 60 years old) in the study population. Phase III studies are currently ongoing to
further evaluate the association of IDH inhibitors with IC [224].

In the phase Ib/II enaven-AML trial, enasidenib was associated with venetoclax in
11 RR/AML very high-risk (VHR) MDS patients with an encouraging ORR (55%) [49].

Multiple combinations of enasidenib/ivosidenib with venetoclax (NCT04092179),
decitabine (NCT05010772), decitabine and venetoclax (NCT04774393), and classical induc-
tion/consolidation therapy (NCT03839771) are currently under investigation along with
the role of IDH inhibitors in maintenance therapy following ASCT in AML (NCT03728335,
NCT04522895); in IDH2-mutated MDS (NCT03744390); in association with CPX-351, fedra-
tinib (NCT04955938), and ruxolitinib (NCT04281498); and in IDH1/2-mutated high risk
myeloproliferative syndromes.

8. Others
8.1. Hedgehog Inhibitors—Glasdegib

The hedgehog signaling pathway plays an essential role in embryonal and adult
hematopoiesis and its aberrant activation has been found to drive hematological malignan-
cies, including AML [225-227].

In the phase II BRIGHT AML 1003 trial, the combination of glasdegib and LDAC
improved CR rate (17 versus 2.3%) and median OS (8.8 versus 4.9 months) compared to
LDAC alone in a population of AML and high-risk MDS patients [228].

These results led to the FDA and EMA approval of glasdegib in combination with
LDAC in AML patients aged more than 75 years who are ineligible for IC [229].

Moreover, the long-term BRIGHT AML 1003 analysis showed a survival advantage
of the association of glasdegib with LDAC versus LDAC alone, with a more pronounced
benefit in secondary AML [230].
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Ongoing trials are currently investigating new associations of glasdegib with azacitidine
and IC with cytarabine/daunorubicin (NCT03416179, NCT02367456, and NCT01546038).

8.2. IRAK4 Inhibitors

IRAK4 (interleukin-1 receptor-associated kinase 4) in association with IRAK1 can acti-
vate NF-kB pathway signaling, triggering cell survival. IRAK4-L RNA isoform expression,
generated by alternating splicing promoted by mutant U2AF1 splicing factor, has been
found to be associated with AML and is required for leukemic cell function [231].

The inhibition of IRAK-4 through the IRAK-kinase inhibitor CA-4948 was shown to
arrest leukemic growth in AML cells expressing IRAK4-L and to limit the spread of THP1
leukemic cells in a xenograft murine model [231].

Currently, the oral IRAK-4 inhibitor CA-4948 is under investigation in monother-
apy and in combination with azacitidine or venetoclax in R/R AML and R/R MDS
settings (NCT04278768).

8.3. Menin-KMT2A (MLL) Inhibitor

The histone-lysine-N-methyltransferase 2A (KMT2A) gene and menin-1 gene are
part of a complex that plays an essential role in regulating the expression of homeobox
genes. Mutations in KMT2A are responsible for aberrant Hox gene expression leading to
leukemogenesis [232,233].

Accounting for the 5-10% of AML diagnoses, DNMT3A-mutated cases constitute
a very poor prognostic group of disease [234].

The menin inhibitor MI-3454 was revealed to block proliferation and induce differenti-
ation in AML cells and remission in AML KMT3A /NPM1 mutated murine models [235].

Indeed, the menin inhibitor KO-539 is under investigation in the KOMET-001 phase
I/1I study in R/R AML patients [236].

9. Discussion and Conclusions

Until recent years, AML has been treated with IC followed by ASCT for fit patients
with the intention to cure, and with HMA for patients ineligible for IC, mainly with
an intent to improve quality of life. A significant portion of more fragile patients could also
be oriented towards pure palliative care.

The absence of valid alternative treatments outside clinical trials leaves little room for
therapeutical strategy in frontline treatment and, in the R/R setting, if remission cannot
be obtained with salvage chemotherapy to proceed to transplant, supportive care should
be encouraged.

Recent advances in the understanding of the molecular basis of leukemogenesis and
the mechanisms sustaining LSC survival has allowed a better characterization of AML
disease and a more precise prognostic stratification.

With the therapeutical plan, these advances led to the development of several classes
of agents with different mechanisms of action, opening opportunities for new hopes for
patients and prompting new management possibilities for a disease treated for many years
in a single way.

Nowadays, IDH1-2 inhibitors, FLT3is, and GO are frequently incorporated in AML
treatment according to a tailored approach; future challenges include assessing their role
in new combinations and the development of new, more potent, and better tolerated next-
generation molecules. New formulations of drugs (CPX-351 and oral azacitidine) with
particularly interesting pharmacokinetic and tolerability profiles are also currently available
and widely used.

Among recently approved drugs, the BCL-2 inhibitor venetoclax is one of the most
interesting agents, even if its role in treating AML is still largely unexplored. We know that
in combination with HMAs and other agents, is a valuable upfront treatment component
for unfit and fit patients; however, new combinations carrying promising results in early
phase trials are currently under investigation.
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Beyond induction, venetoclax may keep an interesting role in consolidation and
maintenance; however, again, appropriate schedules and more advantageous combinations
need to be established.

Following the path that has been traced by venetoclax, new classes of drugs will likely
enrich the therapeutical landscape for AML, from which every population of patients could
benefit, opening the pathway for several different treatment strategies.

In this race, agents harnessing the intrinsic apoptotic pathway and their associations,
target therapies, and mAbs are progressing more rapidly; however, owing to the acquired
knowledge in lymphoproliferative disease, BiTEs and CAR-T cells could also gain ground
in the next years and may turn out to be key weapons against AML.

Frail patients could particularly benefit from the synergic association of new molecules
without excessive side effects, owing to different and non-overlapping toxicity profiles of
new single agents, allowing for globally better outcomes in terms of treatment efficacy and
quality of life. Moreover, a larger portion of patients with preserved performance status
could proceed to transplant, with expected advantages in long-term survival, questioning
the optimal employment of new drugs in the maintenance post-transplant setting.

On the other hand, the incorporation of new agents in IC schedules represents a hope
for deeper and long-lasting responses in fit patients, maybe questioning the role of trans-
plant for some AML patients in the future.

Moreover, several articulated sequential strategies combining different agents at differ-
ent moments (induction, consolidation, and maintenance) of treatment could be imagined.
Defining which is the best place for every given agent is another challenge to deal with.

No less important, on the bases of molecular and cytogenetic disease characteristics
together with a better understanding in molecular biology and the immunology of LSCs,
specific disease-tailored treatment could emerge.

Complex karyotype disease and very bad prognosis mutations (such as EVI1 and TP53)
characterize a population that is still difficult to treat with very poor outcomes, constituting
an unmet therapeutical need. More effective drugs for such poor-prognosis disease should
be determined and new agents will perhaps represent interesting therapeutic options.

Undoubtedly, there is an unmet necessity for curative therapy in AML; access to new
drugs should be encouraged, and well-designed, large-scale trials are needed to assess the
efficacy of new molecules and to trace patient-tailored strategy. Observational data will be
essential to support and to confirm clinical trial results in the real world AML population
and, moreover, to provide survival outcomes on a longer-term follow-up.

In conclusion, important and exciting progress in recent years is offering new thera-
peutical possibilities, projecting AML treatment into a precision medicine dimension, which
is disease and patient tailored and capable of improving life quality and life expectancy for
most patients.
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