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Abstract: ABC transporters are expressed in skin cells to protect them against harmful xenobiotics.
Moreover, these transmembrane proteins have a number of additional functions that ensure skin
homeostasis. This review summarizes the current knowledge about the role of specific ABC proteins
in the skin, including multi-drug resistance transporters (MDR1/3), the transporter associated with
antigen processing 1/2 (TAP1/2), the cystic fibrosis transmembrane conductance regulator (CFTR),
sulfonylurea receptors (SUR1/2), and the breast cancer resistance protein (BCRP). Additionally, the
effect of UV radiation on ABC transporters is shown. The exposure of skin cells to UV radiation often
leads to increased activity of ABC transporters—as has been observed in the case of MDRs, TAPs,
CFTR, and BCRP. A different effect of oxidative stress has been observed in the case of mitochondrial
SURs. However, the limited data in the literature—as indicated in this article—highlights the limited
number of experimental studies dealing with the role of ABC transporters in the physiology and
pathophysiology of skin cells and the skin as a whole. At the same time, the importance of such
knowledge in relation to the possibility of daily exposure to UV radiation and xenobiotics, used for
both skin care and the treatment of its diseases, is emphasized.
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1. Introduction

Skin, as the most external organ of the human body, is responsible for creating a
physical and biochemical barrier to protect the body from harmful environmental factors.
Moreover, skin also takes part in the constant interaction between the body and the envi-
ronment, thus playing a pivotal role in maintaining body homeostasis [1]. For this reason,
the skin has developed a number of adaptations that make it easier to perform this role.
One of them is its layered structure consisting of various cell types, including keratinocytes,
which are the main cells in the outermost layer, i.e., the epidermis, and fibroblasts, i.e., the
basic cells of the next layer—the dermis. Despite the advanced differentiation conducted
by the skin, keratinocytes and fibroblasts, as well as other less numerous cells present in
the skin (melanocytes, nerve, or immune cells), are prepared for the metabolism of xenobi-
otics which are delivered directly from the external environment or from the bloodstream.
However, the level and activity of xenobiotic-metabolizing enzymes in the skin cells are
generally much lower than those in, e.g., the liver or the intestine; therefore, it is suggested
that the activity of membrane transporters, located in the phospholipid structures of skin
cell membranes, is responsible for the influence of exogenous substances on the functioning
of the skin and the whole organism [2–5]. The best-known membrane proteins involved
in this process are ABC (ATP-binding cassette) transporters, whose expression has been
observed in skin cells such as keratinocytes [6], fibroblasts [7], and melanocytes [8].

2. ABC Transporters

ABC transporters are expressed in many epithelial and endothelial barrier tissues/cells,
limiting the penetration of the xenobiotics between the body’s compartments. They are
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located, among other places, in the cells of the liver, kidneys, the epithelium of the small
intestine, the blood–brain barrier, and the blood–retina barrier; they are present, how-
ever, not only in the plasma membrane, but also in intracellular membranes surround-
ing cell organelles, e.g., peroxisomes, lysosomes, mitochondria, and the endoplasmic
reticulum [9–11]. They are involved in the elimination of metabolic byproducts from cells
and protection against xenobiotics, including toxins, carcinogens, cytotoxic components
of the diet, and drugs. ABC transporters fulfill their functions through the ejection of
molecules from the cell. Usually, this process requires energy; therefore, ABC transporters
have the ability to bind the ATP and to hydrolyze it to ADP and phosphate (Pi) with
energy generation [12]. This is necessary for the translocation of molecules across the cell
membrane, contrary to its concentration gradient, this being possible due to the specific
structure of ABC transporters. These transmembrane proteins are fairly conserved in com-
position. Their structure includes the ATP-binding domain (NBD), which exhibits ATPase
activity and is responsible for ATP hydrolysis. As a result of this reaction, the second
important component of ABC transporter, i.e., the transmembrane domain (TMD), can
change in conformation [13]. This is important due to the fact that TMD is the domain that
recognizes substrates and marks the paths of their translocation across the cell membrane.
Moreover, the motifs Walker A and Walker B are present within the NBD domain, which
are characteristic of all ATP-binding proteins, as well as motif C (ABC Signature Motif),
with the sequence “LSGGQ,” which is only specific for ABC proteins (Figure 1). In the
construction of ABC transporters, other regions can be distinguished such as loops A, Q,
D, H, and X, which affect the classification of these proteins’ subfamilies [14]. However,
due to the amino acid sequence in the NBD region and its structural organization, all ABC
transporters have been grouped into seven subfamilies, from ABCA to ABCG (Table 1). In
addition to the systematic name, some of these transporters are known by different names,
including MDR1/3 (multi-drug resistance transporter; ABCB1/4), TAP1/2 (transporter
associated with antigen processing; ABCB2/3), MRP1-6 (multidrug resistance-associated
protein; ABCC1-6), MRP7-9 (ABCC10-12), CFTR (cystic fibrosis transmembrane conduc-
tance regulator; ABCC7), SUR1/2 (sulfonylurea receptor; ABCC8/9), and BCRP (breast
cancer resistance protein; ABCG2) [15,16].
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Table 1. The list of ABC transporters with their main functions. Abbreviations: ABC, ATP-binding
cassette transporter; BCRP, breast cancer resistance protein; CFTR, cystic fibrosis transmembrane
conductance regulator; MDR, multi-drug resistance transporter; MRP, multidrug resistance-associated
protein; SUR, sulfonylurea receptor; TAP, transporter associated with antigen processing.

Subfamily Transporters Main Function

ABCA ABCA 1-9, 12 transport of cholesterol and lipids

ABCB

ABCB 1 (MDR1),
ABCB 2-3 (TAP1-2),

ABCB 4 (MDR3),
ABCB 5-11

transport of peptides and metabolites

ABCC

ABCC 1-6 (MRP1-6),
ABCC 7 (CFTR),

ABCC 8-9 (SUR1-2),
ABCC 10-12 (MRP7-9)

transport of ions, cell-surface receptors

ABCD ABCD 1-4 participate in peroxisome activation

ABCE ABCE 1 multidrug resistance

ABCF ABCF 1-3 regulation of innate immune response

ABCG
ABCG 1,

ABCG 2 (BCRP),
ABCG 4,5,8

transport of drugs, toxins, lipids, cholesterol and other steroids

3. ABC Transporters in the Skin

The expression and activity of ABC transporters in skin cells is indisputably linked
to their role in skin protection against harmful xenobiotics and the oxidative stress that
they induce [6]. However, the current knowledge concerning these proteins allows for the
conclusion that the activity of ABC transporters is dependent on numerous factors and that
they have a much wider range of action in relation to skin cells (Figure 2).
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3.1. Activation and Suppression According to Oxidative Conditions

It is generally assumed that the appearance of an agonistic xenobiotic in the cytoplasm
of the cell activates the ABC transporters and induces the efflux of this potentially harmful
compound outside the cell [6]. Exposure to these compounds is very often accompanied by
oxidative stress (the oxidative effect of these compounds or a side effect of their metabolism).
It has not been shown that free radicals formed at the time of exposure directly affect the
functioning of ABC transporters; however, there are many pathways linking oxidative
stress with these transporters [17,18]. Reactive oxygen species (ROS) conjugated with
GSH, glucuronide, and sulphate only are agonistic molecules for ABC transporters [19].
However, in the case of lung cancer cells, it was found that low doses of anticancer drugs,
by inducing a moderate increase in ROS levels (approximately a 3-4-fold increase of the
control levels), promote a defense response which results in an increase in the expression of
ABC proteins, thus providing these cells with drug resistance [18]. This might be connected
with an ROS-induced activity of transcription factors, such as nuclear factor-κB (NFκB),
responsible for the formation of inflammation, and nuclear factor E2-related factor-2 (Nrf2),
responsible for the biosynthesis of antioxidant proteins [20]. Therefore, NFκB increases
the expression of ABC transporters during inflammation [21,22], while Nrf2 initiates ABC
transporters in response to oxidative stress [23,24].

Oxidative stress arising from, e.g., exposure of cells/organism to pathogenic factors
(exogenous and endogenous), often leads to the activation of kinases involved in intracellu-
lar signal transduction, including mitogen-activated protein kinases (MAPKs) [25]. As a
result, numerous proteins are phosphorylated, including ABC transporters. The data in the
literature indicate that the phosphorylation of ABC proteins is often a constitutive element
of the functioning of transporters, and is necessary for their full activity, especially under
oxidative conditions [26]. Moreover, MAPKs activation by ROS additionally induces NFκB
and Nrf2 activity, thus favoring the expression of ABC transporters [24,27].

It is known that, while oxidative stress activates most ABC transporters, antioxi-
dants such as vitamin C, flavonoids, or phytocannabinoids are able to suppress their
activity [28–31]. Due to the recent increased public interest in aging and disease prevention,
the use of herbal preparations, especially those containing high doses of natural antioxi-
dants, has become very popular, raising the potential for interactions with the implemented
drug therapies. In relation to the influence of antioxidants on ABC transporters, their action
is not only based on ROS scavenging, but they are also able to inhibit drug interaction with
ABC transporters during therapy, as well as prevent nucleotide hydrolysis, thus limiting
the access of transporters to the energy from ATP hydrolysis [30]. Therefore, antioxidants
could be considered as potential modulators of multidrug resistance and as therapeutic
agents to suppress ABC transporter activity under drug-induced oxidative conditions.

3.2. Main Functions in the Skin

It has been reported that ABC transporters in the skin have different intensities of dis-
tribution in the epidermis compared to the dermis. For example, MRP1 has a strong expres-
sion in whole skin specimens and the dermis, and a weak expression in the epidermis [32].
This leads to the uptake of compounds from the epidermal compartment and their secretion
into the deeper layers of the skin. Moreover, by coordinating the efflux of steroid hormones
from normal human epidermal keratinocytes, ABC transporters ensure proper hormonal
balance in the skin [33]. ABC transporters’ expression in human skin biopsies has been
correlated with sweat metabolites, which indicates their role in sweat secretion and, thus, an
indirect effect on body thermoregulation [34]. By removing contact allergens and exogenous
compounds, such as fragments of pathogens, outside the cell, ABC transporters also play
an important role in the migration of Langerhans cells and help maintain a healthy immune
response in the skin [35,36]. ABC transporters also translocate lipid metabolites between
cell organelles in order to regulate lipid homeostasis and prevent disease development [37].
It has been found that a dysfunction of ABCA12, which is responsible for the translocation
of glucosylceramides (GlcCer) into lamellar granules, leads to a disturbance of the skin’s
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barrier functions and is even co-responsible for the development of a rare skin disease
called harlequin ichthyosis [38].

ABC transporters also have play a significant role in melanoma, as well non-melanoma
skin cancers, where the expression of these molecules is always present in a high level
compared to non-cancerous human skin cells [39–42]. The exact mechanism of the ABC
proteins expression in skin cancer cells is not known; however, ABC-dependent drug
efflux in these cells leads to cancer multidrug resistance by decreasing intracellular drug
accumulation [41,43–45]. Moreover, ABC transporters additionally protect the mitochon-
drial genome of melanoma cells against drug-induced DNA damage [43]. It has also been
observed that high levels of ABC transporters in melanoma cells favors their migration and
invasion, being a prognosis of numerous metastases and failure of anticancer therapy [8,46].

The presented examples are only a fragment of ABC transporters’ role in the skin that
is currently known. However, it can already be seen at this stage how important they are
in the functioning of cells both in normal physiology and in pathological states (Figure 2).
Therefore, due to the constant exposure of skin cells to the UV radiation naturally contained
in the Sun’s rays, the following question arises: what effect does UV radiation have on the
expression and activity of these proteins in skin cells?

4. UV Radiation and ABC Transporters’ Activity

The UV radiation that reaches the surface of the Earth (UVA and UVB) is one of the
most common harmful environmental factors to which cells of the human skin are daily
exposed. So far it is known that UV radiation directly induces oxidative stress, disturbs
the cellular lipid metabolism, leads to disorders of the structure and function of proteins,
and also damages DNA molecules, thus disrupting the functioning of the exposed cells
and even leading to cancer formation [47–49]. However, the growing public awareness of
these risks means that those substances that protect or reduce the effects of UV radiation
are used increasingly often [50]. For effective protection, it is often necessary for these
molecules to penetrate inside the cells without their being simultaneously pumped out,
e.g., by transmembrane transporters. It has been found that UV radiation (UVA and UVB)
significantly increases the permeability of skin cell membranes, both through their oxidative
damage and the activation of transmembrane proteins [51]. This has also been observed in
the case of transporters from the ABC family [29,52]. However, some data show that UVB
radiation, by impairing the generation of ATP, limits its pool in the cell, thus inhibiting the
activity of ATP-dependent transporters [53]. An overview of the effects of UV radiation on
the basic ABC transporters in skin cells is provided below (Figure 3).
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The relationship between UV radiation and potential substrates of ABC transporters,
mentioned in Table 1, is also significant for the functioning of the skin cells. It is suggested
that, UV-induced protein oxidation, leading to decreased free thiol groups in peptides, may
lead to a reduction in ABC transporter activity [54,55]. On the other hand, UV radiation,
by decreasing cholesterol synthesis in keratinocytes [56], and increased pumping of it out
from cells by the membrane transporters [57], significantly impair the structure of the cell
membrane. UV radiation also has a huge impact on lipid peroxidation [58]; however, in
the case of substrates for ABC transporters, they are non-oxidized compounds which are
metabolized after transmembrane transport, especially in the case of peroxisomal ABC
proteins [59,60].

4.1. Multi-Drug Resistance Transporters (MDR1/3)

The physiological functions of MDRs, especially in the skin, are poorly defined, while,
under stress conditions, these are well-known transporters that mediate the efflux of
chemotherapeutic agents from the intracellular space, thus inducing drug resistance [54].
It is known that the activity of MDRs in skin cells can be stimulated, e.g., by factors that
induce oxidative stress [54]. Moreover, the induced activity of MDRs in the skin stimulates
the migration of mononuclear phagocytes into lymphatic vessels, a process necessary for
the body’s inflammatory response to a pro-inflammatory factor in the skin [36]. On the
other hand, MDRs pump glucocorticosteroids out of skin cells, which is a particularly
unfavorable effect during therapies for immune skin diseases, including psoriasis [55].
In the case of psoriasis, the effect of a frequent use of UV radiation as a therapeutic
factor or a supporting pharmacotherapy is particularly noteworthy [56]. As reported for
both health and psoriatic skin cells, the activity of MDRs during combination therapy
(pharmacotherapy with phototherapy) is induced by the used therapeutic chemical, as
well as UV radiation [29,52]. On the other hand, UV radiation causes an increase in the
total level of oxidized proteins in cancer cells (human colon cancer cells) with enhanced
expression of MDRs, compared to MDR non-stimulated cells [57]. However, these oxidative
modifications do not initiate DNA repair [57]. Moreover, MDRs are sensitive to different
wavelengths of UV radiation to various degrees [58]. In the case of leukemia cell line, it
has been found that UVA impairs the activity of MDRs, which has not been observed in
the case of UVB or UVC [58]. In all of these treatments, UV doses do not alter cell viability;
hence, the authors suggest that MDRs are a physical target for oxidative damage induced
directly by UVA [58]. However, the exact mechanism of the influence of UV on MBRs in
skin cells is still not fully understood.

4.2. Transporter Associated with Antigen Processing 1/2 (TAP1/2)The physiological

TAPs, unlike the other ABC transporters, are proteins involved in the pumping
of degraded cytosolic peptides across the endoplasmic reticulum into the membrane-
histocompatibility complex (MHC) class I [59]. As a result, MHC displays its antigenic cargo
to cytotoxic T cells on the cell surface; therefore, virus-infected or malignantly-transformed
cells can be eliminated. It also induces migration and activation of immune cells (including
Langerhans cells) in the skin, as well as effector functions, such as cytokine production
and cytotoxicity, and may be used in epicutaneous vaccination approaches [60,61]. Hence,
a disruption of the proper functioning of this transporter may lead to skin dysfunction
and even disease development [62]. So far, differences in the structure of this protein have
been linked to skin diseases such as psoriasis [63,64], skin atopy [65], or vitiligo [66]. More-
over, TAPs deficiency syndrome can be diagnosed based on granulomatous skin lesions
before the occurrence of respiratory infectious manifestations [67,68]. Additionally, the
down-regulation of TAPs in melanoma is correlated with the development of metastases
and might be a marker of a poor prognosis [69].

Despite the significant role of TAPs in the skin, no clear data exist in the literature on
how UV radiation affects the activity of these proteins. However, due to the fact that UV
radiation induces oxidative stress, changes in TAPs activity following UV irradiation can be
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assumed theoretically from the data collected in the case of vitiligo [70]. In vitiligo, the de-
scribed down-regulation of antioxidant enzymes, such as glutathione peroxidase 1 (GPx1),
superoxide dismutase (SOD), and catalase (CAT), as well as the direct oxidizing action
of UV radiation from the Sun, are the reasons for the shift in the redox balance in the
oxidative direction [70]. Under conditions that simulate the effects of skin cells’ exposure
to UV radiation, TAPs show a high activity, which results in T cell activation [71]. This is
undoubtedly a protective reaction of the body; however, without external control, it always
leads to disease symptoms.

4.3. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)

CFTR is a regulator of salt levels and water balance in relation to numerous body
surfaces, including the skin [72]. When the protein in question is not functioning properly,
chloride ions become trapped in cells [72]. The secretion of chloride ions with water and
sweat outside the cells maintains the thermoregulatory function of the skin; therefore,
CFTR is strongly expressed in sebaceous glands and is located on the apical side of the
membrane [73]. Due to this localization, in the case of CFTR inactivation, sweat ducts
become obstructed and eccrine glands become inflamed. Ultimately, this may lead to
salt accumulation, resulting in folliculitis, miliary rubra, and atopic dermatitis-like skin
lesions [73]. On the other hand, the up-regulation of CFTR results in Cl- secretion, which
has been correlated with mucous cell degranulation and the distention of the glandular
ducts [74]. CFTR is also overexpressed in multiple layers of keratinocytes in the epidermis,
and the protein has been found to play a significant role in skin wound healing [75].
However, the down-regulation of CFTR in in vitro-cultured human keratinocytes promotes
cell migration but inhibits differentiation, while the overexpression of CFTR suppresses
migration but enhances keratinocyte differentiation, indicating an important role of CFTR
in the regulation of wound healing, as well as skin keratinization [75].

CFTR can be activated by many various compounds, including hormones (e.g., nore-
pinephrine or estrogens), as well as xenobiotics (e.g., isoproterenol) [76,77]. Moreover,
UV radiation belongs to the group of CFTR-activating factors; however, there are no clear
data concerning the mechanism of this action. It can only be suggested that UV-induced
activation of tyrosinase and tyrosinase-related proteins in melasma, or even melanoma,
indirectly enhances CFTR activity [77,78]. In addition, strong exposure to UV radiation can
lead to cystic fibrosis, a disease in which CFTR has been found to be overexpressed [79].

4.4. Sulfonylurea Receptors (SUR1/2)

SURs are transmembrane proteins that are subunits of the potassium ion channels,
responsible for their opening or closing according to ATP availability. Therefore, the
primary function of SURs is to sense intracellular levels of the nucleotides ATP and ADP,
and monitor the energy balance within the cell [80,81]. The main molecular targets of SURs
are antidiabetic drugs, the mechanism of which is action is to promote insulin release from
pancreatic beta cells. High levels of glucose lead to the increased production of ATP, which,
in turn, opens potassium ion channels. The resulting membrane depolarization opens
voltage-dependent calcium channels, thus increasing intracellular calcium concentrations,
which triggers exocytosis of insulin [82]. Data obtained in vitro suggest that SURs are also
abundantly expressed in skin cells such as fibroblasts and keratinocytes [83,84]. It has
been shown that chemical blocking of SUR1, as well as SUR2 action, affects hair growth,
thus causing hypertrichosis [85]. Moreover, SURs have been found in the mitochondria of
fibroblasts, where the regulation of potassium ion channels influences oxygen consumption,
the respiratory chain, membrane potential, and the efflux of pro-apoptotic factors [86].

Due to the very small amount of data in the literature on the action of such proteins
in the skin, it is even more difficult to find data on their activity under UV exposure. It
can only be assumed that, after exposure to UV, these receptors behave simiarily to other
cells under oxidative stress. It is known that oxidative conditions are associated with
SUR suppression [87]. Therefore, it can be suggested that a malfunction of these receptors
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may lead to the development of type 2 diabetes, a disease additionally accompanied by
oxidative stress [88]. However, that SUR reactions which are identical to oxidative stress
may be occurring in the skin is only a supposition. There are also reports, however, that
increased production of ROS induces different potassium channel responses (open or close),
depending on the tissue [89].

4.5. Breast Cancer Resistance Protein (BCRP)

Another extremely important transporter protein from the ABC family is BCRP. The
name itself, however, may be misleading as far as its location and function are concerned.
BCRP is a transmembrane transporter of xenobiotics; however, only some of them are
chemotherapeutic agents, e.g., mitoxantrone and camptothecin analogues [90]. BCRP is
expressed not only in breast cancer cells, but also in the gut, the bile canaliculi, the placenta,
the skin, and the blood–testis and blood–brain barriers [29,91]. Toxins and xenobiotics
pumped out by these molecules limit the absorption of potentially toxic substances in
cells, thus contributing to the natural resistance and longevity of normal health cells.
However, malignant tissues can exploit the properties of BCRP to survive hypoxia and
evade exposure to chemotherapeutic drugs [91]. In the skin, in addition to its primary role in
protecting against toxins, BCRP also significantly stimulates the differentiation of activation
of immune cells in response to harmful environmental factors [92]. Moreover, the action of
this protein action is UV-sensitive, being activated by it [93]. Additionally, the obtained
data show that UV irradiation does not cause phototoxicity nor, surprisingly, hepatotoxicity
in BCRP-knockdown animals, which indicates the crucial role of this transporter not only
in the skin, but also in the whole organism [93]. On the other hand, UV-induced activity
of BCRP reduces the protective effect of the applied therapeutic compounds; those with
antioxidant properties as well, have been observed in human keratinocytes treated with
cannabidiol [29]. A similar effect has been observed in cannabidiol-treated keratinocytes
isolated from psoriatic patients, which, as in the case of cancer, interferes with therapy [52].

5. Conclusions

The present review shows the importance of ABC transporters for the proper function-
ing of the human body—individual cells/tissues/organs as well as the whole organism—
and the dangers to human health posed by improper control of the activity of these
transporters. Exposure of skin cells to UV radiation, or the related oxidative stress, often
leads to increased activity of ABC transporters, as has been observed in the case of MDRs,
TAPs, CFTR, and BCRP. This is not only conducive to the pumping out of toxins, but
also of protective compounds, and even drugs. A different effect of oxidative stress has
been observed in the case of mitochondrial SURs, with the regulation of these channels
influencing oxygen consumption, respiratory chain reactions, membrane potential, and the
efflux of pro-apoptotic factors into cytoplasm. However, the limited amount of knowledge
cited in this paper highlights the lack of sufficient experimental studies of ABC transporters
in skin cells that would make it possible to formulate unambiguous hypotheses. At the
same time, the authors show the potential importance of this knowledge in relation to
healthy skin exposed to solar radiation, as well as in relation to the pharmacotherapy of
various skin diseases.
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