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Abstract: With the rising incidence of hepatocellular carcinoma (HCC) from non-alcoholic steatohep-
atitis (NASH), identifying new metabolic readouts that function in metabolic pathway perpetuation is
still a demand. The study aimed to compare the metabolic signature between NASH and NASH-HCC
patients to explore novel reprogrammed metabolic pathways that might modulate cancer progression
in NASH patients. NASH and NASH-HCC patients were recruited and screened for metabolomics,
and isotope-labeled lipidomics were targeted and profiled using the EXION-LCTM system equipped
with a Triple-TOFTM 5600+ system. Results demonstrated significantly (p ≤ 0.05) higher levels of
triacylglycerol, AFP, AST, and cancer antigen 19-9 in NASH-HCC than in NASH patients, while
prothrombin time, platelet count, and total leukocyte count were decreased significantly (p ≤ 0.05).
Serum metabolic profiling showed a panel of twenty metabolites with 10% FDR and p ≤ 0.05 in both
targeted and non-targeted analysis that could segregate NASH-HCC from NASH patients. Pathway
analysis revealed that the metabolites are implicated in the down-regulation of necroptosis, amino
acid metabolism, and regulation of lipid metabolism by PPAR-α, biogenic amine synthesis, fatty acid
metabolism, and the mTOR signaling pathway. Cholesterol metabolism, DNA repair, methylation
pathway, bile acid, and salts metabolism were significantly upregulated in NASH-HCC compared
to the NASH group. Metabolite–protein interactions network analysis clarified a set of well-known
protein encoding genes that play crucial roles in cancer, including PEMT, IL4I1, BAAT, TAT, CDKAL1,
NNMT, PNP, NOS1, and AHCYL. Taken together, reliable metabolite fingerprints are presented and
illustrated in a detailed map for the most predominant reprogrammed metabolic pathways that target
HCC development from NASH.

Keywords: non-alcoholic steatohepatitis; hepatocellular carcinoma; metabolomic; lipidomic;
pathway reprogramming

1. Introduction

A broad spectrum of liver manifestations translated from dysregulated metabolism
is a characteristic feature of non-alcoholic fatty liver disease (NAFLD). The prevalence
of NAFLD among the general population ranges from 11.2–37.2% [1]. Mechanistically,
the disease is characterized by metabolic lipids upregulation within steatotic hepatocytes.
Long-term steatosis can lead to hepatocellular ballooning, lobular inflammation, hepatocyte
apoptosis, and non-alcoholic steatohepatitis (NASH) [2]. NASH is the most severe form of
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NAFLD, and it can be verified histologically in up to 47% of all NAFLD cases [3]. In previous
cohorts, the prevalence of NAFLD-related HCC ranged from 41–49% of NAFLD without
cirrhosis [4]. Hence, NASH became the second leading reason for HCC [4]. In two large
studies in the Veterans Health Administration, 20% to 36% of non-cirrhotic NASH patients
were diagnosed with HCC [5,6]. Furthermore, during analyzing the HCC cohort over the
years, the researcher reported that 65% of the cases were raised on the NASH background
without cirrhosis [7]. Despite being benign at early stages, NASH can aggressively progress
into advanced fibrosis and cirrhosis, ending with hepatocellular carcinoma (HCC) [2,8].
With increased annual incidence, HCC arising from NASH background is now considered
the fastest-growing disease [2,8]. However, it is usually diagnosed at the terminal stage of
the disease because of the low sensitivity of the available screening tests [2,8].

The cellular metabolism is altered during carcinogenesis toward an adaptive hypoxic
environment and evading apoptotic signals [9]. Growing evidence suggests that spe-
cific metabolites can exert a cancer-promoting effect through the modulation of diverse
signaling pathways [10]. However, these metabolites are still elusive and incompletely
understood [8,11]. Therefore, linking the metabolic reprogramming that hallmarks can-
cer within NASH-dysregulated metabolism might open the door to discovering novel
metabolic readouts. In addition, it will aid in identifying possible biomarkers for the early
detection of HCC in NASH patients [12]. However, alpha-fetoprotein (AFP) remains the
primary tumor marker for HCC; its sensitivity and predictive values range from 25–65%.
AFP levels are within the normal range in 40% of HCC patients. Additionally, only 20%
of HCC patients have high levels of AFP in the early stages, while AFP levels can be high
in HCC-free individuals. Accordingly, the American Association for the Study of Liver
Diseases (AASLD) noted that it is unreliable for HCC screening [9].

Of note, increased dietary intake of fatty acids is associated with lipid metabolism
imbalance in the liver [13]. Interestingly, dysregulation of fatty acid metabolism activates
aberrant oncogenic signaling pathways involved in HCC development and progression [14].
Moreover, evidence highlights the upregulation of the tricarboxylic acid (TCA) cycle toward
cancer progression. This alteration is thought to affect the activity of enzymes in glutamine
metabolism, malate/aspartate, and citrate/pyruvate shuttles, which play a crucial role in
cancer development and progression [15–17]. These disrupted metabolic pathways align
with an impaired mitochondrial adaptation resulting in antioxidant activity impairment and
ATP disruption, which is crucial in NASH to HCC transition [18]. Moreover, micronutrients
such as vitamins are vital in maintaining physiological function and metabolism and impact
disease progression [19]. Studies have focused on a specific vitamin; however, a broader
outlook of the vitamins in NASH and NASH-HCC remains unexplored. Furthermore,
the lipid metabolism transcriptional landscape is emerging as a rich area of research,
especially in cancer development and progression [8]. Exploring the mechanistic insights
of lipids in liver diseases may open the door to developing effective therapeutics. Because
lipids are incorporated into vital functions and inflammatory processes, so they have been
considered the first extracellular and second intracellular signals in the cellular recognition
process [20]. Although many researchers have investigated how lipid change affects
transcriptional processes, the gap remains in our knowledge of how particular lipids
modify the metabolic landscape of liver disease. These changes in metabolic status can
be tracked by metabolomics analysis. Metabolomics is a comprehensive approach for
identifying metabolic signatures towards screening, prediction, and earlier diagnosis with
great privilege over conventional diagnostic tools [21].

Moreover, it is essential to understand the disease pathophysiology and better monitor
high-risk individuals. The potential of metabolomics as a high-throughput holistic diagnos-
tic platform would avoid the drawbacks of depending on a single metabolite alteration.
Therefore, metabolite profiling (metabotyping) is considered a powerful unbiased tool to
characterize different pathways involved in disease progression [22].
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Based on these facts, we aimed to explore the metabolic signature between NASH and
NASH-HCC patients using a TripleTOF 5600+ analytical technology to elucidate the possi-
ble reprogrammed metabolic pathways that drive cancer progression in NASH patients.

2. Results
2.1. Clinical Characteristics of NASH and NASH-HCC Patients

The median age for the entire cohort of NASH and NASH-HCC patients was 62 (range
56.5–67.5) years and 63 (range 58–66) years, of which ~77% and 83.5% were male, and ~23%
and 16.5% were female, respectively. Therefore, NASH and NASH-HCC patients exhibited
a higher predominance of the male gender than the female gender. The Body mass index
(BIM) was higher (overweight) than the normal range (BMI < 25), 30 (28–33.4), and 28.5
(25.7–32) in both NASH and NASH-HCC patients, respectively, as shown in Table 1.

Table 1. Baseline clinical characteristics of NASH and NASH-HCC patients.

Characteristics NASH NASH-HCC p Value

Age, median (25th–75th), (years) 62 (56.5–67.5) 63 (58–66)

Gender distribution [n (%)]

Male 24 (~77) 25 (~83)

Female 7 (~23) 5 (~16)

BMI, Median (25th–75th), kg/m2 30 (28–33.4) 28.5 (25.7–32)

a TAG, Median (25th–75th), mg/dL 185 (143–231) 169 (155–189)

b FBG, Median (25th–75th), mg/dL 98 (88–104) 106 (93–140)

Insulin, Median (25th–75th), µU/mL 12 (10.2–13.6) 10.9 (7.8–13.1)

c HOMA-IR, median (25th–75th) 3 (2.4–3.5) 2.9 (1.9–3.5)

d AST, median (25th–75th), U/L 55 (44.5–65.5) 67 (59.7–67.7) 0.034

e ALT, median (25th–75th), U/L 37 (26–54.5) 45 (35.5–55.5)

Albumin, median (25th–75th), g/dL 3.7 (3.4–3.9) 3.78 (2.9–3.8)

Bilirubin, Median (25th–75th), mg/dL 1 (0.9–1.7) 1.1 (0.9–1.5)

Hemoglobin, median (25th–75th), g/dL 11.3 (10.5–13.2) 12 (11.3–13.3)

Platelets, median (25th–75th), 109/L 178 (115–212) 107 (62–194) 0.025

f TLC, median (25th–75th), 109/µL 6.5 (5.2–8) 6 (4.4–6) 0.041

Prothrombin, Median (25th–75th), % 88 (85–95) 70.9 (66.4–84) 0.001

g AFP, Median (25th–75th), ng/mL 9 (5.7–12) 312 (5.1–882) 0.033

h CEA, Mean ± SD, ng/mL 2.93 ± 0.1 2.94 ± 0.98

i CA 19-9, Mean ± SD, U/mL 31.1 ± 3.6 43.2 ± 4.3
a: TAG, triacylglycerol; b: FBG, fasting blood glucose; c: HOMA-IR, homeostatic model of insulin resistance; d:
AST, aspartate aminotransferase; e: ALT, alanine aminotransferase; f: TLC, total leukocyte count; g: AFP, alfa
fetoprotein; h: CEA, carcinoembryonic antigen; i: CA 19-9: cancer antigen; NASH: non-alcoholic steatohepatitis;
HCC: hepatocellular carcinoma, n: number of samples.

2.2. Hematological and Biochemical Analysis

TAG as a marker for the lipid profile showed an increment in NASH and NASH-
HCC 185 mg/dL (range 143–231) and 169 mg/dL (range 155–189), which is higher than
the known normal range (less than 150 mg/dL). Prothrombin activity was significantly
(p = 0.001) decreased in NASH-HCC patients by 52% compared to NASH patients with
no significant change in hemoglobin levels. Platelet count (p = 0.025) and total leucocyte
count (p = 0.041) were significantly decreased in NASH-HCC patients by 67% and 69%,
respectively, compared to NASH patients. Furthermore, our study showed a significant
increase in serum AST levels in NASH-HCC patients by 151% compared to NASH patients,
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as shown in Table 1; ALT, albumin, and bilirubin showed non-significant change among
both groups.

2.3. Tumor Markers and Diabetic Profile

Significant (p = 0.033) increase in serum AFP levels was detected in NASH-HCC
patients by 146% compared to NASH patients, as shown in Table 1. Cancer antigen 19-
9 was elevated in NASH-HCC, recording 43.2 ± 4.3 U/mL, which is higher than the
accepted upper limit of 37 U/mL, while carcinoembryonic antigen was within the normal
range in both groups. Diabetic profiles, including FBG, Insulin, and HOMA-IR, showed a
non-significant change

2.4. Metabolomic Profiling of NASH and NASH-HCC Patients

Investigating the difference between the serum metabolic profile of NASH and NASH-
HCC patients identified 1900 metabolites using the HMDB version 4.0 as a search space. As
a result of fold change, we reported 186 metabolites upregulated and 364 down-regulated
in NASH-HCC patients compared with NASH patients (Figure 1A). Using the Wilcoxon
Mann–Whitney test with a p-value < 0.05, 11 metabolites were significantly and differently
expressed between the two groups (Figure 1B). Volcano scatters plot with fold change
between the groups equal to 1.5 (and −1.5), FDR 10% (q-value), and p < 0.05 detected
ten small molecules when compared between the NASH and the NASH-HCC groups
(Figure 1C).

Some of these metabolites were positively associated with NASH-HCC as compared
to NASH. They were ordered according to the fold change from the highest to the lowest
as 9,10-Dihydroxy-12-octadecenoic acid (9,10-DiHOME), (13S)-Hydroxyoctadecadienoic
acid (13-HODE), LysoPC O-15:1, cortisol, N-ethyl arachidonoyl amine, LysoPC 22:6/0:0,
and 8(R)-Hydroperoxylinoleic acid (Table 2 and Figure 2A). On the contrary, other signifi-
cant metabolites were negatively associated with NASH-HCC compared to NASH. These
metabolites were ordered from the most significant negative fold change to the lowest as
leucine, indole-3-propionic acid, and linoleic acid (Table 2 and Figure 2A).

Table 2. Non-targeted metabolites differed significantly in NASH-HCC as compared to NASH patients.

Metabolite p Ajusted Log 2 (Fold Change) Regulation

Linoleic acid 0.096819 −2.06 Down

Indole-3-propionic acid 0.008281 −1.59 Down

(D/L)-leucine 0.001103 −1.46 Down

8(R)-Hydroperoxylinoleic acid 0.096819 0.61 Up

LysoPC 22:6/0:0 0.099088 0.91 Up

N-ethyl arachidonoyl amine 0.081234 1.38 Up

Cortisol 0.096819 1.38 Up

LysoPC O-15:1 0.026366 1.41 Up

13-HODE 0.052795 1.48 Up

9,10-DiHOME 0.004044 1.52 Up
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Figure 1. (A) Upregulated and down-regulated metabolites with fold change ±1.5 in NASH-HCC 
patients when compared to NASH patients. (B) Wilcoxon (Mann–Whitney) test with FDR 10% (q-

Figure 1. (A) Upregulated and down-regulated metabolites with fold change ±1.5 in NASH-HCC
patients when compared to NASH patients. (B) Wilcoxon (Mann–Whitney) test with FDR 10%
(q-value) and p-value < 0.05, and 11 metabolites were detected to be significantly (red dots) expressed
differently between the two groups. (C) Volcano plot with fold change between the groups equal to
1.5 (and −1.5) and alpha value p ≤ 0.05.
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group analysis, including six groups with twenty deuterated compounds (Supplementary 

Figure 2. (A) Boxplot for the non-targeted molecules in NASH-HCC patients when compared
to NASH patients; p ≤ 0.05, FDR 10% (q-value), and fold change ±1.5 in non-targeted analysis.
(B) Boxplot for the targeted molecules in NASH-HCC patients when compared to NASH patients;
p ≤ 0.05 and fold change ±1.5.

2.5. Targeted Analysis of Lipids

We detected high coverage of lipid compounds based on chemical structure clas-
sification, as shown in the pie chart (Figure 3). Therefore, we focused on some lipids
group analysis, including six groups with twenty deuterated compounds (Supplementary
Table S1). Among the analyzed deuterated compounds, five compounds; including 17:0
Lyso PE-d5, 19:0 Lyso PE-d5, 22:1 SM (d18:1/22:1)-d9, 20:1 SM (d18:1/20:1)-d9, 18:1 SM
(d18:1/18:1)-d9, showed significant (p < 0.05) change with fold change equal to 1.5 (and
−1.5) in NASH-HCC patient when compared to NASH group (Table 3 and Figure 2B).
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Table 3. Targeted metabolites differed significantly in NASH-HCC as compared to NASH patients.

Metabolite p Value Log 2 (Fold
Change) Regulation

Targeted
Non-quantified

17:0 Lyso PE-d5 0.016402 −0.7244 Down

19:0 Lyso PE-d5 0.014073 −0.67317 Down

18:1 SM
(d18:1/18:1)-d9 0.037147 −1.0716 Down

20:1 SM
(d18:1/20:1)-d9 1.92 × 10−6 −2.3629 Down

22:1 SM
(d18:1/22:1)-d9 1.41 × 10−10 −2.5234 Down

Targeted
quantified

Ergocalciferol 0.018409 −1.1810 Down

alpha-Tocopherol 0.015821 −0.9796 Down

Folic acid 0.040606 −1.0113 Down

Pantothenic acid 0.043206 −0.7311 Down

Phylloquinone 0.006148 1.0917 Up

2.6. Targeted Analysis of Vitamins and Amino Acids

Our analysis showed no significant difference in amino acids (L-Phenylalanine and
L-Tryptophan). In comparison with the known levels of these two amino acids, we found
that their level is lower than the average (Supplementary Table S2 and Figure S1A). Among
the panel of measured vitamins, five vitamins were significantly (p < 0.05, 1.5 fold change)
changed (Table 3); ergocalciferol, α-Tocopherol, phylloquinone, folic acid, and pantothenic
acid, as shown in Figure 2B. Ergocalciferol showed a significant decrease in the NASH-
HCC group, where 20% only had a sufficient amount compared to NASH 57%. In NASH-
HCC patients, 55% of patients showed a severe decrease (<10 ng/mL) when compared to
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28.5% in NASH patients (Figure 4). Folic acid and pantothenic acid recorded a significant
decrease in NASH-HCC (4.16 and 33.0 ng/mL) patients compared with NASH patients
(7.39 and 40.5 ng/mL), respectively. α-Tocopherol showed a significant decrease in NASH-
HCC patients (102.4 ng/mL) compared with NASH patients (78.1 ng/mL), and both
groups recorded lower levels than the average level in healthy humans. Surprisingly,
phylloquinone showed a significant increase in NASH-HCC patients (2.9 ng/mL) compared
with NASH patients (1.6 ng/mL), as shown in Figure 2B. These findings were compared
with the previous studies, which are shown in Supplementary Table S2 and Figure S1B. The
results clarified that the level of the vitamins was almost average except for pantothenic acid,
which showed a lower level than the average concentrations (Supplementary Table S2).
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2.7. Targeted Analysis of Adenosine, ATP, and 5′-AMP

As per remodeling of mitochondrial energetics, which derives the progression of
NASH into HCC, ATP, 5′-AMP, and adenosine levels were determined, and results showed
that 5′-AMP was significantly (p < 0.05) downregulated in NASH-HCC (13.6 µmol/L) as
compared to NASH (25.3 µmol/L) patients (Figure 5). Meanwhile, adenosine and ATP
concentration showed a non-significant change among tested patients (Figure 5).
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2.8. Metabolomics and Clinical Data Clustering between NASH and NASH-HCC Patients

The correlation matrix between the top 15 non-target metabolites showed significant
segregation for almost all samples, as illustrated by the heatmap chart (Figure 6A). One
NASH-HCC sample was not assembled in the NASH-HCC direction. On the other hand, the
biochemical and hematological parameters in the heatmap clarified that platelet count, TLC,
PT, and AST failed to completely segregate NASH and NASH-HCC patients (Figure 6A).
Furthermore, the heat map highlighted that AFP could not completely segregate NASH
from NASH-HCC patients compared to identified metabolites (Figure 6A). AFP recorded
the HCC threshold in only 50% of the NASH-HCC patients. TLC and platelet count were
within the normal range in both groups. AST and prothrombin activiy were directed to the
higher level in both groups. Water- and fat-soluble vitamins could segregate 60% of the
NASH patients from the NASH-HCC patients (Figure 6B).

2.9. Pathway Enrichment Analysis

A pathway enrichment analysis was conducted using Integrated Molecular Pathway
Level Analysis (IMPaLA) for NASH and NASH-HCC. Pathway enrichment analysis was
performed with FDR 10% (q-value), fold change cut-off equal to 1.5, and p-value < 0.05 using
different sources as a background database search. Significant pathways were de tected,
as explored in Figure 7A. These pathways were related to the transport of amino acid and
fatty acid metabolism, bile salts and organic acids, oxidative stress, glucose homeostasis,
ammonia recycling, and the urea cycle. Among the assigned down-regulated pathways
in NASH-HCC compared to NASH patients were necroptosis, amino acid metabolism,
regulation of lipid metabolism by PPAR-α, biogenic amine synthesis, fatty acid metabolism,
and mTOR signaling pathway (Figure 7B). On the other hand, cholesterol metabolism, DNA
repair, methylation pathway, and bile acid and salts metabolism were significantly upregulated
in NASH-HCC compared to the NASH group (Figure 7B and Supplementary Table S3).
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Figure 7. (A) Pathway enrichment analysis with FDR 10% (q-value) and p-value < 0.05 using different
sources as background database search. Each database is illustrated with a color code in the figure
legend. The size of the circle reflects the number of metabolites found in this pathway over the
total metabolites. The x-axis is the −log10 of the q-value. This analysis includes both up- and
down-regulated metabolites with a fold change cut-off equal to 1.5. (B) Pathway enrichment analysis
with FDR 10% (q-value) and p-value < 0.05 using different sources as background database search.
Each database is illustrated with a color code in the figure legend. The size of the arrows’ head reflects
the number of metabolites found in this pathway over the total metabolites. The x-axis is the −log10
of the q-value. This analysis includes up- or down-regulated metabolites with a fold change cut-off
equal to 1.5, as described in the Materials and Methods. If the head of the arrow point is upward, that
pathway is only enriched using the upregulated metabolites. If the head of the arrow is downwards,
that pathway is only enriched using the down-regulated metabolites.
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2.10. An Integrative Metabolite–Protein Interactions Network

OmicsNet was used to generate a direct Metabolite–Protein network association
using significant fold change (1.5 FC) features. The network consists of nodes represent-
ing metabolite and protein biological entities (Figure S2 and Supplementary Table S4).
Connecting these nodes infer direct molecular interactions. Many well-known proteins
that play crucial roles in cancer, including purine nucleoside phosphorylase (PNP), Phos-
phatidylethanolamine N-methyltransferase (PEMT), CDK5 Regulatory Subunit-associated
Protein 1-Like 1 (CDKAL1), Betaine-homocysteine S-methyltransferase (BHMT2), glutamic-
oxaloacetic transaminase family (GOT1, GOT2), Trans-Activator of Transcription (TAT),
BAAT (Bile Acid-CoA: Amino Acid N-Acyltransferase), Nicotinamide N-Methyltransferase
(NNMT), Phosphatidylethanolamine N-methyltransferase (PEMT), N-Acylsphingosine
Amidohydrolase (ASAH1-2, Alkaline Ceramidase 1-2 (ACER1-2), CYP4F11, Cytosolic phos-
pholipase A2 beta (PLA2G4β), L-amino-acid oxidase precursor (IL4I1), and the adenosyl
homocysteinase family (AHCYL, AHCYL 1, AHCYL2) were represented in this network.
Some metabolite-interacting proteins participated in other aspects such as immune check-
points, energy metabolism, and ROS balance, highlighting that metabolites can participate
in various cellular pathways via interactions with various proteins that may favor carcino-
genesis and tumor aggressiveness.

3. Discussion

Thought to appear benign, NASH involvement in HCC development exceeds hepatitis
viruses’ contribution, especially with the contemporary lifestyle and NASH patients not
periodically screened for HCC. Thus, understanding NASH metabolic reprogramming, the
core of HCC progression, becomes increasingly urgent [8]. Our study aimed to compare
the metabolic signature between NASH and NASH-HCC patients, which could determine
robust markers that might drive HCC progression from NASH. Although AFP was the
only reported serum marker, recent reports highlighted that increased AFP levels are only
elevated in about one-third of the NASH-HCC patients [23]. This finding aligns with
our AFP results, which failed to segregate NASH from NASH-HCC patients completely.
Although a significant increase was detected in serum AFP levels in NASH-HCC patients
compared to NASH patients, there are wide ranges between NASH-HCC individuals
(5.1–882 ng/mL). Therefore, AFP presented restricted potentiality for differentiating NASH-
HCC from NASH patients [8]. Furthermore, there was a significant increase in serum
AST levels in NASH-HCC patients by 151% compared to NASH patients, despite being
suggestive of liver damage but not specific to hepatic carcinogenesis. In addition, our results
showed that other diabetic profiles such as FBG, Insulin, and HOMA-IR and biochemical
and hematological parameters such as platelet count, TLC, PT, and AST also failed to
segregate NASH and NASH-HCC patients [8].

Thus, we aimed for a non-invasive metabolic signature that compares NASH and
NASH-HCC patients to explore the reprogrammed metabolic pathways that drive can-
cer progression in NASH patients. In this context, our results showed a pattern of
20 metabolites from targeted and non-targeted analyses that could segregate NASH-HCC
from NASH patients. Transnationally, these disturbed metabolites reflect the activation
or downregulation of some significant pathways in NASH-HCC compared to NASH pa-
tients. These pathways were related to the transport of amino acid metabolism, fatty acid
metabolism, bile salts and organic acids metabolism, oxidative stress-induced senescence,
glucose homeostasis, ammonia recycling, urea cycle, and iron accumulation. Among the
assigned pathways significantly downregulated in NASH-HCC compared with NASH
patients were necroptosis, amino acid metabolism, and regulation of lipid metabolism by
PPAR-α, biogenic amine synthesis, fatty acid metabolism, and mTOR signaling pathway.

On the other hand, cholesterol metabolism, DNA repair, methylation pathway, and
bile acid and salts metabolism were significantly upregulated in NASH-HCC compared to
the NASH group. A significant increase in cortisone, turn cortisol synthesis, and excretion
pathway in NASH-HCC patients was reported. Previously, it was anticipated that NAFLD
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metabolically affects steroid metabolism [24]. The deranged cortisol/cortisone shuttle
increases glucocorticoids with further metabolic consequences of insulin resistance and
hypertriglyceridemia [24]. Elevated serum corticosteroids are associated with an increased
risk for HCC development in autoimmune chronic active hepatitis [25].

Moreover, microbial metabolites have emerged as critical components that mediate
metabolic effects on the liver through the “gut–liver axis” [26]. Thereby, gut bacterial
dysbiosis is associated with worsening liver disease through enterohepatic circulation [27].
Indole-3-propionic acid, a deamination metabolite of tryptophan produced by gut bacte-
ria, can increase the diversity of intestinal microbes and maintain intestinal homeostasis
through the induction of tight junction protein expressions, such as ZO-1 and Occludin [28].
Current results revealed a significant downregulation of Indole-3-propionic acid in NASH-
HCC patients. Previously, Indole-3-propionic acid was reported to differentiate NASH
patients from alcohol-related liver damage and was considered a potent anti-NASH and
-HCC microbial metabolite in rats fed a high-fat diet [29]. Indole-3-propionic acid prevents
lipid peroxidation and acts as a free radical scavenger, the primary causative factor of liver
inflammation and damage [30].

Moreover, Indole-3-propionic acid has the ability to inhibit the expression of fibrogenic
genes such as transforming growth factor-β (TGF-β) [30], α-smooth muscle actin (α-SMA),
and collagen synthesis genes that activate ROS [28]. Therefore, it directly impacts the
metabolic and antioxidant function of the mitochondria [31]. Among the unregulated path-
way in NASH-HCC are cholesterol and bile acid metabolism. Cholesterol is considered the
primary lipotoxic molecule that promotes the progression of NASH and liver cancer [32,33].
Depletion of Indole-3-propionic acid was noted in hypercholesterolemia-fed HCC mice [33].
Furthermore, Indole-3-propionic acid could inhibit the accumulation of triglycerides in the
cholesterol-induced human hepatocyte cell line and inhibit the proliferation of NASH-HCC
cell lines [33]. Moreover, another study clarified that indole-3-propionic acid reduced fatty
acid transcription genes in HepG2 cells [34]. Therefore, the damage to the tryptophan
metabolism and the reduction in serum indole-3-propionic acid content promotes the
development of NASH-HCC.

Advanced liver diseases are commonly associated with amino acid imbalance, affect-
ing patients’ prognosis. Leucine and isoleucine are essential branched-chain amino acids. In
the current study, we reported a decreased level of leucine in NASH-HCC compared with
NASH patients, and pathway analysis showed a significant upregulation of leucine and
isoleucine degradation pathways. Leucine, a metabolic regulator, was associated with HCC
development and progression [35]. Thus, it might lie at the intercept of NASH-dysregulated
metabolism and cancer progression, as previous reports associated its level with liver in-
flammation and carcinogenesis [35]. Previously, branched-chain amino acids suppressed
the growth and angiogenesis of HCC [36] by degrading vascular endothelial growth factor
mRNA [37] and inhibiting insulin resistance [36]. A previous study reports the inhibitory
effect of these amino acids in obesity-related HCC by suppressing cellular proliferation
by interrupting adipokines’ stimulatory effect [38]. They induce apoptosis of liver can-
cer cell lines by interfering with mTOR-dependent mechanisms [39]. Different research
clarified that branched-chain amino acids supplementation reduces the incidence [40,41]
and recurrence of HCC by 25–30% and 55.7% [42], respectively. In target analysis, even
though our data showed no significant difference in amino acids (L-Phenylalanine and
L-Tryptophan) among both diseased groups, we compared our results with the known
levels of these two amino acids, and we reported a decrease in both of them from the aver-
age level. Both phenylalanine and tryptophan are involved in various biological functions,
including protein synthesis, metabolism, and degradation [43]. Tryptophan is a precursor
of serotonin and melatonin, while phenylalanine is a precursor of tyrosine, dopamine, and
epinephrine [43]. Previously, Vanessa et al. reported an elevation in the level of tryptophan
and phenylalanine in the NASH group compared to those with normal liver. This group
assumed this elevation was due to impaired hepatic metabolism [44].
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On the other hand, some researchers clarified that the consumption and metabolism
of amino acids are the most demanding and leading substrates for biological processes
needed for cancer cell growth, especially tryptophan, tyrosine, phenylalanine, methionine,
isoleucine, leucine, and glutamine [45]. This massive amino acid consumption, in turn,
lowers their levels. Moreover, they reported that the most consumed amino acid is leucine,
which is heavily involved in the human proteome, while tryptophan is the least [45]. In line
with this, we report marked downregulation in leucine but not in tryptophan. Although
therapeutic use of amino acids in patients with liver diseases is promising, scientists are
divided between supporters and opponents of their use due to the discrepancy in the
previous study results, so therapeutic use of amino acids must be performed carefully, with
further studies still needed to select the proper type and dose of amino acid and stage of
liver disease.

Evidence that links linoleic acid, an essential polyunsaturated fatty acid, with carcino-
genesis is still controversial. Our study showed a significant depletion of linoleic acid in
NASH-HCC compared to NASH patients. Previous evidence points to the association of
linoleic acid depletion with HCC progression from different sources, either NAFLD-HCC
base [8,46] or viral-associated HCC [47]. Moreover, linoleic acid accumulation causes sup-
pression of colorectal cancer [37]. The theory behind its suppressive effect is due to its vital
role in inflammatory response through inducing reactive oxygen species, apoptosis, and
mitochondrial dysfunction [48]. Linoleic acid is a precursor to arachidonic acid, a substrate
in prostaglandin synthesis; therefore, a decrease in linoleic acid may result in inflammatory
signal disturbance [36]. Conversely, in a mouse model, accumulation of linoleic acid causes
CD4+ T cell loss and reactive oxygen species increment, leading to NAFLD-mediated liver
carcinogenesis [49]. Interestingly, Lu et al. reported that linoleic acid at high concentrations
>300 µM suppresses tumor growth, while at low concentrations (100–200 µM) it enhances
proliferation [48], which explains the contradiction in the different studies. Collectively,
augmentation of linoleic acid might be a potential HCC therapeutic target.

The lipid metabolism transcriptional landscape is emerging as a rich area of research,
especially in cancer development and progression. Lipids are incorporated in vital func-
tions, including energy storage, inflammatory processes, and cellular recognition, and they
are considered first as extracellular and second as intracellular signals in the recognition
process [20]. Although many researchers have investigated how lipid changes affect tran-
scriptional processes, the gap remains in our knowledge of how particular lipids modify
the metabolic landscape of liver disease. In the current study, some lipids were positively
associated with NASH-HCC compared to NASH in both targeted and non-targeted analy-
ses. The imbalance between fatty acid uptake, fatty acid oxidation, and secretion leads to
lipid accumulation and disease progression [50]. Sphingomyelin (SM) is the most abundant
sphingolipid, essential for creating sterol-enriched membranes and cell signaling [51]. In
alignment with our result, Zheng et al. reported that the risk of non-alcoholic fatty liver
disease was increased with higher plasma phospholipids [52]. Non-alcoholic fatty liver
disease with hyperglycemia reported increasing circulating phosphatidylethanolamine [53].
Previously, phospholipids were depleted in patients with NASH [54]. This may be due
to the enzymes that convert lysophospholipids into phospholipids in low abundance in
NASH patients. This point may clarify the accumulation of lysophospholipids in the
current study with the progression of NASH toward HCC. Phospholipids can act as sig-
nal transductors with oncogenic and tumor-suppressive roles but not lysophospholipids,
which may increase hepatic cancer cell migration and invasion [55]. Lysophosphocholin
has controversial results. A higher level was reported in NASH patients [56].

Conversely, in vitro research reported increased or unchanged levels in NASH patients’
livers and found that lysophosphocholin activates apoptosis by activating the tumor necro-
sis factor-α pathway [57,58]. A previous study reported the depletion of sphingomyelins
due to the activation of its conversion to ceramides, a process catalyzed by sphingomyelin
phosphodiesterases, but the opposite direction was repressed [8]. They reported that HCC
from different cancer origins has different lipidomics patterns; there was a decrease in
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sphingomyelin in HCC from the viral origin compared to from NAFLD origin [8]. Support-
ively, we reported sphingomyelin downregulation in NASH-HCC patients. Cooperatively,
our findings showed significant downregulation in sphingomyelin metabolism/ceramides
salvage. Another interesting finding was that eicosanoids, especially 9,10-DiHOME and
13-HODE, were elevated in the sera and liver of HCC patients [59], which agrees with
our results. DiHOMEs play a dual role in inflammation, activating neutrophil chemotaxis
at low concentrations while inhibiting neutrophil respiratory burst at higher concentra-
tions [59]. Another aspect, disruption of lipid metabolism, is one of the major hallmarks
of NASH and its progression to HCC [60]. Accumulating hepatic fatty acids in NASH
results in decreased mitochondrial β-oxidation with increased peroxisomal and microsomal
ω-oxidation, activating the lipotoxicity state and disease progression [60]. Since there are
controversial results, more studies focusing on lipidomics analysis are still needed to resolve
this apparent paradox and explore the underlying mechanism in different disease stages.

Finally, our metabolite–protein network association showed proteins playing roles
in HCC progression as PEMT, PLA2G4β, IL4I1, ACER, BAAT, TAT, GOT, CDKAL1, PNP,
NNMT, NOS1, and AHCYL [61,62]. Being involved in the genetic, epigenetic, genesis,
invasion, and metastasis of HCC, our study presented these candidate proteins associated
with NASH-HCC, which warrants future functional studies to study their precise role. This
integrated bioinformatics analysis with a comprehensive analysis of metabolic alterations,
including protein interactions, will present multiple candidate biomarkers and novel
therapeutic targets for the prognosis of the disease and the identification of targets at
the molecular and pathway levels. Higher PEMT activity may be associated with breast
and liver tumors’ aggressiveness due to its role in lipid metabolism necessary for highly
proliferating cancer cells [63].

4. Materials and Methods
4.1. Chemical and Reagents

Twenty isotope-labeled standards, including Lyso PI-d5, Lyso PS-d5, Lyso PG-d5,
Lyso PC-d5, Lyso PE-d5, sphingomyelins-d9 families, were purchased from Avanti Polar
Lipids Inc., Alabaster, AL, USA (Supplementary Table S1). Authentic standards of seven
water-soluble vitamins, six fat-soluble vitamins, and two amino acids were purchased from
Sigma-Aldrich Co., St. Louis, MO, USA (Supplementary Table S1). Adenosine, adenosine
triphosphate (ATP), and 5′-Adenosine monophosphate (5′-AMP) standards were obtained
from Sigma-Aldrich (Sigma-Aldrich Co., St. Louis, MO, USA). LC-MS grade solvents,
including acetonitrile, isopropanol, methanol, and dichloromethane, were purchased from
Thermo-Fisher (Thermo Fisher Scientific, Waltham, MA, USA). Other solvents, such as
formic acid, ammonium hydroxide, ammonium formate, and chloroform, were purchased
from Sigma-Aldrich (Sigma-Aldrich Co., St. Louis, MO, USA). Millipore (Burlington, MA,
USA) provided Milli-Q water.

4.2. Study Population and Sample Collection

A total of 61 patients were included in this study: 31 NASH patients and 30 NASH-
HCC patients from a NASH background were recruited from the Liver Diseases and
Research Center in Cairo and the National Liver Institute in Menofia, Egypt, respectively.
Informed consent was obtained from each patient prior to sample collection. The Research
Ethics Committee of the Faculty of Pharmacy, Ain Shams University approved this study
under approval no. ENREC-ASU-66.

Patients in this study were diagnosed based on biopsy sampling and radiological
evidence following the guidelines of the European Association for the Study of the Liver
(EASL) [64]. The NASH group was diagnosed through radiological evidence of hepatic
steatosis, where the severity of steatosis was scored according to the validated Kleiner
criteria [65]. The unweighted sum of steatosis, lobular inflammation, and hepatocellular
ballooning scores, NAFLD activity score (NAS), was used to address the full spectrum of
lesions of NAFLD. In the current study, NASH patients have a score of 5, which correlates
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with a diagnosis of NASH [65,66]. The NASH group was non-cirrhotic. For NASH-HCC,
they were cirrhotic according to METAVIR score [67].

The exclusion criteria included viral hepatitis, autoimmune diseases, and hepatic
toxicity due to drugs and/or alcohol consumption. All samples were collected and stored
according to REMARK for biomarker analysis [68]. Patient characteristics are summarized
in Table 1. Fasting blood samples were collected and separated for hematological, biochem-
ical, targeted, and non-targeted metabolomic analyses. Whole blood and serum samples
were collected from each patient. The whole blood was used for hematological analysis.
Blood samples with sodium citrate were used for prothrombin activity. Serum samples
were separated by samples centrifugation at 4000 rpm for 20 min at 4 ◦C. Aliquots were
prepared and stored at −80 ◦C for subsequent biochemical and metabolomics analysis.

4.3. Blood Analysis
4.3.1. Hematological and Biochemical Test

Hemoglobin content, platelet count, and total leukocyte count were measured in 31
NASH and 30 NASH-HCC patients. The biochemical analysis included total bilirubin,
serum albumin, serum triacylglycerol (TAG), and serum transaminases (ALT, AST) were
determined by enzymatic methods using an autoanalyzer (Beckman Synchron cx systems,
Beckman Coulter Inc., Brea, CA, USA) [69]. Blood samples with sodium citrate were used
for prothrombin time by electromechanical detection [70,71].

4.3.2. Diabetic Profile

Serum insulin in 31 NASH patients and 30 NASH-HCC patients was quantified using
the ELISA technique using the commercially available kit (Nova Tec Immundiagnostica
GmbH, Dietzenbach, Germany). Fasting blood glucose (FBG) was determined using the
automated biochemistry analyzer’s Dimension RxL analyzer (Dade Behring, Newark,
DE, USA). The following equation calculated Homeostatic Model Assessment for Insulin
Resistance (HOMA-IR): HOMA-IR = fasting insulin (µU/mL) × FBG (mmol/L)/22.5 [72].

4.3.3. Tumor Markers

Serum alpha-fetoprotein (AFP) in 31 NASH patients and 30 NASH-HCC patients was
quantified by EIA using the available kit (Human CanAg AFP, Fujirebio, Diagnostic, Inc.
Goteborg, Sweden. Carcinoembryonic antigen (CEA) and cancer antigen 19-9 (CA 19-9)
were quantified using ELISA assay kits (Thermo Scientific, Santa Clara, CA, USA).

4.4. Samples and Standards Preparation
4.4.1. Sample Preparation for Metabolomics Analysis

Forty-one serum samples (21 NASH and 20 NASH-HCC) randomly selected out
of a total of 61 collected serum samples were thawed on ice and aliquoted into 50 µL.
Briefly, 300 µL of a precooled extraction solvent was added to the samples. The extraction
solvent used for metabolites extraction consists of chloroform: methanol: water at a ratio
of 1:3:1, respectively [73]. The latter efficiently extracts hydrophilic and mid-hydrophobic
metabolites [74,75]. The mixture was vortexed and whirled for at least 10 min. Samples
were ultra-sonicated for 15 min at 20 ◦C. Samples were centrifuged at 12,000 rpm at 4 ◦C for
10 min. The supernatant (250 µL) was transferred to a clean Eppendorf tube. Samples were
further dried using a speed vac at 30 ◦C and reconstituted in a solvent consisting of water:
methanol: acetonitrile at a ratio of 2:1:1, respectively. The extracted samples were subjected
to LC-MS/MS analysis. A pooled quality control (QC) was validated by mixing 5 µL of each
sample. The QC samples were injected at the beginning, end, and every ten injections in
the sequence. The QC sample was run to check technical reproducibility and RSD%. Mass
calibration was automatically performed every 2 h by an automated calibration delivery
system using either positive or negative APCI calibration solution (AB SCIEX). The blank
sample was used to check the solvents’ quality and monitor possible carryover.
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4.4.2. Standards Preparation

According to the Bioanalytical Method Validation, a previously validated in-house
library integrated into MasterView 1.1 software (AB SCIEX) was used for small molecules
targeted detection. Standards for L-Amino acids (L-Phenylalanine and L-Tryptophan;
Cat. No. LAA21-1KT), nucleotides (adenosine, ATP, and 5′-AMP), water-soluble vita-
mins (folic acid (47866), pyridoxine hydrochloride (47862), D-Pantothenic acid (47867),
nicotinic acid (47864), nicotinamide (47865-U), riboflavin (47861), thiamine hydrochlo-
ride (47858)), and fat-soluble vitamins (retinol (R7632-25MG), 25-hydroxycholecalciferol
(47763), ergocalciferol (47768), α-Tocopherol (47783), γ-Tocopherol (47785), and phylloqui-
none (47773)) were used (Supplementary Table S1). The working solution concentration
ranges of the calibration curve were 0.5–2048 ng mL−1 for all standards except for ri-
boflavin, thiamine, L-Tryptophan, and L-Phenylalanine, where the calibration solution
was up to 7.8 µg mL−1. The working solution was prepared by taking the appropriate
concentration of each stock solution and reconstituting it in a solvent consisting of wa-
ter:methanol:acetonitrile 2:1:1, respectively. Adenosine, ATP, and 5′-AMP working solutions
were prepared in methanol:water (1:1) [76]. Their calibration range was 8–4096 ng mL−1.
The calibration curves were determined using the peak area of each analyte versus the
nominal concentrations by a least-squares regression model. The regression coefficient
ranged from 0.96 to 0.99. The lowest quantification concentration of the calibration curve
was accepted as LLOQ. The carryover effects were evaluated by analyzing the background
matrix before and after the injection of the upper limit of quantification samples. The
residues were less than 15% of LLOQ. NASH and HCC-NASH sample concentrations were
detected by comparing peak area versus each standard, as explained by Bell, et al. [77]. A
predefined library for targeted lipidomics detection of 20 deuterated standards, including
Lyso PI-d5, Lyso PS-d5, Lyso PG-d5, Lyso PC-d5, Lyso PE-d5, SM-d9 families, were ana-
lyzed depending on their fragmentation pattern. Deuterated standards concentrations are
available in Supplementary Table S1.

4.5. LC-MS/MS Analysis Using the SWATH Acquisition Method
4.5.1. LC Method

Chromatographic separation was carried out using a SCIEX EXION LCTM AC UHPLC
system using a Phenomenex In-Line filter disk 0.5 µm × 3.0 mm equipped with Acquity
XSelect HSS T3 analytical column 2.1 × 150 mm, 2.5 µm ID maintained at 40 ◦C (Waters
Co., Milford, MA, USA). The XSelect HSS T3 is compatible with 100% aqueous mobile
phase and can separate polar and non-polar compounds.

4.5.2. Mass Spectrometry Method

Mass spectrometric analysis was performed using a Triple TOFTM 5600+ system (AB
SCIEX, Concord, ON, Canada) equipped with a Duo-Spray source operated using the
positive-ion (ESI+) and negative-ion (ESI−) modes to detect many ions. The ion spray
voltage capillary was 4500 eV with declustering potential voltages of 80 V in positive
and −80 V in negative modes. The source temperature was set at 600 ◦C, the curtain gas
was 25 psi, and gas 1 and 2 were 40 psi. The collision energies were 35 V and −35 V for
positive and negative modes, respectively, with CE spreading 20 V. Sequential windowed
acquisition of all theoretical MS (SWATH) methods was utilized to capture all metabolites
within the samples [78,79]. The SWATH Acquisition method consisted of a single TOF scan
from 50 to 1100 Da accumulated in 30 ms and a fragment ion TOF scan from 50 to 1100 Da
using fixed 50 Da transition windows [78]. Batches for MS and MS/MS data collection
were created using Analyst TF (v 1.7.1).

4.5.3. Sample Processing

Extracted samples were kept at 8 ◦C during analysis, and 10 µL of each sample was
injected for 28 min of gradient elution with a flow rate of 0.3 mL/min. Samples were
injected twice in random order with QC runs in between. The mobile phase solutions
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consisted of solution (A); 5 mM ammonium formate in 1% methanol (pH 3.0) for positive
mode, solution (B); acetonitrile, and solution (C); 5 mM ammonium formate in 1% methanol
(pH 8.0) for negative mode elution. Gradient elution was sustained at 0% B for 1.0 min, 0%
to 90% B in 20 min, 90% for 4.0 min, 90% B to 0% B in 1.0 min, and finally re-equilibrating
with 0% B for 3.0 min.

4.6. Metabolomics Data Analysis
4.6.1. Non-Targeted Analysis

The MS-DIAL platform was used for small molecule identification [80]. High-resolution
Human Metabolome Database (HMDB) version 4.0 was used as a search space. For
HMDB, relative intensities per component fragments SPLASH (SPectraL hASH; database-
independent identifier) were filtered and stratified depending on their relative intensity.
The latter with relative intensity greater than 75% were considered the main fragment (base
peak), while fragments with relative intensities lower than 5% were excluded. Fragments
>5% and <75% were considered as secondary fragments. Manual validation was performed
to confirm ideal alignment using PeakView 2.2 with MasterView 1.1package (AB SCIEX)
to give more credence to the identified molecules. The mass shift was 10 ppm, and the
sample’s signal was at least five times higher than the blank. The identified small molecules
were used for subsequent statistical analysis and biological evaluation.

4.6.2. Targeted Analysis

Targeted metabolomics analysis of 20 deuterated standards, including Lyso PI-d5,
Lyso PS-d5, Lyso PG-d5, Lyso PC-d5, Lyso PE-d5, and SM-d9 families, were analyzed
depending on their fragmentation pattern. Moreover, a set consisting of thirteen vitamins
(fat- and water-soluble vitamins), two amino acids, and three nucleotides was quantified.
Metabolites annotation was performed by comparing the mass spectrum to the available
library using MasterView 1.1 software and MultiQuant 3.0.2 Software (AB SCIEX). Stan-
dards concentrations in NASH and NASH-HCC samples have been calculated in each
sample as per area under peak estimated from the calibration curve, as explained by Bell,
John, Hughes and Pham [77].

4.7. Pre-Processing and Statistical Analysis
4.7.1. Data Pre-Processing

After exporting the alignment and identification file from MS-DIAL, each group
(NASH and NASH-HCC) was treated separately. Metabolite features with more than 50%
missing values were removed per group. Then, an imputation method was employed
on the rest of the features [81,82]. Median random imputation, a range of ±10% around
the median, is generated. Each time a missing value is imputed, a random value from
that range is assigned. If the median of the feature is equal to zero, the missing value is
automatically set to zero [81,82]. This approach keeps the feature median in a group and
prevents tied observations in the data. Features along samples, in both groups, assigned to
abundance < 1000 in more than 50% of the samples were removed from final analyses.

4.7.2. Data Normalization and Transformation

Before statistical analysis, data normalization using Probabilistic Quotient Normal-
ization (PQN) starts with the calculation of a reference spectrum based on the median
spectrum [83], and auto-scaling (mean-centered and divided by the standard deviation of
each variable) was performed.

4.7.3. Statistical Analysis

To detect the statistically significant features of metabolites between the two groups,
the Wilcoxon Mann–Whitney test was used with a false discovery rate (FDR) of 10% [84–86]
and p-value < 0.05, with a fold change cut-off equal to 1.5 (NASH-HCC/NASH). The data
were identified as nonparametric using the Shapiro–Wilk test. Further, multivariate statis-
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tical analyses were performed, including Principal Component Analysis (PCA). Cluster
analysis using only significant features was applied to the data using Euclidean distance
and Complete-linkage clustering, represented as a heatmap along with the clinical data.
All calculations were performed using MetaboAnalyst R [87] in the R environment, and the
ggplot2 package was used for graphical visualization in the study.

4.8. Pathway Enrichment Analysis and Metabolite–Protein Knowledge-Based Integration

Pathway enrichment analysis with FDR 10% and p-value < 0.05 was performed using
IMPaLA on three different metabolite sets [88]. The first set includes up- and down-
regulated metabolites with a fold change cut-off of 1.5. Only upregulated and down-
regulated metabolites were used in the second and third sets, respectively. Only the
un-overlapped pathways from the last two sets were considered putative up or down-
regulated. A metabolite–protein knowledge-based integration network was performed
using a web-based tool, OmicsNet 2.0. Small molecules with a 1.5 fold change threshold
were used for integration, and only nodes with a p value cut-off <0.05 were kept. The
identified molecules’ chemical structures were classified using MetaboAnalyst R [87].

5. Conclusions

Using the metabolomics and lipidomics approach, a paradigm metabolic bio-signature
was identified that could differentiate NASH from NASH-HCC. This study provided for
the first time a detailed map of the most predominant perpetuated metabolic pathways
that could be utilized to understand and target HCC development from NASH. Knowing
that HCC is associated with multiple etiologies, the emergence of NASH as a significant
contributor makes the disease further divergent. Thus, future studies are warranted using
a comprehensive cohort of patients from different ethnic groups.
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