
Supplements 

1. List of biological networks from Biomodels used in this study  

Table S1. A list of biological networks used. All networks are Ordinary Differential Equation 

(ODE) models of real biological entities such as genes/proteins/metabolites pathways in the 

cellular environments of biological organisms. We collected the models from a web-based 

repository of named Biomodels [28-30]. Searching IDs of the model given in the second 

column we obtained the details of a model like the parameters, the chemical species, 

reactions involving the species and parameters and the chemical rate law ODE equations. 

Each model was constructed and analyzed in the peer reviewed paper provided in 3rd column. 

Network Biomodel ID Published Reference: 

1 BIOMD0000000001 [1] 

2 BIOMD0000000002 [1] 

3 BIOMD0000000003 [2] 

4 BIOMD0000000004 [2] 

5 BIOMD0000000005 [3] 

6 BIOMD0000000006 [3] 

7 BIOMD0000000010 [4] 

8 BIOMD0000000069 [5] 

9 BIOMD0000000016 [6] 

10 BIOMD0000000017 [7] 

11 BIOMD0000000022 [8] 

12 BIOMD0000000021 [9] 

13 BIOMD0000000023 [10] 

14 BIOMD0000000024 [11] 

15 BIOMD0000000026 [12] 

16 BIOMD0000000027 [12] 

17 BIOMD0000000483 [13] 

18 BIOMD0000000029 [12] 

19 BIOMD0000000031 [12] 

20 BIOMD0000000631 [14] 

21 BIOMD0000000203 [15] 

22 BIOMD0000000204 [15] 

23 BIOMD0000000209 [16] 

24 BIOMD0000000210 [16] 

25 BIOMD0000000539 [17] 

26 BIOMD0000000664 [18] 

27 BIOMD0000000275 [19] 

28 BIOMD0000000697 [20] 

29 BIOMD0000000600 [21] 

30 BIOMD0000000039 [22] 

31 BIOMD0000000050 [23] 

32 BIOMD0000000035 [24] 

33 BIOMD0000000036 [25] 

34 BIOMD0000000037 [26] 

35 BIOMD0000000038 [27] 

 



2. Memory-type distribution of biological networks 

Table S2. A summary of the evaluated memory of all biological networks. We considered five 

memory types namely UCS Based Memory (UM), Pairing memory (PM), Transfer Memory 

(TM), Associative Memory (AM), Consolidation Memory (CM), and absence of memory 

specified as No Memory (NM) [31]. We evaluated each type of memory in all combinations of 

UCS-R pairings and calculated proportion of obtained the memory in the network. It is seen 

that most networks have large proportions of memory, with UM being most prominent.   

 

Model UM PM TM AM CM NM 

1 77.01 0.00 17.82 0.00 5.17 0.00 

2 97.32 0.00 2.68 0.00 0.00 0.00 

3 0.00 0.00 0.00 0.00 0.00 100.00 

4 81.82 0.00 18.18 0.00 0.00 0.00 

5 39.76 38.55 15.66 0.00 0.00 6.02 

6 47.62 38.10 14.29 0.00 0.00 0.00 

7 69.05 2.38 22.62 0.00 2.38 3.57 

8 84.82 0.00 14.29 0.89 0.00 0.00 

9 56.25 25.00 18.75 0.00 0.00 0.00 

10 86.16 6.92 6.29 0.31 0.00 0.31 

11 65.25 5.67 12.06 1.42 12.77 2.84 

12 27.78 33.33 23.61 0.00 1.39 13.89 

13 50.63 0.00 21.52 2.53 25.32 0.00 

14 0.00 0.00 0.00 0.00 0.00 100.00 

15 75.69 0.00 18.75 2.08 3.47 0.00 

16 66.67 0.00 0.00 33.33 0.00 0.00 

17 0.00 0.00 0.00 0.00 0.00 100.00 

18 61.54 0.00 15.38 15.38 7.69 0.00 

19 50.00 0.00 0.00 0.00 0.00 50.00 

20 19.61 62.75 13.73 0.00 0.00 3.92 

21 22.35 70.59 0.00 0.00 0.00 7.06 

22 63.86 36.14 0.00 0.00 0.00 0.00 

23 80.95 19.05 0.00 0.00 0.00 0.00 

24 61.57 11.76 0.78 0.39 24.31 1.18 

25 88.64 0.00 11.36 0.00 0.00 0.00 

26 24.49 42.86 12.24 0.00 2.04 18.37 

27 92.86 0.00 7.14 0.00 0.00 0.00 

28 58.01 17.40 17.68 3.31 2.76 0.83 

29 61.83 0.00 18.02 0.61 19.54 0.00 

30 71.43 0.00 28.57 0.00 0.00 0.00 

31 71.57 0.00 22.19 0.25 5.99 0.00 

32 4.65 48.84 11.63 0.00 0.00 34.88 

33 0.00 0.00 0.00 0.00 0.00 100.00 

34 69.32 11.36 17.61 1.14 0.00 0.57 

35 79.73 0.00 20.27 0.00 0.00 0.00 

 



3. Organism-wise categorization of the memory in biological network 

 

Figure S1. A depiction of our efforts of categorization of the sampled networks on the basis 

of organism class to gain insight on memory distributed over classes. We considered seven 

classes of organisms, namely bacteria, slime mold, yeast, plants, lower vertebrates, insects, 

and mammals. Networks are classified as “n/a” when they do not correspond to a specific 

organism but represent some general biological processes. All classes are seen to be similarly 

competent to bear cellular memory.         

 

 

 

 

 

 

 

 

 

 

 



4. Time evolution graph demonstrating UCS Based Memory 

 

Figure S2. A time evolution graph on stimulus-response behavior in a UCS Based memory 

evaluation of a model collected from the Biomodel website [12]. We refer it as UCS Based 

memory if stimulation and clamping of UCS results in regulation of R, but when R retain its 

regulated state after further unclamping of UCS. The initial no intervention behavior of UCS 

and R can be observed in ‘before training’ region of the upper and lower panels respectively. 

In the testing region, we unclamp UCS to allow the network to relax. We observed that 

although UCS was downregulated, R remained altered in its upregulated state. 

 

 

 

 

 

 

 

 

 

 

 



5. Time evolution graph demonstrates Pairing Memory 

 

Figure S3. An example of stimuli-response behavior over time in the Pairing Memory 

evaluation of a biological model [4]. A pairing memory is defined when paired stimulation of 

UCS-NS regulates R, but R retains its regulated state after further unclamping of the stimuli. 

Here, UCS and NS are stimuli, and UCS upregulated R and NS had no effect. The initial steady 

state behavior of UCS, NS, and R are shown in the ‘before training’ region of the three panels 

respectively. We upregulated UCS and NS to 100 times of their maximum value of the before 

training region. As a result, R was upregulated. In testing region, we unclamp UCS and NS to 

relax the network. We observed that R still retains its upregulated state. 

 

 

 

 

 

 

 

 

 



6. Time evolution graph demonstrates Transfer Memory 

 

Figure S4. A time evolution graph of the stimuli-response behavior in the Transfer memory 

evaluation of a Biomodel [4]. UCS and NS were stimuli, and at first, the UCS downregulated R 

(A) while NS had no effect on R (B), which is shown in the ‘before training’ region plots. We 

first upregulated UCS to 100 times its maximum value of the ‘before training’ region and 

clamped the UCS at that value (C). As a result, R was downregulated. In testing region, we 

unclamped UCS to relax the network until the 5000th time step and then downregulated NS. 

We observed that NS had no effect on R before training but could downregulate R after 

training (D). 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. Time evolution graph demonstrates Consolidation Memory 

 

 

Figure S5. The stimuli-response behavior over time through a consolidation memory 

evaluation for the Biomodel from [4]. UCS and NS were stimuli, and UCS upregulated R (A) 

while NS had no long-lasting regulation over R (B), which are both shown in before training 

region plots. We then upregulated the UCS 100 times its maximum value while we 

downregulated NS to 1/100th of its minimum value (with respect to the ‘Before training’ 

period). As a result, R was upregulated (C). For testing, we unclamp both UCS and NS to relax 

the network and then upregulated NS after 5000th time steps. We observed that NS, which 

could not control R before training, could not immediately up-regulate R, but could do so after 

a short time period (D).  



8. Memory dynamics as a function of input stimulation strengths and noise 

 

 

Figure S6.  (A) Here we examine how the strength of the stimulation effects the formation of 

memories. On each graph, each line represents a biomodel across different conditions. To 

ensure that memories were not formed solely due to the strong stimulation (x100 of baseline 

is what is presented in the main text), we tested the networks on stimuli of strength 10X, 50X, 

and 100X of baseline behavior. We observed that reducing the strength of the stimulus 10-

fold resulted in very minimal reductions in memory across the set of models (for UM, CM 

types); on the contrary, some of the memory types were actually increased for weaker stimuli 

(for PM, and TM). The networks especially affected by stimulus strength was model 10, which 

lost more than 50% memories when the stimulus was made weaker. However, 4 models 

demonstrated a 50% increase with smaller stimulations. (B) Here we examine the persistence 



of memory in the presence of stochastic noise. On each graph, each line represents a 

biomodel across different conditions. Interestingly, while almost all models retained the 

memories created (83%) there was an overall 20% increase in memory in the presence of 

noise (averaged across models and memory phenotypes). For both graphs, if the line was 

reduced to 0 in a condition they were removed for visual clarity. For example, in (A) middle, 

bottom graph (CM) 3 models had no memory in the 10X condition and therefore the lines 

were not drawn.  



9. Memory dynamics across various testing regimes  

 

Figure S7. Here we examine how the testing regimes affect the persistence of UCS 

memories. For each graph, a grey line represents a biomodel across the different conditions 

(x-axis). Some lines have been colored black to visually highlight the specific model. (Left) 

Memories were tested at the original testing time after training, as presented in the main text 

(i.e., original data presented in main text) and compared to when testing the memories after 

10X this time and then a second test at 100X this time. Out of 30 networks showing UCS 

memory, the a near majority did not lose significant memory capacity (defined as <50% loss) 

with any delay. 12 networks did lose more than 50% of memories over long timeframes, 

including 1, 21, and 25, each of which experienced loss of 73%, 60%, and 53% respectively 

(black lines).  Of those losses, most occurred between 1 and 10*t timepoints but were 

constant after that; only eight networks lost all memories across both 10X and 100X tests. 

Thus, we conclude that while some networks have a limit on how long they retain training, 

the majority of networks can retain the bulk of their possible memories over very long time 

periods. (Right) To ensure that memory testing did not cause forgetting, the memories were 

also tested at only 100X and compared to the original testing time. The dynamics here were 

identical except in one case to those shown on the left, and we therefore conclude that in 

general, memory ‘access’ does not destroy the memory.  



10. Comparison of biomodels and random models with respect to network measures 

 

 

Figure S8. Ensemble statistics of biological and random model network measures were 

tested: number of nodes, number of edges, indegree, outdegree, betweenness, PageRank, 

and hubness. The raw data are plotted on the upper axes; each mean difference is plotted on 

the lower axes as a bootstrap sampling distribution. Mean differences are depicted as dots; 

95% confidence intervals are indicated by the ends of the vertical error bars. Each dot 

represents a bio or random model. 5000 bootstrap samples were taken; the confidence 

interval is bias-corrected and accelerated.  

 

 

 



11. Repeated onset of UCS makes habituation: example 1 

 

 

 

 

Figure S9. An example of pharmacoresistance, where the response, R, declines upon repeated 

stimulations of UCS within a biological network. (A) The biological network obtained from 

Biomodels website [12]. It is a network having four nodes (the proteins M, MpY, Mpp and 

MpT), their mutual reactions, and the parameters (proteins MEK and MKP3, marked beside 

the edges) which affect the reactions. The UCS and R are highlighted red and green, 

respectively. (B) Left, the steady state (unstimulated UCS and R). Right, the repeated 

stimulations (yellow lines above) of UCS and resultant trajectory of R. Here, we found 

habituation/pharmacoresistance in R through upregulation of UCS. Shown are five down 

stimulations with gradually increasing durations in steps of 1000 in regular intervals of 10000 

time steps.  

 

 

 



12. Repeated onset of UCS shows habituation: example 2 

 

 

Figure S10. A second example of pharmacoresistance in R upon repeated stimulus of UCS. (A) 

The biological network obtained from Biomodels website [12]. It is composed of a network 

having eleven nodes (proteins M, M_MAPK, MP, MAPK, MP_MAPK, Mpp, Mpp_MKP, 

Mp_MKP, MKP, Mp_MKP*, and M_MKP) and their mutual reactions described in the model. 

The UCS and R are marked with red and green, respectively. (B) Left, the steady state of the 

model, i.e., the unstimulated UCS R. Right, the repeated stimulations (yellow lines at top) of 

UCS and resultant trajectory of R. Here, we found habituation/pharmacoresistance in R 

through upregulation of UCS. There are five up-stimulations with gradually increasing 

durations in steps of 1000 and at regular intervals of 10000 time steps. The trajectory of UCS 

shows that during every upregulation, it has equal amplitude. The maximum response is 

found at the first stimulation of UCS. Later, the response of R due to UCS regulations had 

lower and lower amplitude.  

 

 

 



13. Repeated onset of UCS shows habituation: example 3 

 

Figure S11. An example of pharmacoresistance upon repeated stimulations of UCS within a 

biological network. (A) The biological network obtained from Biomodels website [12]. The 

network has three nodes (proteins M, Mp and Mpp), their mutual reactions, and the 

parameters that define their relations (proteins MAPKK and MKP, marked by the edges). The 

UCS and R are marked with red and green, respectively. (B) Left, the steady state of the 

network, i.e., unstimulated UCS and R. Right, repeated stimulations (yellow lines at top) of 

UCS and resultant trajectory of R. Here, we found pharmacoresistance in R through 

upregulation of UCS. There are five upregulations with gradually increasing durations in steps 

of 1000 and in regular intervals of 10000 time steps.  

 

 

 



14. Stimulation through new stimuli breaks pharmacoresistance: example 1 

 

Figure S12. An example where pharmacoresistance in R is overcome by stimulation of a new 

stimuli. (A) The biological network taken from Biomodels website [12], which has four nodes 

(proteins M, MpY, Mpp and MpT), their mutual reactions, and parameters. We mark the 

designated R, UCS, and ST1 with green, red, and violet, respectively. (B) Left, the last two 

stimulations of UCS and resulting habituation in R. Here, downregulation of UCS induced 

pharmacoresistance in R. Middle, the attempt at breaking pharmacoresistance in R by 

stimulation and resulting expression of R.  Right, two repetitive stimulations of UCS and 

resultant trajectory of R.  



 

15. Stimulation through new stimuli breaks pharmacoresistance: example 2 

Figure S13. An example where induced pharmacoresistance in R breaks by stimulation of new 

stimuli. (A) The biological network taken from Biomodels website [12], composed of four 

nodes (proteins M, MpY, Mpp and MpT), their mutual reactions, and parameters. We mark R 

(MpY), UCS (MpT), and ST1 (Mpp) with green, red, and blue, respectively. (B) Left, the last two 

stimulations of UCS and resulting pharmacoresistance in R. Here, downregulation of UCS 

induced pharmacoresistance in R. Middle, the attempt of breaking pharmacoresistance in R 

by stimulation of ST1 and resulting expression of R.  Right, the two repetitive stimulations of 

UCS and resultant trajectory of R.   



16. Stimulation through new stimuli breaks pharmacoresistance: example 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S14. An example where evolved pharmacoresistance in R is broken by stimulation of 

new stimuli. (A) The biological network taken from Biomodels website [12], composed of four 

nodes (proteins M, MpY, Mpp and MpT), their mutual reactions, and parameters (proteins 

MEK and MKP3, marked beside the edges). We mark the designated R, UCS, and ST1 with 

green, red, and blue respectively. (B) Left, the last two stimulations of UCS and resulting 

pharmacoresistance evolved in R. Here, down stimulation of UCS developed 

pharmacoresistance in R. Middle, the breaking of pharmacoresistance in R by stimulation of 

ST1 and resulting expression of R.  Right, the two repetitive stimulations of UCS and resultant 

trajectory of R. 



17. Repeated onset of UCS shows sensitization: example 1 

 

Figure S15. An of sensitization in R upon repeated stimulations of UCS. (A) The biological 

network obtained from Biomodels website [1], composed of twelve nodes (protein/cellular 

element/process: Basal, BasalAch, BasalAch2, Active, ActiveAch, ActiveAch2, Internediate, 

IntermediateAch, InternediateAch2, Desensitised, DesensitisedAch and DesensitisedAch2), 

their mutual reactions, and the parameters (proteins MEK and MKP3, marked beside the 

edges). We mark the UCS and R with red and green, respectively. (B) Left, the steady state of 

the model, i.e., the unstimulated UCS and R. Right, the repeated stimulations (yellow lines at 

top) of UCS and resultant trajectory of R. Here, in this case we found sensitization in R 

(DesensitisedAch2) through up-stimulation of UCS (Basal). There are five up-stimulations with 

gradually increasing durations in steps of and in regular intervals of 10000 time steps. The 

trajectory of UCS shows periodic increased amount through stimulation and decrease through 

relaxation.  



18. Repeated onset of UCS shows sensitization: example 2 

 

Figure S16. An example of sensitization grows in R upon repeated stimulations of UCS within 

a biological network. (A) The biological network obtained from Biomodels website [3],  

comprised of six nodes (proteins total cdc2, p-cyclin cdc2, p-cyclin cdc2-p, p-cyclin, cdc2k, cdc-

2k-P and cyclin), their mutual reactions, and their parameters. We mark the UCS and R with 

red and green, respectively. (B) Left, the initial steady state, i.e., the unstimulated UCS and R. 

Right, the repeated stimulations (yellow lines at top) of UCS and the resultant trajectory of R. 

Here, in we found sensitization in R through up-stimulation of UCS. There are five down 

stimulations with gradually increasing durations in steps of 1000 and in regular intervals of 

10000 time steps. The trajectory of UCS shows periodic increased response via stimulation 

and decreases through relaxation.   

 

 

 

 



19. Repeated onset of UCS shows sensitization: example 3 

 

Figure S17. An example of sensitization in R upon repeated stimulations of UCS within a 

biological network. (A) The biological network obtained from Biomodels website [3], 

comprised of six nodes (proteins total cdc2, p-cyclin cdc2, p-cyclin cdc2-p, p-cyclin, cdc2k, cdc-

2k-P and cyclin), their mutual reactions, and their parameters. We mark the UCS and R with 

red and green, respectively. (B) Left, initial steady state, i.e., the unstimulated UCS and R. 

Note the cyclic nature by default.  Right, the repeated stimulations (yellow lines at top) of UCS 

and resultant trajectory of R. Here, we found sensitization in R through up-stimulation of UCS. 

There are five down stimulations with gradually increasing durations in steps of 1000 and in 

regular intervals of 10000 time steps. The trajectory of UCS shows periodic increased 

response through stimulation and decrease through relaxation 

 

 

 

 



20. Stimulation through new stimuli breaks sensitization: example 1 

 

Figure S18. An example of sensitization in R, broken by stimulation of new stimuli. (A) The 

biological network taken from Biomodels website [5], comprise of a network having six nodes 

(proteins – Cyclin-P-CDC2, Cyclin-p-CDC2-P, Cyclin-P, Cyclin, CDC2-P and CDC2) their relations 

(edges), and the parameters. We mark the designated R (srci), UCS (srco), and ST1 (Cbp_P) 

with green, red, and blue, respectively. (B) Left, the last two stimulations of UCS and resulting 

sensitization of expression evolved in R. Here, down stimulation of UCS induced sensitization 

in R. Middle, the attempt breaking sensitization of R by stimulation of ST1 and resulting 

expression of R.  Right, the two repetitive stimulations of UCS and resultant trajectory of R.  

  



Software 

Biomodels.zip – This file contains 3 functions per model for describing each of 35 

models. The functions are a) executable .m file available from the Biomodels website, b) the 

function f() calculating derivative and c) initialize_ODE function for initializing species at the 

starting.  
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