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Abstract: Immunological memory is a crucial part of the immune defense that allows organisms
to respond against previously encountered pathogens or other harmful factors. Immunological
memory is based on the establishment of epigenetic modifications of the genome. The ability to
memorize encounters with pathogens and other harmful factors and mount enhanced defense upon
subsequent encounters is an evolutionarily ancient mechanism operating in all animals and plants.
However, the term immunological memory is usually restricted to the organisms (invertebrates
and vertebrates) possessing the immune system. The mammalian immune system, with innate and
adaptive branches, is the most sophisticated among vertebrates. The concept of innate memory
and memory macrophages is relatively new and thus understudied. We introduce the concept of
immunological memory and describe types of memory in different species and their evolutionary
status. We discuss why the traditional view of innate immune cells as the first-line defenders is
too restrictive and how the innate immune cells can accumulate and retain immunologic memory.
We describe how the initial priming leads to chromatin remodeling and epigenetic changes, which
allow memory macrophage formation. We also summarize what is currently known about the
mechanisms underlying development of memory macrophages; their molecular and metabolic
signature and surface markers; and how they may contribute to immune defense, diseases, and
organ transplantation.

Keywords: macrophage; innate immunological memory; trained immunity; transplantation;
epigenetic modifications

1. What Is Immunological Memory?

Immunological memory is an evolutionary adaptation of the immune system. It medi-
ates faster and enhanced responses to previously encountered antigens through the ability
of immune cells to remember encountered pathogens or other immunogenic factors [1,2].
An obvious prerequisite for immunological memory is that the remembering cells should be
long-lived and maintain memory in the absence of the original factor that induced memory.
A well-known example of immunological memory is long-term protection from an infection
acquired after one-time vaccination or a single infection. Studies showed that the number
of memory cells specific to a given factor remains stable, indicating a strict control of mem-
ory cell proliferation and death [1,3,4]. The ability of organisms to memorize encounters
with a pathogen or another harmful factor and mount a faster and stronger defense upon
subsequent encounter is probably an evolutionary ancient adaptive trait because it occurs
in bacteria, animals (invertebrates and vertebrates), and plants [5–8]. However, the term
immunological memory is usually restricted to the animals (invertebrates and vertebrates)
possessing the immune system. In vertebrates, immunological memory probably evolved
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twice. First, as a variable lymphocyte receptor (VLR)-based memory of lymphocyte-like
cells in the jawless vertebrates, and second, as the immunoglobulin (Ig)-based memory
in other vertebrates [5,9]. Besides Crispr/Cas-based memory in bacteria and archaea [10],
a recently introduced multidimensional model across different species recognizes five
different types of memory. 1. Systemic acquired resistance (SAR) in plants [7]. 2. Priming
(IP) and transgenerational immune priming (TGIP), i.e., vertical transmission of immune
experience from parents to the offspring; horizontal transfer between individuals, and
between individuals and other parents’ offspring, in insects and other invertebrates [11,12].
3. NK-cell immune memory [13]. 4. Myeloid cell (monocytes, macrophages, and dendritic
cells) nonspecific memory, sometimes also referred to as trained innate immunity (TII) or
trained memory [14,15]. 5. Classical adaptive memory in vertebrates [2].

2. Memory Macrophages

Although there are many studies and descriptions of memory T and B cells [16–19],
the concept of innate memory and memory macrophages was formulated only a decade
ago [20]. Such cunctation was a consequence of the traditional division between innate and
adaptive (acquired) immunity, where the innate immune cells, such as macrophages, were
always considered with the first line of defense against invading pathogens and lacking
adaptive abilities. According to this view, the only role of innate immune cells is to prevent
pathogen entry and rapid elimination of internalized pathogens before they can cause
illness. Additionally, in vertebrates, the innate immune cells also process and present anti-
gens to the adaptive immune cells. Elimination of pathogens by innate immune cells is an
evolutionarily ancient mechanism of defense. It is nonspecific and relies on the recognition
of pathogen-associated molecular patterns (PAMPs), which are molecules frequent in many
different microbes, by pattern recognition receptors of the immune cells (PRRs) [21–24].
Some examples of PAMPs are lipopolysaccharide (LPS) and porins of Gram-negative bacte-
ria; peptidoglycans of Gram-positive bacteria; flagellin from bacterial flagella; β–glucans
and mannans from fungi; and bacterial and viral nucleic acids. Although different PAMPs
are chemically and structurally unrelated they share features that allowed the evolution of
the immune recognition strategy. First, all these factors are produced by microbes but not
by the host, which prevents immune response against the self. Second, they are shared by a
given class of microbes, which allows a limited variety of PRRs to recognize any microbe.
Third, PAMPs are usually the molecules essential for microbe survival and thus cannot
frequently mutate to avoid PRR recognition without a lethal consequence.

Recent studies show that the traditional view of innate immune cells, that is to say as
limited to the first line of defense, is too restrictive and that the innate immune cells can
also accumulate and retain immunologic memory [15]. The classical paradigm postulates
the innate-to-adaptive directionality of immunological memory formation. In this scenario,
after encountering the antigens the innate immune cells, besides presenting processed
antigens to B cells and T cells, produce mediators and signals such as IL-12 which trig-
ger the development of memory T cells. However, recent studies indicate that there is
also adaptive-to-innate directionality of memory formation. In this scenario, shown in
the respiratory adenoviral infection model, the T cells activated by the specific antigen
induce the development of memory macrophages via the IFN-γ pathway [25]. These find-
ings led to redefining immunological memory as the feature of both innate and adaptive
immune systems [26].

Both innate and adaptive memory development has two main steps. Initial priming
(activation) is followed by the phase of the immune response. Immunological memory
is the ability to mount a robust and more effective (potentiated) response to secondary
exposure to identical or similar antigens/pathogens. The main differences between innate
and adaptive memory are their longevity and specificity. While the innate memory persists
for months [25,27,28] and lacks antigen specificity, the adaptive memory is lifetime or
long-lived and specific for a given antigen [29,30]. The memory macrophages can be both
systemic and tissue specific. Studies from systemic infection or immunization show that
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these processes induce memory in circulating monocytes and macrophages. The devel-
opment of systemic innate memory depends on the trained myeloid progenitors in the
bone marrow [31–33]. In other cases, such as lung infection, the memory macrophages
derive from the pool of resident macrophages established in the embryo. When these
memory macrophages die, they are replenished from a pool of circulating monocytes,
which settle in the tissue and enter the memory-establishing pathway [25]. Netea et al. [5]
suggested that the innate immune memory, which is evolutionarily more primitive be-
cause of its non-specific response to reinfection, relies mainly on the rearrangement of
chromatin structure. The adaptive immune memory, which is evolutionarily younger
and functionally more advanced, relies on epigenetic changes and genetic recombination-
derived specificity. However, studies of the last decade also indicate that innate memory
heavily depends on epigenetic changes, which often influence chromatin structure and
compaction [34,35]. Epigenetic modifications rely mainly on three mechanisms: methyla-
tion of DNA, modification of histones, and regulation of gene expression by non-coding
RNAs (ncRNAs) [36,37]. Epigenetic modifications of chromosomes alter gene expression,
and although they do not change the DNA sequence, sometimes they are heritable. These
so-called epigenetic tags can pass not only to consecutive generations of cells but also from
parents to progeny [38,39]. The concept of inheritance of non-DNA-based alterations of the
genome is unconventional and has a profound impact on our understanding of evolution.
Conventional understanding has always been that, during fertilization, the fusing gametes
undergo reprogramming, including erasing all epigenetic tags, which return their genomes
to the “tabula rasa” state. However, around 1% of epigenetic tags escape reprograming
through the imprinting process, which occurs in animals and plants. Therefore, the epige-
netic modification inherited from a cell to its descendant or from a parent to its offspring
may influence gene expression in the progeny [38–42]. Although there are indications that
parents’ experience can affect the immune response of the progeny, additional research is
necessary to prove that epigenetic modifications in the parental genomes affect transcrip-
tional programs in subsequent generations. One of the possibilities is that the maternal
information of the oocyte/egg affects the epigenetic program of the primordial germ cells.
In contrast to mammals, where the primordial germ cells are induced in the embryonic
epiblast before migrating to the nascent gonads, in many vertebrates and invertebrates, the
primordial germ cell fate is already established in the oocyte. In some of these animals,
such as Xenopus, oocytes contain a germ cell determinant called the germ plasm (containing
RNAs and proteins), which segregates to the primordial germ cells. Thus, the primordial
germ cells of the early embryo are already pre-programmed by the maternal information in
the oocyte. One can imagine that in these animals, the epigenetic program of the mother
can easily influence the progeny.

A fascinating finding pertaining to innate memory is that macrophage precursors,
the hematopoietic stem cells (HSCs), not only respond to the infection through pattern-
recognition receptors (PRRs) but also become epigenetically reprogramed and transmit this
epigenetic memory to the daughter macrophages. Thus, the macrophages derived from
trained HSCs are already epigenetically programmed for a robust transcriptional response
against infection [43].

Another level of immune memory complexity derives from the recent discovery of the
tissue imprinting phenomenon. Epigenomic, single-cell transcriptome, and fate mapping
studies show that the niche where the immune cells reside can rewire or override their
transcriptional program and imprint different transcriptional and metabolic identities [44].

Unfortunately, under certain circumstances, such programmed cells can be malefic
and induce inflammatory pathologies and promote cancer development [45].

3. Chromatin Remodeling and Epigenetic Changes Induced by Initial Priming of
Myeloid Cells

Gene expression depends on the accessibility of DNA in the promoters and enhancers
regions to the transcription factors and RNA polymerases. DNA accessibility is regu-
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lated by chromatin compaction, DNA methylation, histone modifications (acetylation,
methylation, phosphorylation, and citrullination), and immune-gene-priming long non-
coding RNAs, such as the upstream master lncRNA of the inflammatory chemokine locus
(UMILILO) [35,46–49]. In general, hypermethylation of DNA silences and hypomethyla-
tion induces gene transcription [50,51]. Modifications of the histones affect histone–histone
and histone–DNA interactions, histone binding to chaperones, and chromatin structure [52].
Histone methylation results in transcriptional silencing or activation depending on the
number of methyl groups added and which of a given histone is methylated [53]. For
example, the trimethylation of lysine 4 at histone 3 (H3K4me3) and H3K4me1 activates
promoters and enhancers, respectively [54].

In unstimulated macrophages/myeloid cells, the regions of chromatin housing the
pro-inflammatory genes are compacted and unavailable to the transcription machinery.
The primary stimulation with the antigen/pathogen recruits various transcription factors,
such as activator protein 1 AP-1; the signal transducers and activators of transcription
STATs; and nuclear factor-kappa B (NF-kB) to the promoters and enhancers, which are
already pre-marked in the naïve cells by the lineage-specific PU.1 transcription factor [5,55].
The PU.1 transcription factor, which belongs to the ETS-domain transcription factor family,
is specific for myeloid and B-lymphoid cells [56]. Transcription factors recruited to the
PU.1-marked regions conscript chromatin remodelers and histone acetyltransferase. These,
in turn, increase acetylation and change chromatin conformation permitting the recruitment
of RNA polymerase II [5,57]. Histone acetylation activates both promoters and enhancers of
pro-inflammatory genes. For example, acetylated Lys56 of H3 (H3K56) affects nucleosome-
DNA interactions and chromatin structure and compaction, while acetylation of Lys91 of
histone H4 leads to nucleosome instability [52].

After cessation of the stimulus, some of these histone modifications remain, thus allow-
ing fast and efficient transcription of the pro-inflammatory genes upon restimulation [5,58].
Studies showed that some of the enhancers, called latent enhancers, are not pre-marked in
naïve cells but acquire histone modifications upon primary stimulation. After the removal
of the stimulus, some of these latent enhancers also retain histone modifications, which
permits faster and stronger activation upon restimulation (Section 3 and Figure 2) [5,59,60].
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Figure 1. Development of memory macrophage.(A) Naïve (unstimulated) macrophage expresses pat-
tern recognition receptors PRSs, such as Toll-like receptors (TLRs) and non-TLR antigen-recognition
receptors, such as C-type lectin receptors (CLRs), which recognize pathogen-associated molecu-
lar patterns (PAMPs). For example, TLR-4 recognizes lipopolysaccharide (LPS) of Gram-negative
bacteria, and CLR receptor Dectin-1 recognizes β-glucans present in bacteria and fungi. In the naive
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macrophage, the pro-inflammatory genes are transcriptionally silent via, for example, the trimethy-
lated H3K27 (H3K27me3). (B) The binding of PAMs molecule to its receptor induces histone
modifications at the gene promoter, such as trimethylation of H3K4 (H3K4me3) and acetylation
of H3K27 (H3K27ac). In addition, the enhancer region becomes enriched with monomethylated
H3K4 (H3K4me1) and H3K27ac. Activated pro-inflammatory genes transcribe mRNAs, which after
transport to the cytoplasm, are translated into the pro-inflammatory cytokines, such as IL-6 and
TNF-α, which fight the pathogen. (C) After pathogen elimination, some histone modifications in the
macrophage are lost, but some remain as the epigenetic marks. The immunological memory of the
first encounter with the pathogen becomes imprinted in the macrophage genome. (D) The state of
transcriptional alertness of memory macrophage allows for faster and stronger pro-inflammatory
response upon a second encounter with the same or different pathogens.
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Figure 2. Chromatin structure and epigenetic marks during the development of memory
macrophages. (A) In naïve (unstimulated) macrophages, the regions of chromatin housing the
immune response genes are highly condensed (heterochromatin state) due to high methylation of
DNA, making these genes inaccessible to the transcription factors. This results in complete silencing
or very low transcription and translation of the immune response genes. (B) Primary stimulation with
the pathogen or danger signals demethylates DNA, decondenses chromatin (euchromatin state), and
methylates and acetylates histones (for example, H3K4me3, H3K27ac) reading the immune gene for
transcription. A high level of transcription followed by translation produces a high level of immune
response factors. (C) After cessation of the stimulus, chromatin only partially condenses, and the
remaining epigenetic marks (for example, H3K4me1) keep resting memory macrophage in the state of
transcriptional alertness. (D) The secondary challenge, with the same or different pathogen, induces
chromatin decondensation, demethylation of DNA, and modification of histones (such as H3K4me3,
H3K4me1, and H3K27ac) allowing robust transcription and subsequent high production of immune
response factors. Modified from [54].

4. Molecular Signature and Markers of Memory Monocytes/Macrophages

The epigenetic markers of memory monocytes consist of increased methylation and
acetylation of histones (H3K4me1, H3K9me2, H3K4me3, and H3K27Ac) on the promot-
ers of genes coding for immune defense and metabolism factors [53,61,62]. For example,
the Bacillus Calmette–Guérin (BCG) vaccine-trained macrophages have increased H3K4
trimethylation on the promoter of IL-6 and TNF [61]. Exposure of monocytes/macrophages
to microbes upregulates synthesis of pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs) receptors, such as dead cell engulfment re-
ceptor Draper (Drosophila melanogaster homolog of the Ced-1 protein of Caenorhabditis elegans),
which increase affinity to the pathogen, damaged cells, and tissues [63,64]. Exposure of
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macrophages to Staphylococcus aureus induced expression of IL-6 and IL-17A on day 2 and
day 7, respectively. Interestingly, the memory developed by macrophages after S. aureus
skin infection is skin-specific and can be transferred to the naïve individuals [20].

Studies of human monocytes showed that short exposure to bacteria, the components
of bacterial walls, or vaccines induced a proinflammatory phenotype, which lasted over
three months and consisted of robust production of inflammatory factors such as Il-6 and
TNF-α [53,65,66]. Another example of innate memory is the immune memory of alveolar
macrophages that persists at least four months after the initial viral exposure [26,28].
Alveolar macrophages derive from hemopoietic progenitors, which settle in the developing
lungs before birth. Owing to the fact that alveolar macrophages are self-propagating, long-
lived, and do not rely on replenishment by circulating monocytes, they are very well suited
to developing immunologic memory. Studies showed that adenovirus infection induces
alveolar macrophage memory, which protects against subsequent bacterial infections. These
memory macrophages increase glycolysis and upregulate pro-inflammatory genes only
at the transcriptional level. By refraining from producing pro-inflammatory cytokines
until they encounter infecting bacteria, alveolar memory macrophages can keep uninfected
lungs in an inflammation-free state [26,27,67]. Yao et al. [25] studied surface markers of
alveolar memory macrophages. In addition to the markers commonly found in many
macrophage subtypes, such as a high level of integrin alfa X (CD11c), integral membrane
glycoprotein Fc receptor (CD64), and sialic-acid-binding immunoglobulin-like lectin (Siglec-
F), the memory lung macrophages expressed high levels of MHC II. They also expressed
the mannose receptor (CD206), toll receptors (TLR2/4), and integrin alfa M (CD11b), but
the level of these markers did not increase after activation with the virus. The development
of alveolar memory macrophages is also interwoven with the epigenetic modification
of histones [49]. Interestingly, frequent episodes of lung inflammation deplete resident
memory macrophages allowing the recruitment of inflammatory monocytes, which after a
few days, develop into a new generation of resident memory macrophages [68]. One of the
important factors affecting epigenetic changes in macrophages is chronic stimulation of
their innate immune receptors such as the nucleotide-binding oligomerization domain 2
(NOD2) or multiple PRRs. NOD2 is an intracellular sensor for small peptides derived from
the peptidoglycan of the bacterial cell wall. Studies showed that while primary activation
of the NOD2 increases acetylation of H3 and H4 cytokine promoters, chronic stimulation
decreases acetylation. Long-term stimulation of NOD2 stimulation activated Twist1 and
Twist2 transcription factors, induced the expression of histone deacetylase HDAC1 and
HDAC3 by binding to their promoters. Consequently, HDAC1 and HDAC3 deacetylated
histones at the cytokine promoters and downregulated H3 and H4 cytokines [69].

It is known that energy metabolism and dietary compounds affect enzymes modulat-
ing chromatin compaction and structure [60,70]. Thus the metabolites, through epigenetic
changes, also affect macrophage immune memory. For example, ATP, NAD (+), acetyl-
CoA, and S-Adenosyl methionine (SAM), regulate epigenetic enzymes responsible for
nucleosome distribution, DNA methylation, and modifications of histones [60,71].

One of the molecular markers described in memory monocytes/macrophages primed
with β-glucan (from the cell wall of Candida albicans yeast) is a metabolic shift from oxida-
tive phosphorylation to aerobic glycolysis. These cells have a high glucose consumption,
upregulate lactate synthesis, and have a high NAD (+)/NADH ratio. This metabolic
shift depends on β-glucan receptor dectin-1, RAC (Rho family)-alpha serine/threonine-
protein kinase Akt, oxygen homeostasis regulator hypoxia-inducible transcription factor-1α
(HIF-1α), and mammalian target of rapamycin (mTOR) pathways [53,72,73]. Arts et al. [74]
also showed that the BCG-trained monocytes upregulated glycolysis. The inhibition of gly-
colysis enzymes affected histone methylation and prevented the development of immune
memory. Studies of human monocytes trained by exposure to β-glucan showed that they
accumulate fumarate (a metabolite of tricarboxylic acid cycle (TCA)), which downregulates
histone demethylase KDM5. Another TCA metabolite, the α- ketoglutarate, mediates
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epigenetic reprograming through the histone demethylase Jumonji domain-containing
protein-3 (JMJD3) that regulates trimethylation of histone H3 on lysine 27 [60,75].

Interestingly, the metabolic shift in macrophages does not always lead to the devel-
opment of pro-inflammatory memory but in some instances, preprograms macrophages
toward anti-inflammatory responses. Studies by Du et al. [76] in the autoimmune en-
cephalomyelitis model showed that human mesenchymal stem cells (MSCs) preconditioned
under low oxygen (LO-MSCs) secrete insulin-like growth factor 2 (IGF-2) that shifts the
metabolism of maturating macrophages (but not the mature macrophages) from glycolysis
toward persistent oxidative phosphorylation (OXPHOS) and anti-inflammatory phenotype.
The subsequent pro-inflammatory challenge was unable to reverse this metabolic commit-
ment, and the macrophages remained in a permanent anti-inflammatory state. Epigenomic
analysis showed that IGF-2 pre-programming changed the distribution of H3K27ac in the
promoters and enhancers of macrophages. Reduced H3K27ac was observed in genes critical
for pro-inflammatory responses, and increased H3K27ac in the anti-inflammatory genes.

5. Memory Macrophages in Transplantation

Epigenetically driven transcriptional readiness of memory macrophages to respond to
a nonspecific secondary challenge poses a potential problem of the hyperreactive immune
response against transplanted organs. The immune response to the graft consists of two
phases: the first phase of a rapid response by the innate immune cells (macrophages,
dendritic cells, and neutrophils) is followed by a slower, adaptive immune cell (T cells
and B cells) response. All currently existing anti-rejection therapies ignore the role of
innate cells and focus on the subduing adaptive immune response [73,77]. Macrophages
are crucial players in both acute and chronic allograft rejection [78–80]. They produce
pro-inflammatory cytokines and costimulatory molecules, such as CD80 and CD86. The
inflammatory cytokines recruit T cells while costimulatory molecules binding to their
appropriate ligands expressed on T cells mobilize T cell responses against the graft. Trans-
planted organs injured by ischemia-reperfusion release damage-associated molecular pat-
terns (DAMPs) molecules, which bind to the pattern recognition receptors of non-trained
and memory (trained) macrophages [77]. We postulate that the immune response of un-
trained macrophages to DAMPs is relatively slow and meager. In contrast, the memory
macrophages, which are already epigenetically programmed for a rapid and robust im-
mune response, produce very high quantities of inflammatory cytokines and strongly
activate the adaptive immune system, resulting in vigorous rejection of the transplant.
Given that the immune response of memory macrophages lasts in humans for many
months [66], the hyperreactive response of memory macrophages will exacerbate graft
rejection. Although there are no data on memory macrophages in human transplanta-
tion, Ochando et al. [77] suggested that the main pathways involved in the development of
memory macrophages and contributing to graft rejections are cell death, microbial infection,
and oxidation of lipids.

(1) The ischemia-reperfusion injury of the graft generates a massive number of dying
cells. Danger-signaling molecules exposed or released from the apoptotic and necrotic
cells are, for example, vimentin and high mobility group box 1 HMGB1 protein
(which belongs to the DAMP family). These molecules will bind to their respec-
tive macrophage receptors, Dectin-1 (a transmembrane pattern-recognition receptor
specific for β-glucan carbohydrates) and toll-like receptor 4 (TLR4), stimulating the
expression of pro-inflammatory cytokines, inducing epigenetic modifications, and
generating macrophage memory [77,81]. Studies in a mouse transplantation model
support this model. They showed that the production of inflammatory cytokines
by memory macrophages stimulated by TLR4 and Dectin-1 is driven by epigenetic
modifications and aerobic glycolysis [82,83]. During many months of existence, the
memory macrophages created in response to the danger signals from dying cells will
mount a hyperactive immune response against the graft.
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(2) Many studies showed that viral or bacterial infection exacerbates graft rejection [73,84].
It is plausible that memory macrophages produced in response to infection mount an
enhanced immune response against the graft. The molecules and pathways involved
in infection-induced memory are NOD2; possibly viral RNA; and NOD-, LRR-, and
pyrin domain-containing protein 3 (NRLP3), which is an intracellular sensor that
detects a broad range of microbial molecules [69,77,85–87]. Studies showed that
the Bacillus Calmette–Guérin (BCG) vaccine against tuberculosis induces NOD2-
dependent protection against secondary infections through epigenetic reprogramming
of monocytes/ macrophages. In the resulting memory macrophages, the promoters of
IL-6 and TNFα genes had increased trimethylation of histone H3 at lysine (H3K4me3)
and increased production of relevant cytokines [65].

(3) Another pathway possibly involved in the generation of memory macrophages and
relevant to transplantation is the immune response induced by hyperlipidemia and
oxidized low-density lipoprotein (oxLDL) [7]. Studies showed that accumulation of
oxLDL within the graft is associated with the presence of macrophages, development
of interstitial fibrosis, and graft failure [88]. The oxLDL belongs to DAMP. The binding
of oxLDL to the CD36 receptor expressed in macrophages and other myeloid cells
switches glycolysis, increases the production of pro-inflammatory factors, and induces
innate cell memory [89].

6. Immune Tolerance Memory

Immune memory does not always lead to hyper-responsiveness and enhanced host
defense. Under certain circumstances, it can lead to hypo-responsiveness and the devel-
opment of immune tolerance memory toward the second microbial challenge. Immune
memory tolerance develops when the macrophages are reputedly, or for a long time, ex-
posed to the pathogen or its components. These macrophages minimize their responses,
such as cytokine production, or cease responding to the subsequent exposure to the same or
different pathogen. One of the examples is the development of long-lasting (weeks-months),
and often fatal, immune tolerance memory toward bacterial infection of the lungs after
clearance of previous influenza or syncytial respiratory virus infection. Studies showed
that the virus desensitizes Toll-like receptors (sensors of bacterial flagellin) and lectin and
mannose receptors. It also downregulates NF-κB signaling in alveolar macrophages. This
results in lower responsiveness toward bacterial proteins and lowered expression of pro-
inflammatory factors TNF-α and IL-17. The IFN-α/β, IFN-γ, and Il-10 produced during
viral infection further lower anti-bacterial responses of macrophages by inhibiting the
production of oxyradicals [26,90–92]. Studies showed that monocyte/macrophage immune
tolerance memory depends on the failure to accumulate epigenetic active histone tags
at the promoter and enhancers of the anti-bacterial pathway’s genes. They also showed
that β-glucan reinstates cytokine production and partially reverses macrophage immune
tolerance. The reactivation of transcriptionally silent genes depends on the reinstatement
of epigenetic (histone modifications) tags [93]. In the context of transplantation, studies
in mice heart and kidney transplantation models showed that infection with the parasite
Trichinella spiralis prevents graft rejection [84,94]. Although these studies concentrated
on the effect on T cells and suppression of Th1/Th17 responses on the graft survival, it
is possible that parasite infection also generated memory macrophages with suppressed
proinflammatory responses.

7. Possible Avenues for Therapeutic Applications of Memory Macrophages

As in transplantation, most of the existing immune therapies target the adaptive im-
mune system. However, an increasing knowledge of the innate immune memory opens
new therapeutic possibilities. One such option is preventing the development of mem-
ory macrophages or reprogramming their memory. This could be achieved by inhibiting
glycolysis or/and suppressing histone and DNA modifications (methylation) using vari-
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ous inhibitors. The induction of memory macrophages can involve the manipulation of
pathways and receptors involved in the recognition of various pathogens.

8. Conclusions

Although the existence of innate immune cell memory is undeniable, the knowledge
of mechanisms regulating its development and the consequences are still fragmentary.
Further research is needed to define the molecular and cellular triggers of the epigenetic
modifications in macrophages. Very little is still known about how the macrophage niche
and tissue of residence affect memory macrophages. We also need to explore how innate
memory cells contribute to various diseases and if they could be a valid therapeutic
target. Very little is also known about how innate memory cells affect transplanted organs
and acute and chronic rejection. Another fascinating and understudied subject is the
inheritance of innate memory, and how it may affect homeostasis and response to diseases
in the progeny.
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