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Abstract: The epidermis is one of the largest tissues in the human body, serving as a protective barrier.
The basal layer of the epidermis, which consists of epithelial stem cells and transient amplifying
progenitors, represents its proliferative compartment. As keratinocytes migrate from the basal layer to
the skin surface, they exit the cell cycle and initiate terminal differentiation, ultimately generating the
suprabasal epidermal layers. A deeper understanding of the molecular mechanisms and pathways
driving keratinocytes’ organization and regeneration is essential for successful therapeutic approaches.
Single-cell techniques are valuable tools for studying molecular heterogeneity. The high-resolution
characterization obtained with these technologies has identified disease-specific drivers and new
therapeutic targets, further promoting the advancement of personalized therapies. This review
summarizes the latest findings on the transcriptomic and epigenetic profiling of human epidermal
cells, analyzed from human biopsy or after in vitro cultivation, focusing on physiological, wound
healing, and inflammatory skin conditions.

Keywords: human keratinocyte; stem cell; single-cell analysis; skin; inflammatory disease; wound
healing

1. Introduction

The human epidermis, the outermost layer of the skin, is composed of stratified
squamous epithelium that acts as a protective barrier against external insults; hence, any
alteration can drastically impair patients’ life quality [1–3].

The basal layer represents the proliferative compartment of the epidermis, in which
both epithelial stem cells (SCs) and transient amplifying progenitors (TACs) reside. As
keratinocytes leave the basal layer and move towards the skin surface, they exit the cell
cycle and undergo a terminal differentiation program, generating the suprabasal epidermal
layers (spinosum, granulosum, lucidum, and corneum) [4,5]. This process, known as
cornification or keratinization, consists of morphologic and metabolic changes whose
endpoint is to form the cornified layer or the stratum corneum, the outermost layer of the
epidermis [6].

In the last four decades, the ex vivo restoration of functional epithelia allowed the
treatment of different medical needs [7–10]. An astonishing example has been the life-
saving treatment of third-degree burn and junctional epidermolysis bullosa (JEB)-affected
patients [10] thanks to the knowledge acquired during the studies conducted by H. Green
in the 1980s [7]. The successful outcome of therapeutic approaches relies on a fine un-
derstanding of the molecular mechanisms and pathways driving human keratinocytes’
organization and regeneration. In this context, single-cell technologies have already and
will further increase our knowledge on in vivo and in vitro cellular complexity.

Single-cell RNA sequencing (scRNA-seq), unlike bulk analysis, allows researchers to
decipher the complexity of biological systems at the single-cell level. In 2006, a pioneering
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study involving the transcriptomic profiling of 314 single manually picked keratinocytes
enabled the identification of 6 SCs and 6 TACs. Despite the low sensitivity, this work paved
the way for an in-depth analysis of keratinocyte molecular heterogeneity [11].

The introduction of microfluidic systems for cell encapsulation drastically reduced
time and effort, thus increasing reproducibility to study the transcriptome of thousands
of cells [12,13]. Two main library construction methods have been developed: full-length
methods (e.g., SMART-seq2, Fluidigm C1) cover the entire transcriptome, while molecular
tag-based methods (e.g., 10× Genomics Chromium, MARS-seq, InDrop, Drop-seq) analyze
the mRNA 5′ or 3′ ends. Molecular tag-based methods allow for a large cell throughput
and sample multiplexing to improve gene expression quantification, whereas full-length
methods display higher sensitivity [14,15]. An in-depth review of single-cell approaches
can be found elsewhere [16–18].

The high-resolution map obtained through these technologies opened new scenarios,
allowing the identification of new cell types, disease-specific drivers, and new therapeutic
targets, further promoting the advancement of personalized therapies. To allow a broader
diffusion of these data in the scientific community, atlases of single-cell-derived data
are now publicly available, such as the Skin Community of Human Cell Atlas (HCA,
https://skincommunity.org/hca, accessed on 3 May 2023 [19]) or Adult Human Cell Atlas
(AHCA, http://research.gzsums.net:8888/, accessed on 3 May 2023 [20]).

In this review, we summarize the latest characterization of human epidermal cells using
single-cell technologies, which could help to develop and improve innovative therapeutic
approaches, focusing on skin regeneration therapies, wound care, and inflammatory diseases.

2. Skin Biopsy Processing

Given the considerable skin-extension and site-specific functions, experimental set-
tings (in vivo or in vitro) (Table 1), biopsy withdrawal and processing methods (Table 1),
the anatomical areas of collection (Figure 1), and the age and pathology of the donors
(Figure 2) must be considered to properly analyze single cells’ published data.

The less invasive and more common biopsy techniques for research purposes are
shaved and punch biopsies, which enable the collection of samples from both the epidermis
and the underlying dermis. Depending on the cell populations of interest, a skin biopsy can
be processed in different ways: heat, chemical reagents, enzymes, or mechanical digestion.
However, heat treatment may cause thermal damage, and chemical reagents may alter
cellular electrolyte equilibrium. Hence, the most used methods rely on enzymatic activity
or mechanical separation to divide the epidermis from the dermis [21]. Several proteases
(dispases, trypsins, pancreatin, pronase, and thermolysin) have been tested to separate
different layers of the dermal–epidermal junction [21,22].

A clinically validated method specifically used for the in vitro culture of human
primary keratinocytes consists of a biopsy cleaning step to remove the adipose tissue and
partially the dermis. Then, the tissue is minced and incubated in a trypsinizing flask with a
trypsin/EDTA solution (mixture of trypsin, chymotrypsin, and elastase) for 30 min at 37 ◦C.
Cells are recovered after each round of trypsinization and plated onto a lethally irradiated
feeder layer [23]. This procedure allows the collection of both interfollicular and follicular
keratinocytes, including SCs used for cell and gene therapy applications (unpublished data
and [10,24,25]).

Another popular method takes advantage of dispase I, one of the most used enzymes
to gently separate the dermis from the epidermal layer. It acts on extracellular matrix (ECM)
proteins, including fibronectin, collagen IV, and to a lesser extent collagen I, allowing the
collection of the entire epidermis [22,26]. Then, trypsin/EDTA must be used to gather
single-fibroblast or single-keratinocyte suspensions [27]. Notably, most cell types display a
distinctive stress signature related to the dissociation step, which must therefore be taken
into account for further downstream analysis [28].

Suction blistering is another approach used to collect skin cells while avoiding exten-
sive enzymatic digestion. High-vacuum mechanical forces are applied to the patient skin in
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this in vivo procedure, allowing the collection of epidermal and upper dermal cells [29,30].
Recently, a scRNA-seq comparison between suction blistering and normal punch biopsies
has been reported. Some cell types were under-represented in suction blistering biopsies;
however, both sampling techniques shared most of the identified pathways [30]. In addi-
tion, the authors claimed that suction blistering led to a better transcriptomic resolution of
skin cells, also presenting the possibility to combine interstitial fluid analysis at the protein
level [29,30].
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Figure 1. Biopsy withdrawal localizations: (A–L) Areas where skin cells have been harvested
to be analyzed with single-cell techniques. For each location, references to the papers that per-
formed the biopsies are listed in chronological order. (A) Foreskin [31–33]; (B) Scalp [31,34,35];
(C) Body trunk [25,31,34,36]; (D) foot [37,38]; (E) hip [38]; (F) hand [34,38]; (G) inguinal region [37,39];
(H) leg [40]; (I) buttocks [41,42]; (J) arm [30,34,40]; (K) face (forehead, eyelid, and tragus) [34,43–45];
(L) neck [43].
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Table 1. Schematic description of single-cell techniques adopted, area and mode of biopsy processing, type of tissue analyzed, and data availability for each article
cited in this review. SCT: single-cell techniques; scRNA-seq: single-cell RNA sequencing; scATAC-seq: single-cell Assay for transposase-accessible chromatin
sequencing; ST: spatial transcriptomics; AW: acute wound; FACS: fluorescence-activated cell sorting; n/a: not available.

Article SCT Single-Cell
Technology Source Conditions In Vivo/In Vitro Biopsy Processing Protocol Data

Availability

Reynolds et al.
Science. 2021 [25] scRNA-seq

10× Genomics
Chromium +
SMART-seq2

Trunk
Lower back

Embryonic/fetal skin from
Popescu DM et al., 2019

Healthy
Inflammatory in vivo

Sample mincing
2U/mL dispase II: 1–3 h, 37 ◦C

1.6 mg/mL type IV collagenase: 12 h, 37 ◦C (both dermis and
epidermis separately)

E-MTAB-8142

Gellatly et al.
Sci Transl Med.

2021 [29]
scRNA-seq In-Drop Skin (not specified) Healthy

Inflammatory in vivo
Suction blistering

Negative pressure (10–15 mm Hg): 30–60 min, 40 ◦C
Collection via an insulin syringe

phs002455.v1.p1

Rojahn et al.
J Allergy Clin

Immunol. 2020 [30]
scRNA-seq 10× Genomics

Chromium
Antecubital fossa

skin (not specified)
Healthy

Inflammatory in vivo

Suction blistering:
Negative pressure

(150–200 mm Hg), 1 to 2 h
0.25% trypsin/EDTA: 10 min, 37 ◦C (blister roof)

FACS sorting

Biopsies:
Sample mincing

0.3% w/v collagenase IV,
40 min, 37 ◦C

40 µm cell-strainer
0.25% trypsin/EDTA, 10 min, 37 ◦C

FACS sorting

GSE153760

Cheng et al.
Cell Rep. 2018 [31] scRNA-seq 10× Genomics

Chromium

Foreskin
Trunk
Scalp

Healthy
Inflammatory in vivo

Dispase: 2 h, 37 ◦C
Trypsin: 15 min, 37 ◦C (only epidermis)

40-µM cell strainer
EGAS00001002927

Rubin et al.
Cell. 2019 [32] scRNA-seq Fluidigm C1 Foreskin Healthy in vitro n/a GSE116297

Wang et al.
Nat Commun.

2020 [33]

scRNA-seq
ST

10× Genomics
Chromium Foreskin Healthy in vivo

Dispase: 2 h, 37 ◦C
Sample mincing

0.25% Trypsin-EDTA: 15 min, 37 ◦C (only epidermis)
40 µm cell-strainer

GSE147482

Ji et al.
Cell. 2020 [34] scRNA-seq

10× Genomics
Chromium +

10× Genomics
Visium

Dorsal hand
Arm
Scalp
Trunk

Forehead
Tragus

Healthy
Cancer in vivo Sample mincing

0.25% trypsin-EDTA: 30 min, 37 ◦C GSE144240

Takahashi et al.
J Invest Dermatol.

2020 [35]
scRNA-seq

DropSeq +
10× Genomics

Chromium
Scalp Healthy in vivo

Dispase: overnight, 4 ◦C + 30 min, 37 ◦C
P1000 pipette gentle dissociation (×2)

0.05% trypsin: 10 min, 37 ◦C (×2)
40 µM cell strainer

FACS sorting

GSE129611
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Table 1. Cont.

Article SCT Single-Cell
Technology Source Conditions In Vivo/In Vitro Biopsy Processing Protocol Data

Availability

Enzo et al.
Nat Commun.

2021 [36]
scRNA-seq 10× Genomics

Chromium Trunk Healthy in vitro 0.05% trypsin/0.01%EDTA: 4 h, 37 ◦C
Sample collection every 30 min GSE155817

Singh et al.
J Clin Invest. 2022 [37]

scRNA-seq
ST

10× Genomics
Chromium +

10× Genomics Visium

Inguinal region
Heel

Skin (not specified)
AW and intact skin from

Li et al., 2022

Healthy in vivo

Sample mincing
MACS whole-skin dissociation kit: 3 h, 37 ◦C

GentleMACS™ Octo dissociator: Skin dissociation program
70 µM cell strainer

GSE176417

Wiedemann et al.
Cell Rep. 2023 [38] scRNA-seq 10× Genomics

Chromium

Sole
Palm
Hip

Healthy in vivo

0.4% dispase: overnight, 4 ◦C
0.25% Trypsin-EDTA (+10 U/mL DNase I): 1 h, 37 ◦C

(only epidermis)
70 µM cell strainer

GSE202352

Solè-Boldo et al.
Commun Biol.

2020 [39]
scRNA-seq 10× Genomics

Chromium Inguinoiliac region Healthy
Aging

Whole-skin
dissociation kit for

human material and
Gentle MACS

dissociator from
Miltenyi Biotec

GSE130973

He et al.
J Allergy Clin

Immunol. 2020 [40]
scRNA-seq 10× Genomics

Chromium Body extremities Healthy
Inflammatory in vivo Biopsy specimens were cryopreserved, dissociated, and

processed by 10× Genomics GSE147424

Li et al.
J Invest Dermatol.

2022 [41]
scRNA-seq SMART-seq2 Chronic-wounded Skin

Buttock Healthy in vivo 5 U/mL Dispase II: overnight, 4 ◦C
0.025% trypsin/EDTA: 10 min, 37 ◦C GSE137897

Billi et al.
Sci Transl

Med.2022 [42]

scRNA-seq
ST

10× Genomics
Chromium +

10× Genomics Visium

Skin (not specified)
Buttock

Healthy
Inflammatory in vivo

0.4% dispase: overnight, 4 ◦C. Epidermis and dermis were
separated

0.25% trypsin-EDTA (+ deoxyribonuclease I): 1 h, 37 ◦C
(only epidermis)

Sample mincing (only dermis)
0.2% collagenase II-0.2% collagenase V: 1.5 h, 37 ◦C

(only dermis)
70 µM cell strainer, 1:1 ratio

GSE186476

Sun et al.
Front Cell Dev Biol.

2022 [43]
scRNA-seq 10× Genomics

Chromium
Face
Neck Healthy in vivo 2 mg/mL dispase II: overnight, 37 ◦C

trypsin-versene: 10 min, 37 ◦C (115 rpm) PRJNA797897

Zou et al.
Dev Cell. 2021 [44] scRNA-seq 10× Genomics

Chromium Eyelid Healthy
Aging in vivo

Sample mincing
2 mg/mL collagenase I, 2 mg/mL collagenase IV, 2 mg/mL

dispase, and 0.125% trypsin-EDTA: 1 h, 37 ◦C, 40 µM cell
strainer

HRA000395

Jayarajan et al.
Cells. 2023 [45] scRNA-seq 10× Genomics

Chromium
Plastic surgery for ear

reconstruction Healthy in vitro
Sample mincing

0.02 U/mL neutral protease: 3 h, 37 ◦C
0.25% trypsin\0.01% EDTA: 5 min, 37 ◦C (only epidermis)

GSE207130
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Table 1. Cont.

Article SCT Single-Cell
Technology Source Conditions In Vivo/In Vitro Biopsy Processing Protocol Data

Availability

Schäbitz et al.
Nat Commun.

2022 [46]

scRNA-seq
ST

10× Genomics
Chromium +

10× Genomics Visium
Skin (not specified) Healthy

Inflammatory in vivo MACS whole skin dissociation kit: 3 h, 37 ◦C GSE206391

Harirchian et al.
J Invest Dermatol.

2019 [47]
scRNA-seq 10× Genomics

Chromium Skin (not specified) Healthy
Inflammatory in vivo

25 U/mL dispase: overnight, 4 ◦C
0.03% Trypsin: 15 min at 37 ◦C (only epidermis)

100-µm cell strainer
EGAS00001002981

Der et al.
JCI Insight. 2017 [48] scRNA-seq Fluidigm C1 Skin (not specified)

Kidney Inflammatory in vivo
0.25 mg/mL Liberase: 15 min, 37 ◦C

0.03% Trypsin: 10 min, 37 ◦C
70-µm cell strainer

PRJNA379992

Guerrero-
Juarez et al.

Sci Adv. 2022 [49]
scRNA-seq 10× Genomics

Chromium Skin (not specified) Healthy
Cancer in vivo

dispase II-collagenase IV: overnight, 4 ◦C
0.25% trypsin-EDTA: 15 min, 37 ◦C for 15 min at 37 ◦C

40 µM cell strainer
FACS sorting

GSE141526
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Figure 2. Skin pathological tissues analyzed in single cells: (A–H) List of skin diseases that have been
characterized with single-cell techniques. For each disease, references to the papers that have charac-
terized the specimens are listed in chronological order. Localization of the illustrated pathologies
does not reflect the actual position from which the biopsies were withdrawn but serves as an ex-
ample. (A) Atopic dermatitis [20,25,30,31,46,47]; (B) Wound [37,41,50]; (C) Psoriasis [25,31,46,47,51];
(D) Lichen planus [46]; (E) Erythrokeratodermis variabilis [47]; (F) Lupus erythematosus [42,48];
(G) Vitiligo [29]; (H) Squamous and basal cell carcinoma [34,49].

3. Single-Cell Molecular Profiling of In Vivo Epidermis

Skin diseases can be ascribed to alterations in both basal or suprabasal keratinocytes, to
other epidermal cells, or to cell–cell communication networks established in vivo between
the different skin layers. In light of this, the single-cell analysis of the entire skin biopsy
could be relevant to better understand both healthy and pathological conditions.

3.1. Deciphering Complexity of Healthy Human Epidermis Using Single-Cell Approaches

Foreskin is one of the best-characterized epithelia, having an high proliferative po-
tential (Figure 1A) [31–33]. However, data of skin collected from several anatomical areas,
such as the scalp (Figure 1B) [31,34,35]; the truncal skin (Figure 1C) [25,31,34,36]; the foot
(Figure 1D) [37,38]; the hip (Figure 1E) [38]; the hand (Figure 1F) [34,38]; the inguinal
region (Figure 1G) [37,39]; the leg (Figure 1H) [40]; the buttock (Figure 1I) [41,42]; the
arm (Figure 1J) [30,34,40]; the face (forehead, eyelid, and tragus) (Figure 1K) [34,43–45];
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and the neck (Figure 1L) [43] are present in literature. Most of the studies on the human
epidermis involve the interfollicular epidermis. Hair follicles have only been studied
marginally in scalp biopsies [31], or from discarded human scalp micrografts collected for
transplantation [35] (Figure 1D).

The first scRNA-seq report of human keratinocyte heterogeneity was published by
Cheng et al., who studied epithelial complexity in different anatomical sites by collecting
nine biopsies among foreskin, scalp, and truncal skin (Table 1, Figure 1A–C) [31]. They
found 11 main clusters, 8 of which were identified as keratinocytes, 2 as melanocytes, and 1
composed of immune cells. Among the eight keratinocyte clusters, they distinguished two
basal clusters expressing KRT14 and KRT5, one formed by spinous keratinocytes expressing
KRT1 and KRT10 and one granular cluster marked by FLG and LOR. In addition, they
identified four other clusters defined as WNT1 (SFRP1+ and FRZB+); follicular (MGST1+

and S100A2+); mitotic (CCND1+ and PCNA+); and channel (ATP1B3+ and GJB2+) (Table 2).
WNT1 and follicular clusters were mainly present in scalp-derived skin, confirming

their role in follicular hair biogenesis, while channel cluster was highly under-represented in
all samples. Basal keratinocytes were characterized by the expression of different markers:
The basal1 cluster was marked by CXCL14 and DMNK, while the basal2 cluster was marked
by CCL2 and IL1R2. Only foreskin biopsies showed a third basal cluster, referred to as
basal3, which was enriched for AREG expression, an EGFR ligand that promotes keratinocyte
proliferation [31]. The relevance of AREG-EGFR signaling in the proliferative context has also
been suggested in a single-cell dataset generated from long-term expanded skin [43].

A comparison between adult trunk- (Figure 1C), fetal-(7–10 weeks post-conception),
and atopic dermatitis- or psoriasis-derived skin (Figure 2A) was performed by Reynolds
et al., who characterized epidermal non immune, dermal non-immune, antigen-presenting,
and lymphoid and mast cells groups for a total of 528,253 cells. Among the adult ker-
atinocytes, the authors identified a cluster of undifferentiated (KRT14+ and KRT5+), one
of differentiated (KRT1+ and KRT10+), and one of proliferating cells(CDK1+ and PCNA+)
(Table 2), as previously reported [25,31]. Fetal-derived keratinocytes differed from the adult
ones due to the expression of KRT8, KRT18, and KRT19. Trajectory analysis suggested that
the undifferentiated cluster contains SCs, which give rise to proliferating progenitors and
differentiated cells [25].

Wang et al. analyzed foreskin keratinocytes (Figure 1A) derived from five healthy
donors (17,553 cells), although only one donor (4598 cells) was extensively character-
ized [33]. Epidermal cells were split into seven clusters, four composed of basal ker-
atinocytes (BAS-I to IV) (around 23%, KRT14+, KRT5+, and CDH3+); two comprising
suprabasal spinous (around 54%, KRT1+, KRT10+, DSG1+, and CDH1+) and granular
(around 16%, DSC1+, KRT2+, IVL+, and TGM3+) cells; and one composed of melanocytes.
BAS-I was marked by PTTG1 and CDC20, whilst BAS-II expressed RRM2, HELLS, UHRF1,
and PCLAF (Table 2). The authors highlighted the role of HELLS, URF1, and RRM2 in
affecting epidermal homeostasis in organotypic cultures, even if further validations are
required to untangle their specific role in epidermis regeneration.

In addition, both basal clusters are enriched for cell-cycle genes (similar to the basal3
cluster from Cheng et al. [31] and the mitotic cluster from Zou et al. [44], later discussed
in this review) even though cell-cycle regression was used in the analysis, meaning that
differences in their transcriptome are not only strictly related to the cell cycle itself. BAS-
III (ASS+, COL17A1+, and POSTN+) and BAS-IV (GJB2+ and KRT19+) (Table 2) clusters
expressed genes located at the rete ridges level, as confirmed by immunofluorescence
analysis [33].

In the study by Zou et al., eyelid-derived skin biopsies from young (18–28 years old),
middle-aged (35–48 years old), and old (70–76 years old) donors were analyzed (Table 1,
Figure 1K). A total of 9 samples (35,678 cells) were used for subsequent analysis. Among
the 11 clusters identified, 5 were composed of keratinocytes divided into basal (BC, 30%,
KRT14+); mitotic (MC, 11%, MKI67+); vellus hair follicles (VHF, 5%, SOX9+, KRT6B+, and
SFRP1+), spinous (SC, 49%, KRT10+) and granular cells (GC, 5%, FLG+) (Table 2).
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Table 2. Schematic description of cell clusters and corresponding markers (italic) obtained after bioinformatic analysis of the transcriptomic profile of single cells
collected from human healthy skin biopsies; arrow: results from subclustering analysis; n/a: not available.

Article Undifferentiated/Basal Differentiated Proliferating Hair Follicle-Like/Others

Reynolds et al.
Science. 2021 [25] Undifferentiated KC: KRT14, KRT5 Differentiated KC: KRT1, KRT10 Proliferating: CDK1, PCNA

Cheng et al.
Cell Rep. 2018 [31]

Basal: KRT14, KRT5

Spn: KRT1, KRT10 Grn: LOR, FLG Mitotic: CCND1, PCNA

Follicular: MGST1, S100A2

→ Basal1: CXCL14, DMNK Channel: ATP1B3, GJB2

→ Basal2: CCL2, IL1R2

Wnt1: SFRP1, FRZB
→ Basal3: AREG

Wang et al.
Nat Commun. 2020 [33]

BAS: KRT14, KRT5 CDH3

SPN: KRT1, KRT10, SBSN, KRTDAP GRN: DSC1, KRT2, IVL, TGM3

→ BAS-I: PTTG1, CDC20

→ BAS-II: RRM2, HELLS, UHRF1,
PCLAF

→ BAS-III: RRM2, HELLS,
UHRF1, PCLAF

→ BAS-IV: GJB2, KRT19

Wiedemann et al.
Cell Rep. 2023 [38]

Undifferentiated keratinocytes:
KRT14, KRT5, TP63, ITGB1, ITGB4

Differentiated keratinocytes: KRT1, KRT10, SBSN,
KRTDAP

Terminally differentiated
keratinocytes: FLG, LOR, SPINK5

→ Basal1: n/a → Spinous 1: GRHL3, FOSL1, SOX9

→ Basal2: n/a
→ Spinous 2: FOS, GADD45B

→ Basal3: n/a

Solè-Boldo et al.
Commun Biol. 2020 [39]

Keratinocytes undiff: KRT5, KRT14,
TP63, ITGA6, ITGB1 Keratinocytes diff.: KRT1, KRT10, SBSN, KRTDAP

Billi et al.
Sci Transl Med.2022 [42]

Basal: KRT15, COL17A1, DST, KRT14,
POSTN, CXCL14, S100A2, KRT5,
SYT8, CYR61

Spinous: KRT1, LY6D, KRT6C, KRT16
Supraspinous: FLG, LOR, SLURP1,
FLG2, C1orf68, HOPX, CNFN,
SPINK5, CALML5, CDSN

Cycling: STMN1, CENPF, TUBA1B,
PTTG1, HMGB2, NUSAP1, TOP2A,
TK1, MKI67, HIST1H4C

Follicular: GJB6, KRT6B, TM4SF1,
GJB+, CHCHD10, CRABP2,
WFDC3, S100P, MUCL1, KRT17
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Table 2. Cont.

Article Undifferentiated/Basal Differentiated Proliferating Hair Follicle-Like/Others

Sun et al.
Front Cell Dev Biol.

2022 [43]

Basal cells (BAS): KRT14, KRT15,
COL17A1

Spinous cells (SPN): KRT10, KRT1 Granular cells (GRN): FLG, IVL

Proliferative cells (PC): MKI67

Hair follicle (HF): CD59, CD200

→ PC1: KRT1, KRT10, DMKN

→ PC2: KRT15, COL17A1,
IGFBP3, KRT14

→ PC3: CALML3, PTN, CYP27A1

Zou et al.
Dev Cell. 2021 [44]

Basal cells (BC): KRT14

Spinous cells (SC): KRT10, KRT1 Granular cells (GC): KRT10, KRT1,
FLG

Mitotic cells (MC): KRT14, KRT5,
KI67, TK1

Vellus Hair Follicul (VHF):
SOX9, KRT6B, SFRP1

→ BC1: COL17A1, IGFBP3,
KRT14

→ MC1: COL17A1, IGFBP3,
KRT14

→ BC2: POSTN, MYC, ID1 → MC2: KRT1, KRT10, DMNK

→ BC3: CYP27A1, S100A9,
S100A8

→ MC3: CYP27A1, S100A9,
S100A8



Int. J. Mol. Sci. 2023, 24, 8544 11 of 21

Principal component analysis (PCA) of differentially expressed genes (DEGs) indi-
cated that middle-aged keratinocytes were more similar to older rather than younger
keratinocytes. Upregulated genes in aged samples were associated with apoptotic and
cytokine-mediated signaling, whereas downregulated genes were linked to proliferation,
ECM organization, and DNA repair pathways [44]. By increasing cluster resolution, both
basal and mitotic clusters were subdivided into three different clusters (BC1 14%, BC2 12%,
and BC3 4%; and MC1 7%, MC2 2.5%, and MC3 1%, respectively, on the total keratinocytes).
Based on pseudotime and DEG analyses, the authors suggested that cells belonging to
the mitotic clusters were the proliferating counterpart of the corresponding basal cluster.
Indeed, both BC1 and MC1 expressed COL17A1, IGFBP3, and KRT14. On the other hand,
BC3 and MC3 expressed CYP27A1, S100A9, and S100A8, suggesting that these two small
clusters were composed of cells committed to a more inflammatory state. BC2 and MC2
clusters, instead, showed KRT10 expression, which marks the commitment to the differenti-
ation process (Table 2). Further characterization of these differences would be desirable [44].
Nonetheless, this observation would support the classic model of epidermal self-renewal,
where SCs give rise to TACs and differentiated cells [52].

This model has been confirmed through pseudotime trajectory analysis, in which basal
cells give rise to spinous and granular cells, but no clear consensus exists on the trajectory
position of the proliferative cluster compared with the quiescent one [33,35,44].

Wiedemann et al. recently studied the differences in thebehavior of cells derived from
the sole, the hip, and the palm (Table 1, Figure 1E–G). Particularly, they investigated the
common features and differences among palmoplantar and non-palmoplantar areas [38].
The authors analyzed the transcriptomic profile of 15,423 cells, 9471 of which were ker-
atinocytes. Three clusters were identified as basal (basal I-III) (KRT14+, KRT15, TP63+,
ITGB1+, and ITGB4+), two as spinous (KRT10+, KRT1+, SBSN+, and KRTDAP+) and one
as granular (FLG+, LOR+, and SPINK5+) (Table 2). Basal-cell clustering is mostly coherent
with the clusters identified in the foreskin by Wang et al. Nonetheless, Wiedemann et al.
identified an additional spinous cluster in adult-derived skin, highlighting peculiarities
present in the palm, the sole, and the hip. Monocle trajectory analysis confirmed that basal
I and II clusters are at the starting point of the pseudotime trajectory, followed by basal III,
spinous, and granular clusters [38].

Interestingly, similar skin populations were identified in the long-term expansion
(LTE)-derived skin biopsies. LTE is the gold standard procedure for scar reconstruction and
reconstructive surgery. This technique allows for a moderate constant skin expansion due to
the stretch forces applied to expanders beneath the skin. Four biopsies (two saline-injected
expansions and two controls) were analyzed using scRNA-seq (Table 1, Figure 1B,L) [43].
In total, 22,223 cells were analyzed, and keratinocytes were clustered into basal (47.29%,
BAS, KRT14+, KRT15+, and COL17A1+); proliferating (6.76%, PC and KI67+); spinous
(35.58%, SPN, KRT10+, and KRT1+); granular (2.24%, GRN, FLG+, and IVL+); and hair-
follicle clusters (2.43%, HF, CD59+, and CD200+) (Table 2). PC cluster was further divided
into three subclusters in accordance with Zou et al. No changes in clustering type or
differentiation trajectory were reported after expansion therapy, suggesting that a strong
proliferating stimulus does not alter epidermal behavior [43].

3.2. The Wound-Healing Process Analyzed at Single-Cell Level

Martinengo et al. estimated a global pooled prevalence of 2.21 per 1000 people
for chronic wounds of mixed etiologies [53]. In chronic wounds, inflammation, fibrosis,
and necrosis coexist, leading to a hampered skin regeneration process. Understanding
the complex human wound-healing mechanisms would greatly impact the success of
diagnosis and therapy of both acute and chronic wounds. ScRNA-seq data generated
from chronic wounds represent a powerful tool, offering new perspectives on the healing
process [37,41,54].

Comparisons of chronic non-healing pressure ulcer skin (PU), normal acute wounds
(AWs), and skin from matched healthy donors have been performed (Table 1, Figure 2B).
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A total of 1170 single cells were collected and analyzed using Smart-seq2 technology. In
agreement with Cheng et al., keratinocytes were classified into four clusters (KC1-4). KC2
and KC4 were classified as proliferating basal cell clusters: the first was characterized by the
expression of genes linked to adhesion and SC signature; the last was characterized by the
expression of immunomodulatory genes. The remaining KC1 and KC3 clusters represented
the spinous and granular cells, respectively. All the identified clusters were detected in
both PU- and AW-derived samples, but changes in their relative abundance were reported.
An increase in the percentage of spinous (KC1) and granular (KC3) cells was evident in
AW, compared with healthy skin. In contrast, in PU-derived skin, fewer spinous (KC1)
and basal (KC2 and KC4) keratinocytes were detected, while a major persistent granular
(KC3) cluster was present. Moreover, an increase in the proportion of immune cells was
shown in chronic wounds compared with the other samples. Over-representation analysis
(ORA) showed that PU keratinocytes overexpressed neutrophil-mediated immunity and
apoptosis-related genes [41]. These findings were also confirmed in diabetic foot ulcers,
another type of chronic wound, where inflammation and programmed cell death pathways
were both upregulated in dermal fibroblasts [50].

In order stratify the patients with PU, the most variable genes on all PU keratinocytes
were used to perform PCA. Two groups of patients were identified: t the PU_G2 group was
characterized by the enrichment in keratinocytes expressing proliferation-related markers,
while keratinocytes from PU_G1 group displayed the upregulation of genes involved in
MHC-II-mediated antigen presentation and IFN-γ response. The stimulation of human
primary keratinocytes with cell-free wound fluid from PU_G1 patients (but not PU_G2)
induced keratinocytes expression of MHC-II-related genes. This effect was blocked by
neutralizing IFN-γ in the wound fluids, suggesting that IFN-γ may account for MHC II
expression in PU keratinocytes [41].

These different mechanisms in PU highlight the importance of molecular wound
diagnosis. Indeed, distinct molecular hallmarks highly correlate with different clinical out-
comes that could be exploited in novel personalized medicine strategies concerning chronic
wounds. For instance, a targeted molecular diagnosis could highlight the pathogenic mech-
anisms occurring in a patient’s wound. This could enable the repurposing of anti-IFN-γ
antibodies previously developed for other disease treatments, to improve wound healing
by blocking IFN-γ pathways [41,55,56].

Another therapeutic opportunity was investigated by Singh et al. Their effort focused
on the possibility of a pharmacological reversal of DNA hypermethylation, since mouse
model studies showed that this might be a feasible solution to rescue tissue regenera-
tion [37,57]. Epithelial–mesenchymal transition (EMT) is responsible for the initiation of
re-epithelialization required for wound closure. The loss of this epithelial plasticity leads
to chronic wound persistence. The DNA methylation profile of chronic wound edges
(WEs) compared with unwounded samples (UWs) revealed that EMT-related genes and
their upstream regulator TP53 were hypermethylated in WEs. ScRNA-seq data analysis
from 25,168 cells from chronic WEs and 25,561 cells from UW skin allowed researchers to
distinguish two keratinocyte clusters, identified as Kera1 (KRT14+ and KRT1+) and Kera2
(KRT19+ and KRT7+) (Table 1, Figure 2B) [37]. WE samples were marked by the absence
of Kera2 cells, which expressed genes relevant to the cell plasticity and the metabolism
switch required during the EMT and the preneoplastic progression [58,59]. Differences
also arose in the Kera1 cluster, which displayed a lower expression of TP53 target genes
in WE-derived cells, probably due to TP53-promoter hypermethylation, as suggested by
methylome data. This finding has been further validated in in vitro studies and mouse
models [37]. Thus, the presence of TP53-demethylated locus in a diseased hypermethylated
genome paves the way for further investigations. New therapeutic strategies might act on
the peculiar epigenetic landscape of the wound-compartmentalized microenvironment.
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3.3. Inflammatory Skin Diseases: Towards Precision Medicine Using Single-Cell Data

Non-communicable inflammatory skin diseases (ncISDs), such as psoriasis or atopic
dermatitis, are a major cause of global disease burden due to their frequency, heterogeneity
and complexity. Driven by an intricate interplay of genetics and environmental factors,
they are a crucial challenge of modern medicine [60,61]. Due to the lack of models able to
predict therapeutic responses, many individuals do not benefit from available therapies [46,60].
Thus, new omic approaches could provide a deep phenotyping of key cell types in ncISDs,
offering new information to tackle these diseases [46,51]. Currently, most of the studies
are focused on psoriasis (Figure 2C) [25,46,47,51] and atopic dermatitis (AD or eczema)
(Figure 2A) [25,40,46,47], while some others also investigate lichen planus (LP) (Figure 2D) [46],
erythrokeratodermia variabilis (Figure 2E) [47], lupus erythematosus (LE) (Figure 2F) [42,48],
and vitiligo (Figure 2G) [29].

TNFα and IL-17 cytokines contribute to the dysregulation of the immune response
in keratinocyte-driven rashes through NF-kB activation. The systemic blockade of these
cytokine pathways is beneficial, but a specific targeting in the accessible skin tissue would
reduce systemic side effects. A20 is a promising targetable NF-kB-inhibiting partner pro-
tein. The scRNA-seq analysis of 42,105 cells showed that A20 overexpression inhibited the
expression of an inflammatory-genesignature upregulated in psoriasis, AD, and erythro-
keratodermia variabilis samples. Based on this finding, the A20 in vivo upregulation could
represent a therapeutic path to dampen skin inflammation in a variety of ncISDs [47].

The scRNA-seq analysis of psoriasis, atopic dermatitis, and healthy control biopsies
enabled the identification of four clusters of undifferentiated, differentiated, proliferating,
and inflammatory differentiated cells. The inflammatory-differentiated cluster, expressing
inflammation markers (ICAM1, TNF, and CCL20), as well as low levels of undifferentiation-
related (TP63 and ITGA6) and differentiation-related (KRT1 and KRT10) markers, was
expanded in psoriasis skin [25]. Previous reports have shown that psoriasis lesional skin
was enriched in inflammatory-differentiated keratinocytes and mitotic cells, suggesting an
increase in the cell plasticity in disease states [31].

He et al. provided a further single-cell characterization of AD biopsies (Table 1). AD
keratinocytes were characterized by the upregulation of epidermal proliferation-associated
genes, including S100 and protease inhibitors SERPINB4, consistent with epidermal hyper-
plasia. The lesional proliferating and suprabasal keratinocytes from their dataset overex-
pressed KRT6, KRT6A, and KRT16, which are usually enriched in hyperproliferative and
wound-healing states [40]. Similar results were confirmed via a scRNA-seq analysis of
suction blistering and punch biopsy of both healthy and AD skin [30] (Table 1).

Cutaneous lupus erythematosus (CLE) has been studied by means of scRNA-seq and
spatial transcriptomics approaches [42]. Biopsies were collected in both lesional and non-
lesional areas from 7 CLE and 14 healthy control skin samples (Table 1, Figure 2F). Among
the 25,675 cells, common clusters were composed of basal (KRT15+, COL17A1+, DST+,
KRT14+, POSTN+, CXCL14+, S100A2+, KRT5+, SYT8+, CYR1+), spinous (KRT10+, LY6D+,
KRTC+, and KRT1+); granular or supraspinous (FLG+, LOR+, SLURP1+, FLG2+, C1orf68+,
HOPX+, CNFN+, SPINK5+, CALML5+, CDSN+, and KRT10+); follicular (GJB6+, KRT6B+,
TM4SF1+, GJB2+, CHCHD10+, CRABP2+, WFDC3+, S100P+, MUCL1+, and KRT17+); and cy-
cling (STMN1+, CENPF+, TUBA1B+, PTTG1+, HMGB2+, NUSAP1+, TOP2A+, TK1+, MKI67+,
and HIST1H4C+) cells (Table 2) [42]. Basal and spinous subclusters were enriched in lesional
CLE-derived keratinocytes. Nearly all the cells belonging to these clusters showed high
IFNα-signaling responses. Surprisingly, the upregulation of cytokine-related pathways
was also pronounced in non-lesional skin from CLE patients, suggesting the existence
of a prelesional state. These data were corroborated through the spatial transcriptomic
analysis of healthy and CLE-derived biopsies, also providing one of the first reports of
spatial localization of these clusters in healthy skin [42]. Similar results were obtained
in lupus nephritis (LN), a major organ manifestation of systemic lupus erythematosus,
which could lead to acute or chronic renal failure [48]. An IFN-response signature was
detectable in the tubular cells of LN patients. Similar results were obtained in non-lesional
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skin biopsies from the same individual, suggesting that the scRNA-seq analysis of readily
accessible skin biopsies could be exploited in clinics to reflect kidney injury [48].

Notably, ncISDs (particularly LP, AD, and psoriasis) have also been studied through
spatial transcriptomics using Visium technology by 10× Genomics. From each group of
patients, a lesional and non-lesional section was withdrawn [46] (Table 1). This assay is
not formally at single-cell resolution, as it generally covers between 1 and 10 cells per
spot. Therefore, the authors did not directly analyze single keratinocytes but implemented
a density-based clustering method. This allowed them to correlate cytokine expression
to responder gene signatures, according to spatial features, paving the way for curative
treatment strategies, such as antigen-specific immunotherapies [46], as already suggested
for pemphigus vulgaris [62,63].

Although all these strategies might prove successful, further investigations of cell–cell
interaction in lesional and non-lesional samples are required, as they might shed light
on the subsequent processes that trigger inflammation and lesion formation [42,48]. The
identification of the specific disease-causing antigens, and the subsequent targeting of
cytokine-producing immune cells in the inflammatory microenvironment, will speed up
the development of ncISD-tailored therapies [46].

4. Single-Cell Molecular Profiling of In Vitro Cultured Human Primary Keratinocytes

Regenerative therapies to restore damaged or diseased epithelium are routinely ap-
plied in clinics. Several patients have been successfully treated, completely saving or chang-
ing the lives of those affected by extensive burns, skin genetic diseases, and burned-cornea
blindness [7,9,24]. The success of all these different approaches relies on the possibility
of in vitro culture epithelial SCs. In 1975, H. Green was able to overcome the limitations
previously observed in the cultivation of epidermal cells in surface cultures by coculturing
them with mitotically inactivated murine fibroblasts [64]. This protocol has been used since
1984 to treat burned patients using autologous cultivated epidermal graft [7].

Given their potency and plasticity, in vitro cultured keratinocytes have been character-
ized over time. Already in 1987, H. Green was able to describe three clonal types: holoclones,
meroclones, and paraclones [65]. Holoclone-forming cells displayed the highest prolifera-
tive potential and unique self-renewal capacity; therefore, they are considered epithelial
SCs. Conversely, meroclone- and paraclone-forming cells showed less proliferative poten-
tial and are normally referred to as TACs. As progenitors, they lack self-renewal capacity
and progressively lose their proliferative potential, giving rise to terminally differentiated
cells. These assumptions were initially based on clinical observations, in which permanent
epithelial regeneration was only possible when an adequate number of holoclone-forming
cells were present in the grafted culture [66]. Nonetheless, the formal proof that holoclone-
forming cells are SCs only became possible in 2017, when a patient affected by JEB was
successfully treated using corrected autologous keratinocytes. Clonal tracing analysis has
been performed using the provirus integration site as a unique clonal marker, allowing
researchers to track cell progeny in the transduced grafted skin [10].

To better understand the biology on which these functional differences rely, the molec-
ular characterization of the three clonal types has been carried out. TP63, YAP, and FOXM1
were found to be the crucial transcription factors (TFs) that sustain epithelial SC self-
renewal [36,67–69]. The microarray analysis of holoclone-, meroclone-, and paraclone-
derived progenies identified a list of 526 genes differentially expressed in holoclones, as
compared to meroclones and paraclones, hence defined as holoclone signature [36].

To gain insight into clone-founding cells, scRNA-seq was applied to the clinical-grade
culture of human primary keratinocytes extracted from two healthy donors’ truncal skin
biopsies (Table 1, Figure 1C) [23]

The transcriptomic profiles of 7354 cells were analyzed. Three clusters expressed
high levels of clonogenic/basal markers (KRT14+, TP63+, ITGA6+, and ITGB1+), whereas
differentiated cells, identified as clusters TD1 and TD2, expressed SERPINB3, SFN, KRT10,
IVL, and SPINK5. Among the three clonogenic clusters, the one expressing the holoclone
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signature to the highest extent was named H, containing holoclone-forming cells. M and
P clusters expressed lower levels of holoclone signature and contained meroclones and
paraclone-forming cells. The H cluster expressed high levels of genes linked to cell cycle,
DNA repair, microtubule organization, and YAP and FOXM1 signaling pathways. Monocle
analysis confirmed that the H cluster is the starting point of a unique and mainly linear
trajectory that proceeds through M and P clusters, giving rise to TD1 and TD2 cells. Single-
cell data were further validated using gain- and loss-of-function experiments, confirming
the crucial role of FOXM1 as a downstream target of YAP to sustain SC self-renewal
potential during in vitro culture [36,67].

The presence of an adequate number of SCs in the graft is one of the main concerns
during translational phases [70]. Jayarajan et al. performed a single-cell analysis to study
the anoikis-preventing effect of Rho-associated kinase inhibitor (ROCKi) in maintaining
keratinocyte SC self-renewal (Figure 1K, Table 1) [45,71].

ROCKi enhanced cell clonogenic potential after a 6-day treatment. In line with Enzo
et al., they identified clusters of SCs, TACs, and differentiated cells in untreated conditions.
Surprisingly, they showed a ROCKi-driven reduction in the percentage of holoclone-
forming cells, reversible upon withdrawal. The single-cell profiling of long-term-treated
keratinocytes could shed light on molecular mechanisms responsible for SC reduction,
possibly confirming previously published data [72,73].

The epigenetic profiling of in vitro cultured keratinocytes at the single-cell level was
published by Khavary’s lab. To study the gene network controlling cell fate, they developed
perturb-ATAC (assay for transposase-accessible chromatin) (Table 1, Figure 1A), a method
able to measure the impact of CRISPR modification on chromatin accessibility in each
cell [32]. To this aim, undifferentiated and calcium-induced differentiated keratinocytes
were subjected to single-cell ATAC sequencing (scATAC-seq). This allowed the alignment
of single cells onto a unique and mainly linearly pseudotime differentiation trajectory. The
differentiation was driven by 67 TFs that clustered in 3 modules, which were differentially
activated along the differentiation route and were able to recapitulate (i) the proliferation
state and progenitors’ mitosis control; (ii) the mid-differentiation and the cell–cell adhesion;
and (iii) the late keratinization in terminally differentiated cells. The authors identified TFs
required for the differentiation program and examined epigenetic changes upon single or
combined gene silencing of those TFs. This method could ideally identify co-regulated
regulatory elements, providing insights for further biological validations [32].

5. Network Identification Using Single-Cell Dataset

Studies involving cell–cell interactions might play a pivotal role in understanding
physiological and pathological tissue conditions. Starting from single-cell data, different
approaches have been used to investigate such synergy in the human epidermis.

Network studies have emerged from the re-analysis of Cheng’s dataset, through which
a network of transcription factors modules controlling self-renewal and differentiation has
been established. However, the biological validation of these results was only partial [74].

Notably, scRNA-seq data provide novel opportunities to study receptor–ligand in-
teractions, identifying networks of communicating cells in tissues. In a previous study
by Wang et al., cell–cell interactions were determined using the SoptSC algorithm. They
predicted the interactions occurring via WNT, JAK-STAT, NOTCH, and TGF-β signaling
pathways. The WNT pathway was active in most of the basal and spinous cells, while
TGF-β signaling was restricted to the basal layer. The upper layers of the epidermis were
enriched in NOTCH4 and JAK/STAT signaling [33].

Other research groups studied cell–cell interactions in healthy and inflamed skin. Start-
ing from scRNA-seq data, the differential expression of ligand–receptor pairs in AD versus
healthy controls was analyzed [40]. CCL2 was significantly upregulated in lesional AD versus
control basal keratinocytes. The gene was also abundantly expressed by a unique popula-
tion of AD COL6A5+ and COL18A1+ inflammatory fibroblasts, unrecognized by previous
single-cell studies on healthy dermal fibroblasts [75]. CCL2 receptors (CCR1 and CCR2) were
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expressed on macrophages and dendritic cells. Another chemokine, CCL27, was upregulated
in lesional keratinocytes, not only in basal but also in suprabasal clusters. CCL27 upregulation
suggests the establishment of signaling via CCR10 in T cells. Taken together, these findings
highlight the interactions between immune and other cell types in skin [40].

Bioinformatic Tools for Cell Network Analysis

Starting from sc-RNA seq data, several user-friendly tools have been recently devel-
oped (Table 3). Here, we report those employed to study cell–cell interactions in healthy,
wounded, and cancerous skin.

NicheNet, developed in 2019, enables the assessment of not only ligand–receptor
interactions but also its predicted impact on intracellular signaling. As a result, it can
predict which ligands influence gene expression in another cell, which target genes are
affected by each ligand, and which signaling mediators may be involved [76]. Ji et al.
applied NicheNet to study keratinocyte-predicted ligands that modulate the transcriptomic
profile of squamous cell carcinoma (SCC) microenvironment-specific cells at the leading
edge (Figure 2H). The tumor-specific keratinocyte signaling with nearby cancer-associated
fibroblasts was mediated by several receptor–ligand pairs, such as MMP9-LRP1 and TNC-
SDC1. The tool also confirmed that tumor keratinocytes at the leading edge resembled an
EMT-like population, as they expressed TGFB1 and integrins such as ITGA3 and ITGB1 [34].

Table 3. List of bioinformatic tools for cell network analysis. Provided links have been accessed on 3
May 2023.

Tool Year of Release Link Availability

Online Upon Installation

NicheNet 2019 https://www.nichenet.be x

CellPhone DB 2020 http://www.cellphonedb.org x

CellChat 2021 http://www.cellchat.org x

COMMOT 2023 https://github.com/zcang/COMMOT x

The database CellPhone DB, released in 2020 [77], considers the subunit architecture of
both ligands and receptors, accurately representing heteromeric complexes. Solè-Boldo et al.
used CellPhone DB to study the interactions between fibroblasts and other skin cell types
during aging (Table 1, Figure 1H). The analysis showed that the number of interactions
between fibroblasts and undifferentiated keratinocytes decreased during aging [39].

Released in 2021, the CellChat database considers the additional effects that soluble
and membrane-bound stimulatory and inhibitory cofactors exert on these interactions. This
tool was employed by Sun et al. to identify intercellular communications driving skin
regeneration for long-term expansion therapy [43]. Ligand–receptor pairs AREG-EGFR,
CD96-NECTIN, and LAMIN-CD44 were identified as the most significantly upregulated sig-
naling. These pathways might be essential for mechanical stretching and likely contribute
to the maintenance of long-term skin regeneration. As expected, the EGF pathway resulted
in upregulation in the expanded skin as well [43]. In the work of Guerrero-Juarez et al.,
CellChat allowed the description of the interactions between fibroblasts and the basal
cell carcinoma (BCC) stroma in affecting tumor growth. Fibroblast-secreted WNT5A was
identified as the ligand interacting with receptors FZD6 and FZD7 expressed by the basal
layer’s keratinocytes [49]. Yakupu et al. took advantage of CellChat to provide new insights
into PU cellular connections, using data from Li et al. [41,54]. This analysis revealed that
intercellular communication is enhanced in both number and strength, mostly between
spinous keratinocytes and other clusters in PU, compared with AW samples. Nonetheless,
a comparison with healthy skin is missing. The authors suggested that, in PU, spinous and
mitotic cells mainly receive signals from melanocytes. In particular, the protease-activated
receptor (PAR) signaling pathway mediated by the CTSG-F2RL1 ligand-receptor pair is

https://www.nichenet.be
http://www.cellphonedb.org
http://www.cellchat.org
https://github.com/zcang/COMMOT
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one of the most activated in PU [54]. CTSG is a serine protease mainly expressed by
melanocytes and involved in inflammation, while F2RL1 is widely expressed by fibroblasts
and keratinocytes, where it plays an important role as a driver of inflammatory response.
These data suggest that PARs might represent an important therapeutic target [54,78].

In 2023, Cang et al. developed a new tool called COMMOT that added spatial informa-
tion to the study of cell–cell interactions. To validate it, they applied the algorithm to a wide
range of datasets, demonstrating that it can consistently capture cell–cell communications
(CCCs) already described in the literature [79]. COMMOT was used to study the role of
CCCs in human epidermal development. Starting from receptor–ligand pairs annotated
in CellChat DB, COMMOT predicted that the molecular interactions between GAS6 and
PROS1 with TYRO3 were significant in granular cells and moderately present in basal cells.
This notion was confirmed using IF and in situ hybridization (ISH) analysis. Furthermore,
the authors analyzed four signaling pathways with well-established roles in epidermal
homeostasis, namely WNT, TGF-β, NOTCH, and JAK/STAT. All the signaling cascades
were mainly upward-directed, from the basal to suprabasal layers. Conversely, some
signals were downward-directed toward the basal layers at the bottom of the ridges [79,80].

6. Conclusions

Single-cell techniques have revolutionized the field of biology, offering unprecedented
insights into the complexity and heterogeneity of biological systems. Undoubtedly, the
ability to profile individual cells has greatly expanded the understating of tissue organi-
zation and dynamics, unraveling the mechanisms that underlie normal development and
disease progression. Furthermore, the development of multiomic approaches facilitates
the description of the genomic and gene expression profile within each cell, providing a
multifaceted and comprehensive understanding of cellular behavior.

However, it is important to be cautious of potential pitfalls. Considering the enormous
amount of information derived from these techniques, standardizing bioinformatic analysis
is crucial for the generation of comparable data. Misleading interpretations could also
arise from sample-handling procedures, as they directly influence cell collection and stress-
related cellular responses. Therefore, in silico findings need careful experimental validation
to avoid computational and sample-handling-derived artifacts.

Skin is a complex tissue, and its cellular heterogeneity is now being tackled by single-
cell analysis, in both physiological and pathological conditions. The ability to characterize
the epidermis architecture at the single-cell level, combined with cell–cell communication
models, offers powerful insights into its many layers of biological complexity.

Despite the potentialities of these emerging tools, some biological questions remain
unanswered. Indeed, further analyses are required to elucidate which pathways are
involved in in vivo self-renewal and symmetric/asymmetric cell division. A starting point
in deciphering epidermal stem-cell molecular profile involves in vitro experiments, in
which they are activated in a condition mimicking wound healing.

The importance of unraveling skin complexity is linked to the possibility of (i) moni-
toring clinically relevant cell populations for advanced therapy (e.g., epidermal SCs in cell
and gene therapy applications); (ii) defining a patient-specific diagnosis; and (iii) providing
targets to improve precision medicine.

Excitingly, new frontiers are emerging in the field of single-cell analysis. Among them
is the possibility to deconvolute cell complexity at the protein level, which promises an
even more accurate characterization of biological processes.
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