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Abstract: Obesity and its associated metabolic morbidities have been and still are on the rise, posing
a major challenge to health care systems worldwide. It has become evident over the last decades
that a low-grade inflammatory response, primarily proceeding from the adipose tissue (AT), essen-
tially contributes to adiposity-associated comorbidities, most prominently insulin resistance (IR),
atherosclerosis and liver diseases. In mouse models, the release of pro-inflammatory cytokines such as
TNF-alpha (TNF-α) and interleukin (IL)-1β and the imprinting of immune cells to a pro-inflammatory
phenotype in AT play an important role. However, the underlying genetic and molecular determi-
nants are not yet understood in detail. Recent evidence demonstrates that nucleotide-binding and
oligomerization domain (NOD)-like receptor (NLR) family proteins, a group of cytosolic pattern
recognition receptors (PRR), contribute to the development and control of obesity and obesity-
associated inflammatory responses. In this article, we review the current state of research on the role
of NLR proteins in obesity and discuss the possible mechanisms leading to and the outcomes of NLR
activation in the obesity-associated morbidities IR, type 2 diabetes mellitus (T2DM), atherosclerosis
and non-alcoholic fatty liver disease (NAFLD) and discuss emerging ideas about possibilities for
NLR-based therapeutic interventions of metabolic diseases.

Keywords: NLRP3; IL-1β; NOD1; NOD2; NLRP12; NLRC5; HFD; inflammasome; microbiota;
insulin resistance

1. Introduction

In the last decades, a strong increase in overweight has been observed in countries
with an industrialized Western lifestyle [1]. Overweight describes an excess of body fat and
in adults is most commonly defined by a body mass index (BMI) over 25 kg/m2 and a BMI
of over 30 kg/m2 is referred to as obesity. The presence of excessive visceral adipose tissue
and the associated increased waist circumference in overweight and obese individuals are
linked to various health problems and considered particularly unfavorable. Together with
hypertension, hypertriglyceridemia, low high-density lipoprotein (HDL) cholesterol levels
and impaired blood glucose control manifesting as hyperglycemia or insulin resistance
(IR), the disease pattern is called the metabolic syndrome (MetS), and is a risk factor for
the development of type 2 diabetes mellitus (T2DM), atherosclerosis and non-alcoholic
fatty liver disease (NAFLD) [2]. The increasing prevalence of obesity and especially the
associated morbidities pose a major challenge to health care systems worldwide.

Obesity-associated IR, T2DM, atherosclerosis and NAFLD have been shown to be
linked to inflammatory processes. Although clear evidence confirming inflammatory
responses as initial triggers of obesity-associated diseases is still lacking, a large body of
evidence supports the contribution of inflammatory signaling to the deterioration of
obesity-associated morbidities [3]. Increased pro-inflammatory signaling and cytokine
release in the adipose tissue (AT) of obese humans and mice fed a high-fat diet (HFD)
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suggests a key role of adipocytes and AT-infiltrating and -resident immune cells, espe-
cially macrophages, as drivers of these inflammatory conditions [4–6]. Initiation of the
pro-inflammatory signals has been proposed to be mediated by a state termed metabolic
endotoxemia, referring to the translocation of microbial and nutritional compounds
from the gut into the circulation. This translocation has been shown to be caused by an
increase in gastrointestinal permeability upon HFD feeding (leaky gut syndrome) [7–11].
Further, adipocytes in the AT of obese individuals contribute to AT inflammation by
dying from hypoxia, as oxygen supply, similar as in tumor tissue, does not accommodate
to their extensive increase in size [12]. These dying adipocytes are rapidly surrounded
and taken up by adipose tissue macrophages (ATMs), resulting in crown-like structures
(CLS) [13,14] and a pro-inflammatory response [15]. Additionally, it has been shown
that enlarged adipocytes stimulate collagen synthesis, thus leading to AT fibrosis, which
in turn is limiting the expansion and thus lipid storage capacity of adipocytes. This
leads to a ”lipid-spillover”, in turn leading to the production of lipotoxic, highly im-
munogenic molecules, for example, ceramides. By that, AT fibrosis is contributing to
AT inflammation, activation of stress pathways and additionally deposition of lipids
outside the AT as ectopic fat, for example, in the liver [12,16,17]. All together, these
AT-derived pro-inflammatory signals act in a paracrine and autocrine manner, but
are also distributed systemically to interfere with the insulin signaling, leading to IR,
hyperglycemia and in the end to the development of T2DM [18]. In atherosclerosis,
inflammatory responses are primarily initiated by endogenous danger signals present
in atherosclerotic lesions and released from ruptured atherosclerotic plaques [19]. Fur-
thermore, in NAFLD, liver inflammation and fibrosis are caused by hepatocellular stress
and hepatocyte death due to overnutrition, leading to the production of toxic lipid
intermediates, as the liver’s capacity to handle metabolic substrates, primarily carbohy-
drates and fatty acids, is exceeded. These toxic lipid intermediates induce hepatocellular
stress and hepatocyte death, resulting in liver inflammation and fibrosis [20]. Together,
these pro-inflammatory signals derived from the respective organs give rise to a state of
chronic, low-threshold inflammation in obese individuals, also referred to as sterile or
low-grade inflammation.

It has been known for some time that food intake generally leads to alterations in
the immune response, manifesting in a mild inflammatory phenotype [21–23]. Especially
fatty acids have been subject of intense research on and identified as inducers of this post-
prandial inflammatory status [11,22,24]. Meals high in carbohydrates or a combination
of both macronutrients, however, have also been shown to induce a robust postprandial
inflammation in healthy subjects, with increased levels of the pro-inflammatory cytokines
interleukin (IL) -6 and tumor necrosis factor (TNF) -α, elevated leukocyte counts, increased
generation of reactive oxygen species (ROS) and elevated plasma lipopolysaccharide (LPS)
concentration [8,9,25–29]. As it has been shown that this postprandial inflammatory re-
action is increased in individuals with obesity [27,30,31] and T2DM [32,33] compared to
healthy subjects, it was proposed that in a scenario of constant overnutrition or already
existing metabolic disturbances, the postprandial inflammation contributes to the devel-
opment and/or deterioration of metabolic diseases. However, recent evidence suggests a
physiological role of this postprandial inflammatory state in healthy individuals. Glucose-
driven postprandial increase in macrophage-derived IL-1β, for example, has been shown
to be critical for the maintenance of adequate postprandial insulin secretion [34] and ROS,
in low to moderate concentrations, have been shown to be beneficial, conferring functions
as signaling molecules [35]. Thus, the nature and extend of the postprandial inflammatory
state seems to be dependent on the individual metabolic situation, contributing to the
maintenance of important physiological processes such as insulin secretion in metaboli-
cally healthy individuals, while potentially deteriorating metabolic diseases such as T2DM
or obesity.

In addition to impacting metabolic processes, HFD intake also changes the gut mi-
crobiome, with decreased abundance of the Bacteroidetes phylum [36,37] and increased
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proportions of the phyla Firmicutes [36,37] and Proteobacteria [37] being reported in mice.
HFD can also increase the species abundance (alpha diversity) in murine fecal samples [38].
Notably, microbial alterations are mainly driven by the HFD feeding and not by the state of
obesity itself [37,38]. Interestingly, germ-free (GF) mice are protected from HFD-induced in-
flammation and IR [39,40] and microbiota transplantation from diet-induced obesity (DIO)
mice to GF lean mice led to more fat accumulation compared to transplanting microbiota
from lean donors [41]. These data argue for a role of the microbiome in weight gain in
obesity. Mechanistically, it was proposed that HFD or Western-style diet (WD), which
is rich in simple carbohydrates and saturated fatty acids and low in fiber, increases the
abundance of bacterial species able to import and process, and thus extract energy from,
simple sugars [41]. In addition to its influence on the gut microbiome composition, HFD
has also been shown to disrupt intestinal integrity, leading to increased serum levels of
commensal LPS and peptidoglycan (PGN) fragments, thus contributing to endotoxemia
and pro-inflammatory responses in peripheral tissues [7–11]. These data highlight that
HFD/WD and the gut microbiome mutually impact each other and that these interac-
tions have serious consequences for body weight homeostasis and metabolic inflammation
and diseases.

As both, low-grade inflammation in obese individuals and postprandial inflammation
present with an increase in circulating immunogenic mediators (LPS, cytokines or ROS), it
is not surprising that recent advances show key sensor molecules of the innate immune
system, so-called pattern recognition receptors (PRR), to play a central role in the release of
pro-inflammatory cytokines and initiation of pro-inflammatory processes in obesity [42].
Deficiency in the main LPS sensor, Toll-like receptor 4 (TLR4), for example, was shown
to partly protect female mice from HFD-induced IR and inflammatory gene expression in
AT and liver [43]. More recent results show that also proteins of the nucleotide-binding
and oligomerization domain (NOD)-like receptor (NLR) family are involved in metabolic
inflammatory reactions [44,45].

NLRs are a group of cytosolic PRRs that share a common tripartite domain organiza-
tion consisting of a central ATPase and oligomerization domain (NACHT), mediating the
oligomerization and thus activation of NLRs, a variable number of C-terminal leucine-
rich repeats (LRRs), responsible for recognizing ligands, and a variable N-terminal
effector domain, based on which NLRs can be classified into four sub-families, NLRA,
NLRB, NLRC and NLRP (Figure 1). NLRAs possess an N-terminal caspase-activation
and recruitment domain (CARD) associated with an acidic transactivation domain (AD);
NLRBs contain a baculovirus inhibitor of apoptosis protein repeat (BIR) domain [46–48].
No associations with obesity have yet been described for representatives of these two
NLR sub-classes, which is why they are not discussed further in this review article.
NLRCs carry one or two CARD or CARD-like domains at the C-terminus, associated
proteins are NOD1 (NLRC1), NOD2 (NLRC2), NLRC3, NLRC4 and NLRC5. The effector
domain of the NLRPs consists of a pyrin domain (PYD), and the corresponding NLRs
are designated NLRP1-14 [46–48].

NLR proteins confer multiple cellular functions. Some NLRs function as PRRs
and recognize components of pathogenic microorganisms (pathogen-associated molecu-
lar patterns, PAMPs, also known as microbe-associated molecular patterns, MAMPs),
such as PGN, a component of the bacterial cell wall, flagellin or viral RNA [49]. How-
ever, NLRs can also react to incorrectly localized or pathologically altered endogenous
molecules, so-called danger-associated molecular patterns (DAMPs). Examples include
extracellular ATP, crystallized cholesterol or uric acid crystals [19,46,47]. NLRs func-
tioning as bona fide PRRs and inducers of pro-inflammatory responses, for example,
are NOD1, NOD2 and NLRP3. NOD1 and NOD2 induce pro-inflammatory responses
via the adaptor molecule receptor-interacting serine/threonine-protein kinase 2 (RIPK2)
through activation of the nuclear factor ”kappa-light-chain-enhancer” of activated B-
cells (NF-κB) upon recognizing their specific ligands [46]. NLRP3, and several other
NLRP proteins, form so called ”inflammasomes”, multiprotein complexes consisting
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of the corresponding NLR, apoptosis-associated speck-like protein containing a CARD
(ASC) and pro-caspase-1. Activation of the inflammasome by a two-step process induces
cleavage-mediated activation of caspase-1, ultimately resulting in the processing and
thus activation of IL-1β and IL-18 [50–53]. Today, we know that NLRs also confer impor-
tant functions beyond the initiation of inflammatory processes. NLRP11 and NLRP12,
for example, have been shown to regulate rather than initiate immune signaling [54,55],
whereas NLRC5 and Class II Major Histocompatibility Complex Transactivator (CIITA)
function as transcriptional activators and are the master regulators for the transcription
of the major histocompatibility (MHC) class I and class II genes, respectively, thus linking
innate and adaptive immune responses [46,56,57].

L R RNACHTPYD
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NACHT L R RuCARD
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Figure 1. Schematic domain organization and site of action of NLR proteins in obesity and associated
morbidities. Shown are the schematic domain organizations of the NLRs discussed in the main text
and their main site of action in obesity and its associated morbidities. CARD = caspase activation and
recruitment domain, uCARD = untypical CARD, LRR = leucine-rich repeats, NACHT = nucleotide
binding and oligomerization domain, PYD = pyrin domain.

In the context of obesity, low-grade and postprandial inflammation, the physiological
relevance of these proteins, their triggers and molecular mechanisms still largely remain
elusive. We here summarize the current state of research on NLRs in obesity, low-grade
and postprandial inflammation and discuss which signaling events may play a role in the
pathogenesis of obesity and its associated morbidities (Table 1). Of the 22 human NLRs
known to date [48], six proteins (NLRP3, NLRP6, NOD1, NOD2, NLRC5 and NLRP12)
(Figure 1) have been described to be associated with obesity and low-grade inflammation
and one (NLRP3) with postprandial inflammation.



Int. J. Mol. Sci. 2023, 24, 8595 5 of 30

Table 1. Overview concerning the effects of NLRs in obesity and its associated morbidities.

NLR Model Effect Reference

NLRP3

mouse Nlrp3 und Il-1β expression↑in AT in obesity, diabetes and HFD [58–62]
in vivo Nlrp3−/−, Il1r−/−:

improvement in blood glucose control, insulin [63–66]
secretion and AT inflammation
improvement in liver inflammation and fibrosis [67]

Caspase-1−/−, Nlrp3−/−, Asc−/−, Il1b −/−, or Il18 −/−:
number of atherosclerotic lesions ↓ [19,68–73]

Protective effects
Il1r−/−, Asc−/−, Il18−/−:

development of obesity, IR and hyperglycemia [74–77]
in vitro HFD, WD and SFAs trigger Nlrp3 expression and activation [63–66]

IL-1β impairs insulin signal transduction in adipocytes [62]
Protective effects
Il1b −/−:

postprandial insulin secretion ↓ [34]
human
in vivo

Expression of NLRP3 inflammasome components and IL-1β ↑ in obesity (in AT),
atherosclerosis and liver inflammation [58,67,78–84]

Inhibition of IL-1 signaling: improvement of blood glucose levels and
systemic inflammation [85]

Adipocytes from obese: insulin signal transduction ↓ [62]
in vitro NLRP3 activation in monocytes by palmitate [86,87]

NLRP6
mouse
in vivo

Protective effects
Nlrp6−/−:

more severe NAFLD progression [76]

mouse
in vivo

Hematopoietic Nod1−/−:
pro-inflammatory macrophages in AT ↓
neutrophils in AT, CXCL1 secretion of macrophages ↓
HFD-induced IR ↓
body weight↔

[7]

injection of Nod1 ligands:
peripheral and hepatic IR ↑ [88]

NOD1 lipolysis in white AT ↑ [89]
After HFD:

Nod1 ligands in blood, time-dependent ↑ [7,90]

Nod1 in macrophages, skeletal muscle, AT, liver ↑ [90]
HFD in Nod1−/−:

body weight ↑, resting energy expenditure ↓
pro-inflammatory cells in liver and white AT ↑
HDL ↑, plasma glucose ↓, Glut4 in white AT ↑

[91]

in vitro Nod1 activation in 3T3-L1 adipocytes:
IR ↑ [88,92]

inhibition of adipocyte differentiation [93]
induction of lipolysis [89,94,95]

NOD1 human
in vivo

AT of women with gestational diabetes:
NOD1 expression ↑
GLUT4-dependent glucose uptake ↓

[96]

Monocytes of T2DM patients:
expression of NOD1 ↑
pro-inflammatory markers on monocytes ↑

[97]

abdominal subcutaneous AT of MetS patients:
NOD1 expression ↑; correlated with waist circumference, HbA1c, IR
and serum levels of IL-6, MCP-1

[98]

mouse
in vivo

Nod2−/−:
body weight gain ↑
visceral AT and fat in liver ↑
IR ↓
inflammation in AT ↑

[99–101]
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Table 1. Cont.

NLR Model Effect Reference

Nod2−/− on HFD diet:
Nod2 expression in AT, muscle, liver ↑
bacterial accumulation in the gut ↑, Alpha diversity ↓
bacterial translocation in AT and liver ↑

[100,101]

NOD2

Hepatocyte-specific Nod2−/−:
liver inflammation ↑
lipid and cholesterol metabolism ↑
collagen synthesis ↑

[102]

Nod2 activation in obesity:
inflammation in AT ↓
IR ↓
weight or microbiota↔

[100,103]

Nod2 activation in non-hematopoietic cells:
glucose blood level ↓
pro-inflammatory cytokines ↓

[104]

in vitro Nod2 activation in L cells:
augmented GLP-1 secretion [105]

human
in vitro

NOD2 stimulation in adipose-derived adult stem cells:
inhibition of adipocyte differentiation [93]

NLRC5

mouse Nlrc5−/−:
in vivo amelioration of diabetic nephropathy [106]

deterioration of HFD-induced myocardial damage [107]
body weight ↑ [107,108]

human
in vivo

Associations of NLRC5 methylations with obesity and alterations in
lipid metabolism [109–113]

in vitro transcriptional regulation of PPARγ target genes by NLRC5 [108,114]

NLRP12
mouse
in vivo

Protective effects
Nlrp12−/−:

body weight and AT inflammation ↑ insulin sensitivity ↓ [115]

Overview over the effects of NLRs in obesity and associated morbidities in in vivo and in vitro studies in
human and mouse. AT = adipose tissue, GLP-1 = glucagon-like peptide 1, GLUT4 = glucose transporter
4, HDL = high-density lipoprotein cholesterol, HFD = high-fat diet, IR = insulin resistance, NAFLD = non-
alcoholic fatty liver disease, MCP-1 = monocyte chemoattractant protein 1, MetS = metabolic syndrome,
PPARγ = peroxisome proliferator-activated receptor γ, SFA = saturated fatty acids, T2DM = type 2 diabetes
mellitus, WD = Western diet,↑ = increased, ↓ = decreased,↔ = unchanged.

1.1. NLRP3
1.1.1. The NLRP3 Inflammasome—Structure and Activation

NLRP3 belongs to the group of inflammasome-forming NLR proteins. Formation
of the NLRP3 inflammasome occurs via oligomerization of NLRP3 monomers to NLRP3
oligomers, which leads to the recruitment of ASC via the PYD domains of NLRP3 and
ASC. This in turn leads to the recruitment of pro-caspase-1, which via its CARD domain
associates with the CARD domain of ASC [116]. The NLRP3-ASC-pro-caspase-1 complex
facilitates the autocatalytic activation of pro-caspase-1, which in turn cleaves pro-IL-1β
and pro-IL-18, but also Gasdermin D (GSDMD), into their active forms. GSDMD forms
pores in the cell membrane for the release of IL-1β and IL-18 and initiates pyroptosis, a
pro-inflammatory form of cell death [117–120] (Figure 2, panel 1). Given that IL-1β is
a highly potent pro-inflammatory cytokine, NLRP3 inflammasome activation is tightly
controlled, requiring a two-step activation process in most cells. The first, called priming, is
mediated by the activation of TLRs, NLRs or cytokine receptors leading to the activation of
NF-κB. NF-κB in turn induces the transcription of NLRP3, which at baseline is thought to
be insufficiently expressed in the cell for inflammasome activation, and pro-IL1b. ASC, pro-
caspase-1 and pro-IL18, in contrast, are not upregulated by the priming signal [121,122]. The
second, activating signal has been shown to be mediated by ionic fluxes, most prominently
potassium efflux [51,52,123–126], but also changes in calcium concentration [127], sodium
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influx [51,128] or chloride efflux [129,130], as well as mitochondrial ROS, oxidized mito-
chondrial DNA [131–133] and lysosomal damage due to crystalline substances [19,134–138].
Given the biological diversity of these signals, it is highly unlikely that NLRP3 recognizes
them directly. Instead, NLRP3 was proposed to react to a common upstream cellular signal
that so far, however, has not been identified. IL-1β and IL-18 are key inflammatory medi-
ators and their association with obesity and obesity-associated diseases, such as T2DM,
atherosclerosis and NAFLD, is outlined below.

pro-IL-1β IL-1β

NF-κB

pro-IL1b
NLRP3

inactive
GSDMD

active
GSDMD

NOD1
NOD1RIPK2

NF-κB
e.g. IL8,TNFa

NLRP12

IL-1β
IL-1R

GLUT4
IRS-1

P

lysosome

P2X7

ATP

pro-IL-1β IL-1β
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Figure 2. Effects and sites of action of NLR proteins in obesity and associated morbidities. (1) In the
adipose tissue, metabolic endotoxemia is sensed by adipose tissue macrophages (ATMs) via NOD1.
NOD1 activation leads to NF-κB-mediated NLRP3 inflammasome priming but also transcription of
pro-inflammatory cytokines, which lead to the recruitment of neutrophils, and adipocyte lipolysis.
Activation of the NLRP3 inflammasome induces IL-1β- and Gasdermin D (GSDMD)-mediated AT
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inflammation, pyroptosis and insulin resistance. (2) Deficiency in NLRP6, and subsequently IL-18, or
NLRP12 alters commensal gut microbiota composition, leading to increased translocation of microbe-
associated molecular patterns (MAMPs) to the circulation (NLRP6) or the induction of obesity, IR and
inflammation (NLRP12). (3) In atherosclerotic plaques, oxidatively modified low-density lipoprotein
cholesterol (oxLDL) crystals lead to lysosomal rupture in macrophages, and release of ATP to activate
the NLRP3 inflammasome and subsequently IL-1β release. (4) Steadily elevated insulin secretion due
to hyperglycemia leads to high secretion and ultimately aggregation of islet amyloid polypeptide
(IAPP). IAPP aggregates activate the NLRP3 inflammasome and IL-1β production in pancreatic
macrophages, leading to IL-1β-mediated destruction of pancreatic β cells. (5) In the liver, IL-18
production via the NLRP6 or NLRP3 inflammasomes leads to decreased liver steatosis and fibrosis,
while IL-1β leads to increased liver steatosis and fibrosis. NOD1 reduces while NOD2 increases
hepatic insulin sensitivity in response to gut derived activators. Additionally, NOD2 reduces hepatic
lipid accumulation.

1.1.2. The NLRP3 Inflammasome in Adipose Tissue Inflammation, Insulin Resistance
and T2DM

Compared to normal weight controls, both obese humans [58,78–81,139] and obese
mice [58–60] present with increased expression of NLRP3 inflammasome components and
IL-1β on mRNA and protein levels in the AT. The increase in expression is hereby mainly
driven by ATMs [78–80] and correlates with the occurrence of IR [59,79]. Conversely, weight
loss in obese human subjects normalized levels of NLRP3 and IL1b, which coincided with
improved insulin sensitivity [59]. Studies in mice show that deletion of Nlrp3 protects
against HFD-induced obesity, IR, dyslipidemia as well as infiltration of macrophages into
the AT [59,63,64,140], and leads to improved serum glucose and insulin levels and insulin
signaling in liver and cardiac tissue [64,65,140]. In human visceral adipocytes, NLRP3
silencing reduces AT fibrosis [139]. Additionally, it was shown that increased caspase-1
levels after HFD feeding regulate insulin sensitivity and adipocyte differentiation. Con-
comitantly, pre-adipocytes from caspase-1- or Nlrp3-deficient mice present with higher
insulin sensitivity and this effect was shown to be mediated by caspase-1-induced IL-1β
processing [63]. Moreover, a positive association between the NLRP3 inflammasome and
priming of murine ATMs toward a pro-inflammatory (M1) phenotype has been estab-
lished [59], a process that contributes significantly to chronic low-grade inflammation in
obesity [141]. In contrast, two other studies did not find protection of Nlrp3−/− or caspase-
1−/− mice from HFD-induced weight gain, AT inflammation and elevated blood glucose
levels [142,143], which might be explained by differences in diet composition, genetic
background or husbandry-associated factors. Collectively, most studies show the NLRP3
inflammasome and IL-1β to play detrimental roles in AT inflammation and especially
blood glucose regulation. As Nlrp3 KO in mice in most studies leads to improved AT
inflammation and glycemia, NLRP3 inhibition in humans appears as a promising treatment
option for obesity-induced IR and T2DM. Indeed, treatment of T2DM patients with the
human recombinant IL-1R antagonist anakinra has been shown to lower plasma glucose
levels and to improve insulin secretion [85]. The pronounced effect of excess NLRP3 in-
flammasome activation and IL-1β release on the development of IR and its progression
to a manifest T2DM is due to IL-1β interfering with the insulin signaling. It was shown
that prolonged or chronic IL-1β treatment reduced glucose transporter 4 (GLUT4) expres-
sion and insulin-mediated Glut4 membrane translocation and glucose uptake in 3T3-L1
adipocytes (Figure 2, Panel 1). In addition, insulin receptor substrate (IRS)-1 expression
and tyrosine phosphorylation, which mediates the docking of IRS-1 to the insulin receptor
and thus enables signaling, was downregulated in IL-1β-treated 3T3-L1 cells and human
adipocytes [62,144] (Figure 2, panel 1). The interference of IL-1β with glucose metabolism
is further supported by a study finding IL-1 receptor (IL-1R)-deficient mice to be protected
from HFD-induced AT inflammation and impaired glucose sensitivity [145] and by another
study proving NLRP3 inflammasome activation in pancreatic islet-infiltrating macrophages
to lead to β cell dysfunction [146]. Moreover, the NLRP3 rs10754558 polymorphism, which
leads to higher production of IL-1β [147] and thus resembles a gain-of-function mutation,
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and the IL1B rs16944 polymorphism have been associated independently by various groups
with T2DM [148–150] and obesity [150]. Thus, the detrimental effect of the NLRP3 inflam-
masome on glycemia and insulin signaling demonstrated mainly in animal studies seems
to be primarily mediated by IL-1β and its downstream signaling events, which highlights
inhibition of NLRP3 or IL-1β as a potential therapeutic target in humans.

NLRP3 activation in IR and T2DM has been shown to be mostly mediated by two
different triggers, islet amyloid polypeptide (IAPP) and free fatty acids (FFAs). IR causes
the pancreas to secrete more insulin, which also increases the secretion of IAPP. IAPP has a
tendency to form aggregates that can cause lysosomal rupture in pancreatic macrophages
and thus activate the NLRP3 inflammasome [151], leading to IL-1β-mediated destruction
of the pancreatic β cells [152] and thus to a lack of insulin production (Figure 2, panel 4).
Consistently, Nlrp3-deficient mice on HFD are protected from β cell fibrosis [64] (for recent
reviews on this, see [153,154]). In addition to IAPP aggregates, FFAs are considered poten-
tial activators of the NLRP3 inflammasome in the context of IR and T2DM. Saturated fatty
acids (SFAs) have been shown in vitro to activate the NLRP3 inflammasome. Stimulation of
activated primary human monocytes [86] and murine bone marrow-derived macrophages
(BMDM) [59,65,155] with palmitate or ceramides results in an NLRP3-dependent increase
in IL-1β secretion. That ceramides also physiologically contribute to NLRP3 activation
and development of IR and T2DM has been confirmed in diet-induced obese mice [59].
Interestingly, Nlrp3-deficient mice present with reduced serum levels of ceramides and
LPS, which was proposed to be due to changes in gut microbiome composition [156]. For a
detailed overview of the molecular details, we would like to refer the reader to the review
article by Legrand-Poels et al. [157]. Thus, lowering the levels of circulating FFAs could
provide an efficient strategy to prevent excessive NLRP3 activation in obese individuals.

In the context of obesity, the priming signals that drive the expression of NLRP3
and pro-IL1b in the AT are not yet clearly identified. Earlier, it was proposed that FFAs,
whose levels are increased in obesity, can activate NF-κB via TLR4 in macrophages and
adipocytes [43] and thus lead to NLRP3 inflammasome priming. In line, adipocytes that
are co-cultured with macrophages derived from HFD-fed mice present with elevated Nlrp3
expression [158], and SFA-rich HFD feeding can increase the expression of Nlrp3 and Il1b
in the AT of mice and prime the Nlrp3 inflammasome [61]. Additionally, palmitic acid via
dimerization of TLR1/2 can increase the expression of pro-IL1b in THP-1 cells and primary
human monocytes [87]. However, a recent report by Lancaster et al. debunked the ability
of SFAs to directly activate TLR4 but showed that TLR4 is involved in fatty acid-induced
pro-inflammatory signaling [159]. Thus, how exactly SFAs prime the NLRP3 inflammasome
remains to be elucidated. Oxidative stress and the resulting generation of ROS have also
been proposed as the NLRP3 priming signal in the context of obesity. Excess nutrient intake
leads to mitochondrial dysfunction and ROS production [160–162]. ROS have been shown
to mediate NLRP3 priming as treatment of immortalized macrophages with a ROS inhibitor
dose-dependently reduced Nlrp3 expression [163]. Interestingly, ROS have also been impli-
cated in inflammasome activation [131,164]. Additionally, hypoxia, which is induced in
the AT of obese individuals [12], leads to increased ROS production [165] and can mediate
NF-κB activation and NLRP3 priming [166]. Besides ROS production, hypoxia potentially
triggers hypertrophic adipocyte death [12], leading to the release of DAMPs in the extra-
cellular milieu, which in turn can induce NF-κB activation and inflammasome priming.
Additionally, obese adipocytes have been shown to undergo NLRP3-dependent caspase-1-
triggered pyroptosis [167], which again leads to the release of DAMPs (Figure 2, panel 1).
Concomitantly, NLRP3 has been shown to be upregulated in human visceral adipocytes
under hypoxic conditions [139]. Besides fatty acids, ROS and AT-derived DAMPs, hy-
perglycemia [168] and endoplasmic reticulum (ER) stress in AT and pancreas [169,170]
have been associated with NLRP3 inflammasome priming. Along these lines, advanced
glycation end products (AGEs), resulting from non-enzymatic glycation of plasma proteins
during hyperglycemia and thus increased in T2DM patients [171], have been shown to up-
regulate NLRP3 expression [172]. When given to mice, AGEs induced β cell apoptosis and
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reduced glucose tolerance, which was ameliorated by Nlrp3 deficiency [66]. Additionally,
serum amyloid A (SAA), a liver-derived acute phase protein whose levels are correlated
with T2DM [173], increases the expression of NLRP3 in macrophages [174]. Lastly, the
short-chain fatty acid sensors G protein-coupled receptor 43 (GPR43) and GPR109a might
be involved in NLRP3 signaling [175]. GPR43 seems to be implicated in priming the NLRP3
inflammasome, as Gpr43-deficient mice present with lower inflammasome activation and
IL-1β processing [176]. The latter might be of relevance upon high gut permeability and
the resulting increased serum levels of butyrate and acetate, which might also occur in
postprandial conditions.

In summary, NLRP3 is a key factor for low-grade AT inflammation and IR in obese
individuals. The NLRP3 inflammasome thereby is primed and/or activated by several
metabolites such as FFAs, IAPP aggregates, AGEs and SAA and their downstream effects
including ROS induction, release of DAMPs, hyperglycemia, ER stress and GPR signaling.
Inhibiting one or combined inhibition of several of these processes and factors thus could
serve as therapeutic option for treating AT inflammation and disturbed glycemia.

1.1.3. The NLRP3 Inflammasome in Atherosclerosis

In addition to its role in IR and AT inflammation, activation of the NLRP3 inflam-
masome has also been implicated in the development and progression of atherosclerosis,
a chronic inflammatory disease of the arterial walls [19]. In the course of the disease,
atherosclerotic plaques build up in the vascular endothelium and cause narrowing of the ar-
terial lumen. These plaques consist of lipid depositions, especially low-density lipoprotein
(LDL) cholesterol, macrophages and other infiltrating immune cells, which mediate the pro-
inflammatory signaling [177]. Patients with coronary atherosclerosis present with increased
mRNA and protein levels of NLRP3, ASC, caspase-1, IL-1β and IL-18 in atherosclerotic
plaques, the amount of NLRP3 correlating with disease severity [82–84]. Based on studies
with atherosclerosis-prone apolipoprotein E (apoE) or LDL receptor (Ldlr)-deficient mice
fed a high fat/high cholesterol diet, it has been shown that deficiency of Nlrp3, caspase-1,
Asc, Il1b or Il18, as well as blockade of IL-18, results in a reduction in number and size
of atherosclerotic lesions and a higher stability of atherosclerotic plaques [19,68–71,73].
Bone marrow (BM) transplantation transferring BM from caspase-1/11-, Nlrp3-, Asc-, Il1b-
or Il18-deficient mice to Ldlr−/− animals, showed that inflammasome-mediated inflamma-
tory signaling in the hematopoietic compartment, especially in macrophages, is critical
for atherosclerosis development [19,68]. Additionally, in Ldlr-deficient mice, an Nlrp3-
dependent reprogramming of myeloid precursors, reflected by increased activation po-
tential of granulocytic and monocytic progenitor cells, after WD feeding was observed,
and this pro-inflammatory phenotype was preserved even after switching to a normal diet
(chow diet, CD) for four weeks. Also in this model, Nlrp3 deficiency results in significantly
smaller atherosclerotic lesions compared to WT animals [72], highlighting the importance
of both the NLRP3 inflammasome in the pathogenesis of atherosclerosis and of the dietary
intake as subordinate activation signal. However, one study did not find beneficial effects
of Nlrp3, Asc or caspase-1 knockout (KO) in Apoe-deficient mice on HFD [178]. These dis-
crepancies might be explained by differences in the mouse models used but also might
point to an NLRP3-independent progression of atherosclerosis, eventually driven by the
inflammasome-independent cytokine IL-1α. In fact, two studies using Il1a and Il1b KO mice
have demonstrated a more pronounced effect for Il1a compared to Il1b deficiency on the
reduction in atherosclerotic lesions [179,180]. Nevertheless, most studies provide clear evi-
dence identifying the NLRP3 inflammasome and IL-1β as major drivers of atherosclerosis
development and progression. As deficiency in components of the Nlrp3 inflammasome in
the mouse model protects against atherosclerosis development, inhibition of the NLRP3 in-
flammasome also in humans appears as a promising treatment option. In fact, clinical data
from the CANTOS trial demonstrated lower incidence of myocardial infarction, non-fatal
stroke and cardiovascular death in cardiovascular risk patients receiving the monoclonal
antibody canakinumab targeting IL-1β [181].
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In contrast to IR and AT inflammation, the activational triggers of the NLRP3 inflam-
masome in atherosclerosis are well defined and crystallized oxidated LDL (oxLDL) has been
identified as one of the main activators in atherosclerotic lesions. Cholesterol, an essential
lipid in vertebrates, is insoluble in aqueous solutions [182] and especially LDL cholesterol is
susceptible to ROS-mediated oxidation [183]. Cholesterol crystals are considered hallmarks
of atherosclerotic lesions [184] and are taken up by macrophages and cause lysosomal
rupture, resulting in the release of cholesterol crystals and other lysosomal content, such as
cathepsin B and L, in the cytosol, which in turn leads to the induction of caspase-1 cleavage
and IL-1β secretion [19,185] (Figure 2, panel 3). Endocytosis of oxLDL and subsequent
crystallization have been shown to be mediated by the PRR cluster of differentiation 36
(CD36), as Cd36-deficient BMDMs failed to secrete IL-1β upon oxLDL stimulation and
Apoe−/− Cd36−/− mice on WD presented with smaller atherosclerotic lesions and reduced
IL-1β serum levels compared to Apoe−/− mice [186]. As it has been shown that minimally
modified LDL can prime cells for NLRP3 inflammasome activation [19], LDL in atheroscle-
rotic plaques seems to be sufficient to mediate both the priming and the activation of
the NLRP3 inflammasome. Intake of oxLDL crystals and the resulting lysosomal rupture
and inflammasome activation cause pyroptosis and necroptosis of macrophages [187],
leading to the release of intracellular molecules to the extracellular milieu, where they are
recognized as DAMPs. Extracellular ATP, for example, has been shown to activate the
NLRP3 inflammasome in atherosclerotic plaques via the purinergic receptor P2X7 whose
activation allows the influx of calcium and the efflux of potassium [188,189], known trig-
gers for inflammasome activation (see above) (Figure 2, panel 3). P2X7 expression was
increased in human [189] and murine [188] atherosclerotic lesions and deficiency in p2x7
led to reduced caspase-1 and inflammasome activation upon stimulation with LPS and
oxLDL, respectively, and reduced atherosclerotic lesions and macrophage recruitment in
murine models of atherosclerosis [188,189]. Interestingly, also independent of atherosclero-
sis, cholesterol metabolism and the NLRP3 inflammasome appear to be functionally related.
High cholesterol biosynthesis causes strong activation of the NLRP3 inflammasome via
translocation of the transcription factor complex sterol regulatory element-binding protein
(SREBP) cleavage-activating protein (SCAP)-SREBP2 from the ER to the Golgi apparatus,
which may contribute to chronic, low-threshold inflammation in obese individuals [190].

In summary, NLRP3 and IL-1β play an important role in the development and pro-
gression of atherosclerosis and in this context are primarily activated by cholesterol crystals
and extracellular ATP.

1.1.4. The NLRP3 Inflammasome in NAFLD and NASH

While the evidence on a contribution of NLRP3 to glucose metabolism, AT inflam-
mation and atherosclerosis is clear, in the context of NAFLD, which in 20% of the cases
progresses to a condition of chronic liver inflammation (non-alcoholic steatohepatitis,
NASH) [191–193], the data are less consistent. On the one hand, and in contrast to the
data described above, Nlrp3-, Nlrp6-, Asc- and caspase-1-deficient mice present with a more
severe course of NAFLD/NASH than WT controls [76] (Figure 2, panel 5). NLRP6, like
NLRP3, is able to form an inflammasome and has been implicated in the modulation
of the gut microbiome and in microbial host defense [194]. This protective effect of the
NLRP3 and the NLRP6 inflammasomes in NAFLD/NASH has been shown to be medi-
ated by IL-18, whose deficiency can result in changes of the microbiota composition and
increased translocation of TLR4 and TLR9 agonists to the portal circulation, exacerbating
hepatic steatosis and inflammation in mice fed a methionine–choline-deficient diet (MCDD)
(Figure 2, panels 2 and 5) [76]. In line, co-housing with Il18- or Asc-deficient mice led to
increased steatosis and obesity in WT animals and antibiotic treatment reduced disease
severity in Asc-deficient mice [76]. These data highlight the importance of inflammasomes
not only as crucial regulators of inflammatory processes, but also as modulators of the gut
microbiome, where Nlrp3 and especially Nlrp6 deficiency have been shown to alter the
microbial composition and to increase colitis-susceptibility and inflammation-associated
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tumorigenesis [76,195,196]. However, despite the seemingly beneficial influence of NLRP3
and NLRP6 on the stability of the intestinal barrier and subsequently liver homeostasis, a
protective effect of Nlrp3 deficiency in NAFLD and liver inflammation and fibrosis in mice
on a choline-deficient amino acid-defined (CDAA) diet was shown, which was attributed,
among other things, to the lower production of IL-1β [67] (Figure 2, panel 5). Additionally,
two other studies reported protective effects of Nlrp3 or Asc deficiency in the development
of HFD-induced liver steatosis [59,140] and hepatic insulin sensitivity [140]. Consistently,
inflammasome components were upregulated in samples from NASH compared to NAFLD
patients or healthy volunteers [67,139] and in the liver of obese T2DM patients compared to
normal-weight individuals [139]. These results contradict the abovementioned protective
role of ASC inflammasomes in NAFLD; the discrepancy could be explained by the different
feeding duration of the NAFLD-inducing diets [59,67,76,140]. It is possible that in the initial
phase of NAFLD, NLRP3 and NLRP6 act by inducing IL-18 secretion and thus its beneficial
effects on the microbiota to protect and slow the progression of the disease, whereas with
prolonged persistence of NAFLD-inducing triggers, the adverse, pro-inflammatory effect of
IL-1β predominates and NLRP3 then contributes to the progression of liver degeneration,
inflammation, and fibrosis. Based on this theory, a timing-dependent rather than a general
ASC inflammasome inhibition appear as a potential therapeutic option, with beneficial
effects being achieved by inhibition of the inflammasome only when the liver inflammation
has already been established.

1.1.5. The NLRP3 Inflammasome in Physiological Inflammation

Most of the work discussed above depicts the NLRP3 inflammasome as a detrimental
factor that enhances a pro-inflammatory phenotype in obesity and whose absence or
inhibition seems to be beneficial. However, inhibition of the IL-1 signaling pathway and
inflammasome formation also has been reported to have negative effects on body weight
and glucose homeostasis. Deficiency in the Il1r and double KO of Il1 and Il6 in mice on
a normal (low-fat) diet leads to the spontaneous development of obesity, manifesting in
higher body weight gain, IR and decreased responsiveness to the adipokine and satiety
hormone leptin [74,75]. Obesity-prone db/db mice lacking Asc on HFD also gain more
weight and present with impaired glucose homeostasis [76]. Conversely, mice deficient
in the IL-1 receptor antagonist (Il1ra−/−), known to limit IL-1 signaling, remain lean and
present with a defect in lipid accumulation and decreased insulin, leptin and triglyceride
levels, even under HFD feeding [75,197]. These results are in clear contrast to the work
discussed above, in which deficiencies in the IL-1R, in IL-1β or in components of the
inflammasome protect against obesity-associated morbidities. Key to these differences
and the main technical difference between the studies showing beneficial and the ones
proving detrimental effects of the NLRP3 inflammasome on body weight and glucose
homeostasis is the diet administered to the mice. In the obesity context, where the NLRP3
inflammasome confers detrimental effects, HFD and WD were used in almost all studies.
In contrast, studies that support a beneficial role of the NLRP3 inflammasome to protect
against weight gain largely used normal chow/low-fat diets. This opens the possibility
that IL-1β plays a dual role in metabolism and inflammation. NLRP3 and IL-1β appear to
contribute to the maintenance of normal body weight and metabolic homeostasis on an
isocaloric diet, whereas the adverse, pro-inflammatory effects of IL-1β predominate on a
high-calorie diet. In line, mice become hypoglycemic after injection of sub-inflammatory
doses of IL-1β and present with increased insulin levels but respond normally to glucose
challenge, indicative of no impairment of the glycemic control [198]. By contrast, sustained
elevation of IL-1β is associated with T2DM, leading to β cell dysfunction and cell death
via activation of macrophages in the pancreas [45]. The hypothesis of a dual function for
IL-1β in glucose metabolism is further supported by a more recent study showing that
postprandial increases in blood glucose levels in mice leads to increased macrophage-
derived IL-1β production, which in turn enhances insulin secretion, a process that depends
on IL-1R expression on pancreatic β cells. Insulin in turn increases IL-1β secretion of
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macrophages and both, insulin and IL-1β, stimulated glucose uptake, with IL-1β preferably
stimulating glucose uptake by immune cells. In line, Il1b KO or macrophage depletion
leads to reduced insulin secretion and increased blood glucose levels, and injection of IL-1β
potentiated glucose-stimulated insulin secretion [34]. Additionally, some of the protective
effects of the NLRP3 inflammasome may also be mediated via IL-18, as deficiency of
Il18 in diabetes-prone non-obese diabetic mice induces the spontaneous development of
obesity, hyperglycemia and IR, which can be reversed by IL-18 administration [77]. Thus,
in metabolically healthy individuals, the intact NLRP3 inflammasome and IL-1 signaling
seem to be needed for body weight and blood glucose homeostasis, and especially blood
glucose homeostasis depends on postprandial nutrient-induced, low-level IL-1β-mediated
inflammation. Transferring the data generated mainly in mice to humans would mean that
inhibition of the NLRP3 inflammasome or IL-1β, as promising as it appears for treating
obesity-associated morbidities, is not a suitable option for prevention of adiposity and its
related metabolic diseases.

Altogether, a large body of evidence demonstrates that the NLRP3 inflammasome
contributes significantly to the development and progression of obesity-associated comor-
bidities such as IR, T2DM, atherosclerosis and NAFLD. This is mediated largely by IL-1β
and, in some diseases (atherosclerosis), additionally by IL-18. However, the role of the
NLRP3 inflammasome in metabolism is more complex and not always negative. Upon
leveled energy balance, the NLRP3 inflammasome appears to maintain metabolic home-
ostasis by ensuring normal body weight and glucose metabolism through a physiological
inflammation mediated by IL-1β and IL-18. In addition, in early stages of NAFLD, IL-18
may partially compensate for the negative effects of IL-1β and slows disease progression.
Why and/or at which point these protective effects of the NLRP3 inflammasome are lost
and the adverse mechanisms become dominant should be the subject of future research. In
any case, the NLRP3 inflammasome represents an interesting starting point for the therapy
of low-grade inflammation in obesity and the availability of clinical antagonists of IL-1β
opens new possibilities for the therapy of T2DM and cardiovascular diseases in the context
of obesity [199].

1.2. NOD1 and NOD2

NOD1 and NOD2 are cytosolic PRRs that sense bacterial PGN fragmentsto initiate
pro-inflammatory responses [200]. The minimal ligand for NOD1 is γ-D-glutamyl-meso-
diaminopimelic acid (iE-DAP), which is part of the cell wall of Gram-negative and certain
Gram-positive bacteria [201,202], while NOD2 recognizes muramyl dipeptide (MDP),
which is present in both bacterial categories [203,204]. Upon activation, NOD1 and NOD2
homodimerize and recruit RIPK2 (RIP2), which initiates inflammation via NF-κB activation
and the induction of adaptive immune responses to defend against intracellular bacteria.
Additionally to these classical pro-inflammatory functions, NOD1 and NOD2 signaling in
the gut contributes to protecting the intestinal epithelium from bacterial invasion and to
maintaining gut homeostasis by promoting the secretion of antimicrobial peptides [205].

Beside their functions as PRRs in antibacterial immune defense, NOD1 and NOD2
more recently have been reported to contribute to metabolic diseases, especially in the
context of IR. While NOD2 mainly has been shown to protect against T2DM, NOD1 pro-
motes the development of IR and blood glucose dysregulation. Correlation studies found
an association between NOD1 and NOD2 expression and glucose intolerance. In T2DM
patients, NOD1 and NOD2 expression is increased in CD14+ monocytes, and correlates with
disease progression, TNF-α and IL-6 serum levels and the abundance of pro-inflammatory
markers such as CD11b and CD36 on monocytes [97]. This is in line with two studies
showing NOD1 expression to be enhanced in omental and subcutaneous AT of women
with gestational diabetes compared to healthy pregnant women [96] and in the abdominal
subcutaneous AT of MetS patients [98]. In the latter study, NOD1 protein levels additionally
correlated with metabolic parameters such as waist circumference, HbA1c, IR and circu-
lating pro-inflammatory cytokines [98]. Additionally, in differentiated human adipocytes
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in vitro, NOD1 and NOD2 levels were upregulated concomitantly with increased NF-κB
translocation and pro-inflammatory cytokine secretion. Interestingly, although both NLR
proteins signal via the same downstream pathway, only NOD1 but not NOD2 stimulation
results in NF-κB activation, impaired insulin signaling and reduced GLUT4-dependent
glucose uptake [93,96,98,206]. This was also observed in murine hepatocytes, which express
both Nod1 and Nod2, but only activation of Nod1 resulted in NF-κB-dependent cytokine
release [207]. In line, Zhang et al. showed that HFD-induced ER stress in mice results
in upregulated Nod1 expression, which then promotes pro-inflammatory signaling and
low-grade inflammation via Ripk2. Even though Nod2 was expressed and upregulated
as well, on a functional level only Nod1 stimulation induced the pro-inflammatory re-
sponse [208]. Thus, although NOD1 and NOD2 are functionally closely related and both
can activate RIPK2-dependent signaling, their effects on glucose metabolism differ, which
might be partly due the presence of a second CARD domain in NOD2 that is absent in
NOD1. Based on these differences, NOD1 inhibition might serve as a therapeutic option to
alleviate obesity-induced glucose intolerance, while NOD2 stimulation might favor blood
glucose homeostasis.

1.3. NOD1

In vivo experiments confirmed the detrimental role of NOD1 in obesity, as Nod1 and
Nod2 double KO mice showed reduced HFD-induced IR, lipid accumulation, adipocyte size
and inflammation in liver and AT compared to WT mice on HFD. Furthermore, Nod1 but
not Nod2 stimulation increased peripheral and hepatic insulin intolerance and serum levels
of pro-inflammatory cytokines in WT mice [88] (Figure 2, panels 1 and 5). Concomitantly,
in another study, Nod1−/− mice on HFD presented with less pro-inflammatory cells in
liver and AT. Additionally, reduced resting energy expenditure and a higher body weight
was observed in these animals [91]. This effect of NOD1 on IR and fat mass might need
some time to establish, as one study could not observe this phenotype after a 4-week
HFD [209]. The other studies in comparison used a feeding duration of 16 [88] and
6 [91] weeks. Nod1 KO in hematopoietic cells is sufficient to abolish the HFD-induced
AT inflammation and IR but does not prevent body weight gain. Mechanistically, due
to the lack of Nod1 in immune cells, there are less pro-inflammatory macrophages in
the AT, resulting in lower secretion of the chemokine CXCL1 and subsequent neutrophil
recruitment [7]. This highlights the Nod1 expression in immune cells to be a major driver
of the abovementioned metabolic changes (Figure 2, panel 1). The influence of NOD1
activity on low-grade inflammation and IR was also demonstrated by injections of NOD1
ligands into WT mice, which increased peripheral and hepatic IR and serum levels of pro-
inflammatory cytokines such as CXCL1 [88]. Ripk2 signaling contributes to this process,
as blood glucose levels did not change in Ripk2−/− mice after NOD1 ligand injection [210].
The physiological relevance of NOD1 activators in the serum has been proven by studies
showing a time-dependent increase in circulating NOD1-stimulating PGN fragments after
HFD (Figure 2, panel 1) that was associated with impaired insulin signaling and glucose
tolerance [7,90]. Thus, inhibition of RIPK2 downstream from NOD1 or the reduction of
circulating NOD1 agonists after meal intake appear as possible intervention strategies to
mitigate the detrimental effects of NOD1 on glucose metabolism. Additionally, Nod1 has
been shown to be upregulated by HFD in mouse macrophages, skeletal muscle, AT and
liver [90]. One mouse study, however, reported a rather contradictory role for NOD1 in IR,
as the injection of gut bacterial extract improved glucose tolerance, but not in Nod1−/− mice,
indicating that under certain circumstances NOD1 signaling might be required for glucose
homeostasis [211]. Further research is needed to elucidate the factors determining the
nature of NOD1′s influence on glycemia in order to develop a reliable treatment strategy
involving NOD1 signaling regulation. On a molecular level, serum NOD1 ligands can
prime neutrophils in the bone marrow, which then are able to defend more effectively
against bacterial pathogens [212], a mechanism that in metabolically healthy individuals
eventually helps a more efficient defense against invading pathogens but in metabolically
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unhealthy individuals might contribute to metabolic dysbalance. Upon HFD, in addition
to PGN fragments, low amounts of bacteria can also translocate from the intestine into the
blood and AT and stimulate pro-inflammatory cytokine expression [209]. Additionally,
HFD promotes adherence of Escherichia coli to the ileum mucosa and their co-localization
with dendritic cells [209], promoting inflammation in the gut. Although Nod1−/− mice do
not present with dysbiosis in major bacterial groups, the deficiency in Nod1 weakens the
epithelial barrier function due to reduced expression of Nod2, mucin-2 (Muc2), defensins
and keratinocyte-derived chemokine (KC) [213]. This suggests that NOD1, in addition to
inducing inflammation upon recognition of gut-derived PGN, might regulate intestinal
barrier stability and therefore prevent translocation of bacteria or bacterial metabolites
into the blood, in turn preventing inflammation and IR. As most of these studies were
performed in mice and comparable experiments with humans are difficult, it might be
interesting to measure NOD1-activating PGN fragments in the blood of obese people and
after HFD intake.

Furthermore, diverse effects of NOD1 in white AT and adipocytes have been described.
Murine and human pre-adipocytes constitutively express Nod1 but not Nod2. Interestingly,
stimulation with different MAMPs increases Nod2, but not Nod1 expression and activation
of Nod1 in these cells augments NF-κB-dependent IL-6 secretion [214]. Il6 expression is
upregulated during adipogenesis [215], but its effect on AT seems to be depot-specific. In
visceral AT, IL-6 type signaling increases FFA secretion, which promotes hepatic IR and
steatosis. On the other hand, IL-6 enhances the secretion of leptin from subcutaneous AT,
which promotes glucagon-like peptide 1 (GLP-1) release and subsequently benefits insulin
signaling [216]. It was also reported that NOD1-activating PGN fragments inhibit adipocyte
differentiation of human adipose-derived adult stem cells [93] and murine 3T3-L1 cells [93].
Nod1 stimulation also increased lipolysis in white AT of WT but not Nod1−/− mice and in
3T3-L1 adipocytes [89,94] (Figure 2, panel 1). However, the signaling pathway behind this
process is still controversially discussed. In 3T3-L1 cells, the increased lipolysis leads to
accumulation of diacylglycerol (DAG) and induction of a cell autonomous inflammation via
protein kinase C (PKC) δ with subsequent interleukin-1 receptor-associated kinase (IRAK)
1/4 activation, which results in enhanced secretion of the pro-inflammatory cytokines
IL-1β, IL-18, IL-6, TNF-α and monocyte chemoattractant protein 1 (MCP-1) [94]. Other
studies using mouse models reported that Nod1-mediated lipolysis requires protein kinase
A (PKA), NF-κB and hormone-sensitive lipase (HSL) [89,95] or Ripk2 [210]. In addition
to inducing lipolysis, Nod1 activation impairs insulin signaling and glucose uptake by
increasing the release of pro-inflammatory cytokines in 3T3-L1 adipocytes [88,92]. Thus,
in white AT, NOD1 inhibits differentiation of adipocytes and induces lipolysis and pro-
inflammatory cytokine secretion. As selective targeting of NOD1 expression in specific cell
types in humans is not feasible, understanding the signaling pathway behind these effects
will help establish the way toward development of novel therapeutic approaches.

Nod1 activation also impairs differentiation of brown AT cells. The expression of
the key differentiation factor, peroxisome proliferator-activated receptor (PPAR) γ, and
lipid accumulation was reduced in these cells upon NOD1 activation [217]. In brown fat
tissue of obese mice, Nod1, Nod2 and pro-inflammatory cytokine mRNA is expressed, but
during differentiation only Nod1 and mRNA expression of uncoupling protein 1 (UCP-1) is
upregulated. After activation of Nod1 in a brown fat cell line, Ucp-1 expression and oxygen
consumption was decreased [218]. A reduction in Ucp-1 expression was also observed
in Nod1−/− mice fed a HFD [91] and after chronic activation of Nod1 in undifferentiated
brown AT cells [217]. So, in brown AT, in addition to the inhibition of differentiation,
NOD1 activation reduces energy expenditure by decreasing UCP-1 expression, highlight-
ing a possible contribution of NOD1 to obesity not only in white but also in brown AT.
Increasing UCP-1 expression here might serve as a possible starting point to counteract
NOD1-mediated reduced energy expenditure.

Other than the effects of Nod1 on adipocytes, some studies suggest a more direct
role for NOD1 in fatty acid sensing [219,220]. FFAs from macronutrient intake and gut
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microbial metabolism could therefore play an important role in the activation of NLRs, as
discussed above for NLRP3. In adipocytes and human colonic epithelial cells (HCT116),
an oleate/palmitate mix or lauric acid induced NOD1-dependent NF-κB activation and
pro-inflammatory cytokine expression [219,220]. Additionally, insulin-stimulated glucose
uptake in adipocytes was impaired after fatty acid treatment [220]. Interestingly, the
pro-inflammatory reaction was reduced after stimulation with n-3 polyunsaturated fatty
acids [219]. These findings are supported by a report where the Lys/Lys variant of the
Glu266Lys polymorphism in NOD1 in combination with a high intake of SFA was correlated
with increased risk for diabetes [221]. Thus, in addition to circulating PGN fragments,
NOD1 activation is likely also mediated by FFAs, which might play a role especially in the
AT. How fatty acids can activate NOD1 at the molecular level remains elusive at present.
Clarifying the molecular mechanism of fatty acid sensing might help to understand and
mitigate induction inflammation due to food intake in obese individuals.

1.4. NOD2

Although closely related to NOD1, there is increasing evidence that NOD2 signal-
ing, in contrast to NOD1, protects from low-grade inflammation and IR. Nod2−/− mice
show increased body weight gain, visceral AT and fat accumulation in the liver, as well
as augmented macrophage infiltration in the AT and a reduced glucose tolerance, and
these effects are observed under normal diet [99] and HFD [100,101] (Figure 2, panel 5).
Additionally, the T helper cell (Th) 17/Th1 balance is disturbed in favor of Th1 responses
in secondary lymphatic organs [101]. In line, in leptin-deficient ob/ob mice and DIO mice
stimulation of Nod2 has no effect on body weight but reduces AT inflammation and hep-
atic IR and results in lowered expression of various pro-inflammatory molecules in the
white AT [103]. Mechanistically, it was proposed that this is mediated by NOD2-specific
activation of interferon regulatory factor 4 (Irf4) [103]. Thus, an anti-inflammatory role
in metabolism can be attributed to NOD2 and NOD2 stimulation in obese could serve
as strategy to reduce AT inflammation and IR. In contrast to Nod2, Nod1 stimulation
impairs glucose tolerance, which is independent of Irf4, indicating activation of different
signaling pathways by Nod1 and Nod2, leading to the different outcomes [103]. Addi-
tionally, in vivo, adipocyte Irf4 and Ripk2 expression was proven necessary for MDP to
decrease blood glucose in low endotoxemia during HFD, but Irf4 deficiency in this study
did not impair the reduction in pro-inflammatory genes induced by Nod2 activation and in
contrast to the function of Irf4 in myeloid cells is male specific [222]. This indicates that
pro-inflammatory cytokine secretion is independent of Irf4, whereas the NOD2-dependent
effects protecting against IR require Irf4 signaling, thus highlighting Irf4 as a potential
therapeutic target for decreasing IR. Furthermore, it was shown that Ripk2-dependent
Nod2 stimulation in non-hematopoietic cells is critical for protection against IR and the
reduction in low-grade inflammation [100,104]. Supporting the importance of NOD2 in
non-immune cells, Nod2 KO in the liver after HFD feeding results in augmented liver
inflammation, lipid and cholesterol metabolism and increased collagen synthesis, which all
promoted liver steatosis and fibrosis [102]. Additionally, in a hepatic tumor model, Nod2
deficiency increased body weight, liver tumors, cell proliferation, cholesterol biosynthesis
and the invasion of pro-inflammatory monocytes, T cells and neutrophils in mice [223].
A protective effect of NOD2 on IR is also supported by in vitro experiments revealing
how NOD2 mechanistically contributes to improving insulin sensitivity. In human and
murine L cells, Nod2 activation augments Glp-1 secretion, which downstream benefits
insulin signaling. Interestingly, Nod2 and Glp1 are downregulated under hyperglycemic
conditions [105]. In vivo, Nod2 stimulation increases Glp-1 serum levels, but does not
improve glucose tolerance [105]. The effect of Irf4-mediated signaling, however, seems
to depend on the tissue context as some in vitro experiments do not support the bene-
ficial effect of NOD2 on IR. Nod2 stimulation, for example, decreased cell-autonomous
insulin-stimulated glucose uptake in rat skeletal muscle cells [224] and impaired adipocyte
differentiation in adipose-derived adult stem cells [93]. In RAW264.7 mouse macrophages,
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Nod2 was upregulated after treatment with the adipokine resistin, which is associated with
NF-κB activation and pro-inflammatory cytokine secretion, suggesting a pro-inflammatory
role for Nod2 signaling in macrophages [225]. These discrepancies between in vitro and
in vivo data on NOD2′s role in glucose homeostasis point toward a complex interplay
between NOD2 and other factors and different cell types to mediate its beneficial effects on
metabolism, which awaits further investigation in order to develop targeted therapeutic
strategies involving NOD2 stimulation.

The NOD2 agonist MDP is derived from the gut microbiota, and Nod2 expression
can influence the composition of the gut microbiome in mice. Transferring microbiota of
Nod2−/− to WT mice enhances the susceptibility of those animals to metabolic disorders [99],
and there are data supporting that Nod2 deficiency can augment the presence of bacteria
in the normally non-colonized gut mucosa and bacterial translocation into the liver and
AT on HFD [100]. Interestingly, hepatocyte-specific depletion of Nod2 is also sufficient to
induce changes in the gut microbiota [102]. Additionally, it was reported that full body
depletion of Nod2 reduces alpha diversity and leads to dysregulated tight junctions [101],
whereas Nod2 stimulation in obese mice has no effect on microbiota composition [103].
This shows a reciprocal influence of NOD2, the microbiota and the metabolism in obesity.

In summary, NOD1 activation by gut microbiota-derived PGN fragments, which are
present in the blood after HFD feeding, contributes to systemic low-grade inflammation
and IR. This is largely dependent on NOD1 expression in hematopoietic cells but also in
adipocytes. This suggests that a complex interplay between immune cells and adipocytes
accounts for the NOD1-mediated effects in obesity and IR. For NOD2, different in vivo
experiments suggest a protective role in low-grade inflammation and IR. NOD2 signaling,
especially in non-hematopoietic cells such as hepatocytes, is important to protect against the
metabolic changes. Disturbed NOD2 signaling can affect inflammation, fat accumulation
and fibrosis in the liver. Additionally, NOD2 seems to influence the microbiota, although
a direct effect of these NOD2-driven microbial changes on body weight is less clear. Still,
little is known about the interplay between NOD1 and NOD2 and possible antagonistic
effects, and the molecular determinants that are causal for the activation of NOD1 and
NOD2 in obesity. Amid the successful development of specific pharmacological inhibitors
of RIPK2 kinase [226,227], and synthetic NOD2 activators such as Murabutide [228] that
can be used as postbiotics, clarification concerning the function of these proteins in obesity
could open new possibilities for treating the MetS in the long term.

1.5. Other NLR Proteins
1.5.1. NLRC5

NLRC5 shows the typical NLR architecture composed of a central nucleotide-binding
domain (NBD), an N-terminal structurally atypical CARD domain, and C-terminal LRRs.
However, the atypical long LRR (27 repeats) makes it the largest member of the NLR
family [56,229–232]. NLRC5 is constitutively expressed in different tissues such as the
spleen, lymph nodes, lungs and the intestinal tract [229], but highest levels are found in
hematopoietic cells, especially lymphocytes [232]. In contrast to many other NLRs, no
function of NLRC5 as a bona fide PRR has been described so far, and its activating ligand re-
mains unknown. Instead, NLRC5 acts as the transcriptional master regulator of MHC class
I genes [56]. MHC class I molecules are expressed on all nucleated cells and are responsible
for cell-derived antigen presentation to CD8+ T cells to drive adaptive immunity [233].
So far, this is the primary function known for NLRC5. Additionally, NLRC5 has been
described as a negative regulator for NF-kB [229,234] and type I IFN responses [230,234],
and an activator of the NLRP3 inflammasome [235–237]. However, there are opposing
results on immune response modulation by NLRC5, as the first reports on NLRC5 identified
a positive role in type I IFN responses [231,232]. The role of NLRC5 in immune responses
beyond MHC class I regulation thus remains controversial [238]. NLRC5 has also been
implicated to participate in tumor progression, as one of the evasion mechanisms employed
by malignant cells to escape CD8+ T cell-mediated immune responses is the downregula-
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tion of MHC class I expression. Concomitantly, it has been shown that NLRC5-expressing
tumors are controlled more efficiently than control tumors [239,240].

Recent evidence now suggests a novel role for NLRC5 in metabolic traits. Two
independent epigenome-wide association studies identified the NLRC5 locus to be dif-
ferentially methylated in normal weight versus obese individuals, but with conflicting
results. Meeks et al. identified the methylation of the NLRC5 locus to be positively
associated with BMI, obesity, and waist circumference in a Ghanaian cohort [109]. In
contrast, Cao-Lei et al. found the NLRC5 locus to be hypo-methylated in children
with obesity compared to normal-weight children [110]. Moreover, NLRC5 was identi-
fied as a candidate gene to affect HDL-Clevels in humans [111] and single nucleotide
polymorphisms (SNP) in NLRC5, and its promotors have been associated with altered
triglyceride levels and dyslipidemia [112,113]. In mice, Nlrc5 deficiency was shown to
alleviate HFD-induced diabetic nephropathy [106] but to aggravate myocardial dam-
age [107]. Additionally, Nlrc5 KO mice on HFD have been reported to gain more body
weight [107]. This is in line with a very recent report where female Nlrc5−/− mice under
HFD manifest increased weight gain and waist circumference, larger adipose tissues
(epididymal and inguinal) and adipocyte size when compared to female WT mice [108].
In this study, NLRC5 in synergy with PPARγ, the key transcriptional regulator for the
differentiation of adipocytes, enhanced the transcription of PPARγ target genes involved
in lipid metabolism [108]. Functional interaction of NLRC5 and PPARγ was insentiently
reported in human aortic smooth muscle cells [114]. Transferring these results to hu-
mans, genetic variants of NLRC5 leading to diminished NLRC5 functionality could
favor the development of obesity. Additionally, a contribution of NLRC5 to PPARγ-
mediated dampening of inflammatory responses upon LPS stimulation of BMDMs was
shown [108]. Furthermore, NLRC5 has been proposed to play a role in liver fibrosis,
which is an endpoint of NAFLD. However, conflicting results are reported [241–244],
questioning the physiological relevance.

Together, these studies support novel roles of NLRC5 in metabolism and body weight
regulation. The underlying mechanisms are still not fully understood but involve regula-
tion of PPARγ and likely additional functions of NLRC5 such as negative regulation of
inflammatory responses in low-grade inflammation.

1.5.2. NLRP12

NLRP12 is another PYD containing NLR protein and is predominantly expressed
in cells of myeloid-monocytic origin [245]. Summarizing the available literature, the
view emerges that NLRP12 is a regulatory NLR protein, inhibiting canonical and non-
canonical NF-κB and extracellular signal-regulated kinase (ERK) activation and nega-
tively influencing the development of colitis and colon cancer [246,247]. However, in
the context of bacterial infection, NLRP12 was reported to form an inflammasome and
to contribute to the release of IL-1β and IL-18 and thus to inflammation [248]. Recently,
NLRP12 was shown to protect against obesity by influencing the composition of the
gut microbiota [115]. Nlrp12-deficient mice on HFD present with lower energy expendi-
ture, higher body weight and greater body fat percentage and have increased insulin
tolerance in the liver and white AT compared to WT mice [115]. Additionally, increased
inflammasome activation and increased serum levels of TNF-α and IL-6 and numbers of
pro-inflammatory M1-type macrophages in the AT were observed in Nlrp12-deficient
animals. Myeloid-specific depletion of Nlrp12 led to similar results compared to full
body depletion, suggesting that loss of myeloid-specific Nlrp12 confers this phenotype
of obesity, IR and increased pro-inflammatory signaling. Raising full body Nlrp12 KO
mice in germ-free conditions prevented the higher body weight gain and reduced in-
flammation in these animals as did co-housing Nlrp12 KO with WT animals during HFD
feeding, pointing to microbiota-mediated effects. In line, the increased abundance of
Erysipelotrichaceae found in the gut of Nlrp12-deficient animals could be associated with
the obesity phenotype, whereas supplementation with Lachnospiraceae, a bacterial species
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reduced in abundance in the gut of Nlrp12 KO animals, or short chain fatty acids (SCFAs)
reduced weight gain and inflammation in Nlrp12-deficient mice and improved glucose
metabolism and insulin sensitivity [115]. So far, genetic alterations of NLRP12 in humans
have not been associated with obesity. However, given the data discussed above, one
could think of genetic NLRP12 variants contributing to weight gain and inflammation
via altering the gut microbiome. Further research is needed to shed light on the function
of NLRP12 in obesity.

These data suggest that NLRP12 has a protective role in the development of obesity
and IR by influencing gut microbiome composition.

2. Conclusions

The current state of research implicates several NLR proteins to play important roles
in obesity and its associated morbidities. Currently available data clearly demonstrate
a function of NLRP3, NOD1 and NOD2, and highly suggest an implication of NLRC5
and NLRP12 in adiposity and low-grade inflammation. For NLRP3, NOD1 and NOD2,
mechanistic details have been elucidated, primarily in animal models. NOD1 and NLRP3
seem to contribute to the development of obesity, IR and low-grade inflammation, primarily
via the induction of pro-inflammatory cytokines, while NOD2 and NLRP12 are thought to
oppose metabolic disturbances, NOD2 via the induction of the transcription factor IRF4, and
NLRP12 via alteration of the microbiota. However, the triggers for the activation of NLRs
in obese individuals are not yet fully understood. Both the classical activation by PAMPs
and DAMPs and activation by nutritional compounds like fatty acids are emerging as key
players. A central question for the current research is therefore whether the contribution of
NLR proteins to obesity-associated low-grade inflammation is “direct”, with higher loads
of bacterial substances in the serum of obese individuals resulting in tissue inflammation
via NLR-induced pro-inflammatory signaling, or whether they also contribute via other
pathways, independent of their function as PRRs. The lack of a well-documented function
for NLRC5 as a PRR and the fact that activation of NOD2 by bacterial ligands can reduce
low-grade inflammation in high fat intake highly suggest PRR-independent functions for
these NLR proteins.

3. Outlook

Based on the data presented above, NLR proteins offer an attractive target for the
therapy of obesity and obesity-associated diseases. Antibodies against IL-1β (canakinumab,
gevokizumab, LY2189) and IL-1 receptor antagonists (anakinra) represent potential thera-
peutics for T2DM and atherosclerosis and have already been tested successfully in human
studies [85,181,249–253]. In addition, synthetic NOD2 activators such as mifamurtide
or inhibitors of RIP2 kinase [226,227] could be used to increase insulin sensitivity [103]
or to limit the negative consequences of NOD1 activation, respectively. Elucidating the
mechanisms for the contribution of NLRs to obesity and its associated morbidities should
therefore be subject to further research. As the role of NLRs as essential players in obesity
and its associated morbidities is only beginning to emerge, and associations are so far only
known for NOD1, NOD2, NLRP3, NLRP6, NLRP12 and NLRC5, it would be of interest
to elucidate a potential role for the other known NLR family members in obesity. Genetic
association studies are suitable to shed light on this. Given the plethora of NLR protein
functions, some being essentially involved in immune defense against pathogens, the
signaling events and molecular mechanisms of NLR signaling in the obesity context need
further clarification in order to develop targeted therapeutic options.
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