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Abstract: Hypoxia and a suppressive tumour microenvironment (TME) are both independent neg-
ative prognostic factors for muscle-invasive bladder cancer (MIBC) that contribute to treatment
resistance. Hypoxia has been shown to induce an immune suppressive TME by recruiting myeloid
cells that inhibit anti-tumour T cell responses. Recent transcriptomic analyses show hypoxia increases
suppressive and anti-tumour immune signalling and infiltrates in bladder cancer. This study sought
to investigate the relationship between hypoxia-inducible factor (HIF)-1 and -2, hypoxia, and immune
signalling and infiltrates in MIBC. ChIP-seq was performed to identify HIF1α, HIF2α, and HIF1β
binding in the genome of the MIBC cell line T24 cultured in 1% and 0.1% oxygen for 24 h. Microarray
data from four MIBC cell lines (T24, J82, UMUC3, and HT1376) cultured under 1%, 0.2%, and 0.1%
oxygen for 24 h were used. Differences in the immune contexture between high- and low-hypoxia
tumours were investigated using in silico analyses of two bladder cancer cohorts (BCON and TCGA)
filtered to only include MIBC cases. GO and GSEA were used with the R packages “limma” and
“fgsea”. Immune deconvolution was performed using ImSig and TIMER algorithms. RStudio was
used for all analyses. Under hypoxia, HIF1α and HIF2α bound to ~11.5–13.5% and ~4.5–7.5% of
immune-related genes, respectively (1–0.1% O2). HIF1α and HIF2α both bound to genes associated
with T cell activation and differentiation signalling pathways. HIF1α and HIF2α had distinct roles in
immune-related signalling. HIF1 was associated with interferon production specifically, whilst HIF2
was associated with generic cytokine signalling as well as humoral and toll-like receptor immune
responses. Neutrophil and myeloid cell signalling was enriched under hypoxia, alongside hallmark
pathways associated with Tregs and macrophages. High-hypoxia MIBC tumours had increased
expression of both suppressive and anti-tumour immune gene signatures and were associated with
increased immune infiltrates. Overall, hypoxia is associated with increased inflammation for both
suppressive and anti-tumour-related immune signalling and immune infiltrates, as seen in vitro and
in situ using MIBC patient tumours.

Keywords: hypoxia; HIF; immune TME; TIME; bladder cancer; MIBC; ChIP-seq; immunotherapy; ICIs

1. Introduction

In the UK, the standard-of-care treatment for muscle-invasive bladder cancer (MIBC)
patients is either radical cystectomy or radiotherapy with a radiosensitiser, and neoadju-
vant chemotherapy if the patient is fit enough [1]. In addition to direct cancer-cell killing,
radiotherapy effectiveness depends on eliciting an anti-tumour immune response driven
by dendritic cells (DCs) and T cells. However, radiotherapy can also induce a pro-tumour
inflammatory response by the proportional increase in regulatory T cells (Tregs) alongside
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the release of cytokines and chemokines that recruit myeloid cell populations such as
neutrophils, macrophages, and myeloid-derived suppressor cells (MDSCs) [2,3]. Recruited
Tregs and myeloid cells suppress anti-tumour T cell responses and contribute to disease
progression and recurrence [4]. Therefore, an existing suppressive tumour microenviron-
ment (TME) potentiates the pro-tumour capabilities of radiotherapy-induced immune
responses and is a poor prognostic factor for radiotherapy outcomes [3]. Hypoxia is also a
poor prognostic factor that contributes to radiotherapy resistance, disease progression, and
recurrence in many solid tumours, including bladder cancer [5–7].

Cellular responses to hypoxia are mostly regulated by hypoxia-inducible factor (HIF)
transcription factors, which are heterodimers consisting of alpha and beta subunits. There
are three different HIFs, driven by different HIF-α isoforms binding to the HIF1β subunit,
of which HIF1 and HIF2 are the best studied [8]. Hypoxia has been linked to driving a
suppressive immune TME by altering the phenotypes and activities of different immune
cells [9]. Hypoxia inhibits antigen uptake of DCs and alters their cytokine and chemokine
expression, which reduces T cell activity and increases neutrophil recruitment to create
a suppressive immune TME [10]. Hypoxia has also been shown to inhibit neutrophil
apoptosis to prolong their normal survival time and promotes MDSC inhibition of T cell
proliferation and their differentiation into suppressive tumour-associated macrophages
(TAMs) [11,12]. Moreover, HIF can drive the inflammatory potential of neutrophils and
TAMs [13], and the latter are found in the highest densities in hypoxic regions and tend to
have a T-cell-inhibiting suppressive M2 phenotype [14–16]. Hypoxia and the associated
adenosine accumulation can also inhibit CD8+ T cell proliferation and infiltration into
hypoxic areas and induce CD8+ T cell apoptosis [17–20]. Little has been reported specifically
for human bladder cancer, aside from a study showing macrophage infiltration positively
correlated with HIF1α expression, angiogenesis, and a poor prognosis [21].

Conversely, HIF1α has been shown to play an essential role in inducing and main-
taining CD8+ T cell effector state functions to enhance CD8+ T-cell-mediated tumour
killing [22,23]. Recently, a meta-analysis investigated the relationship between HIF1A gene
expression and the immune TME in ten TCGA cohorts. The authors showed that in blad-
der cancer there was a positive correlation between HIF1A expression and both immune
suppressive (PD-L1, Tregs, MDSCs, and M2 macrophages) and anti-tumour immune (CD8+

T cells, NK cells, M1 macrophages, and IFN response) gene signatures [24].
Given the lack of study in bladder cancer, the overall aim of this study was to in-

vestigate the relationship between HIF, hypoxia, and immune-related signalling in MIBC.
The first objective was to investigate hypoxia-associated and HIF-specific regulation of
immune-related genes and signalling pathways in MIBC using in vitro approaches. The
second objective was to investigate differences in immune signalling and infiltrates between
high- and low-hypoxia MIBC using in silico approaches.

2. Results
2.1. ChIP-Seq Identified HIF Binding Sites with High Specificity and Low Background

ChIP sequencing was performed to identify genome-wide binding sites for HIF1α,
HIF2α, and HIF1β in the T24 MIBC cell line cultured under 1% and 0.1% oxygen.
Supplementary Figure S1 shows the heatmaps of the input, HIF1α, HIF2α, and HIF1β
signal intensities. The figure shows a high signal for each sample at the transcriptional
start sites (TSS) and high specificity compared to input background signal intensity.
Supplementary Figure S1 also shows an enrichment of mapped reads around TSS for each
sample over the input control, further illustrating the specificity of the ChIP samples.
Peaks were filtered according to four different parameters: all significant peaks; protein
coding peaks; near-TSS peaks; and both protein coding and near-TSS peaks (hereby termed
stringent). Supplementary Table S2 shows that different numbers of peaks were identified
when comparing oxygen concentrations (0.1% vs. 1%) and samples (HIF1α vs. HIF2α vs.
HIF1β). According to the highest stringency filtering level, there were more HIF-bound
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genes at 0.1% vs. 1% oxygen, and approx. 3-fold more genes bound by HIF1α than HIF2α
(Supplementary Table S2).

2.2. HIF1 and HIF2 Are Associated with Distinct Biological Processes

The large number of peaks (Supplementary Table S2) made analysis at the individual
gene level difficult. Therefore, over-representation analysis was performed using the genes
identified by the most stringent filtering level to look at gene sets found more frequently
than expected by chance. As expected, the top 20 gene sets enriched for HIF1β included
processes associated with metabolism and oxygen level (Figure 1A,B). HIF1α and HIF2α
associated with distinct biological processes, which differed depending on the severity
of hypoxia (Figure 1). The top 20 enriched gene sets for HIF2α included myeloid cell
differentiation (1% oxygen) and TGF-β signalling (0.1% oxygen).
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Figure 1. HIF1β targeted pathways enriched in (A) 1% and (B) 0.1% oxygen; HIF1α targeted
pathways enriched in (C) 1% and (D) 0.1% oxygen; HIF2α targeted pathways enriched in T24 cells
cultured in (E) 1% and (F) 0.1% oxygen. Enriched gene ontology (GO) biological processes terms
were identified with R package “clusterProfiler”. Each term was ordered according to statistical
significance (BH) and the top 20 results were visualised as bar plots. x-axis refers to the number of
HIF1β bound genes from the dataset that were mapped onto that given GO term.

2.3. HIF1 and HIF2 Are Associated with Unique Immune-Related Processes

To identify which HIF-bound genes are immune-related, the EBI QuickGO resource
was used to cross-reference ChIP-seq identified genes with those annotated as “immune
response”. The proportion of HIF-bound genes that were immune-related was higher for
HIF1α than HIF2α and increased as the oxygen concentration decreased from ~4.8–11.8%
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in 1% oxygen for HIF2α and HIF1α, respectively, to ~7.5–13.4% in 0.1% hypoxia (Table 1).
Supplementary Figure S2 shows that a number of these immune-related genes were unique
to either HIF1α or HIF2α. Only HIF2α was enriched at an enhancer region of the PD-L1
gene (CD274) under 1% and 0.1% hypoxia, which was visualised using the University of Cal-
ifornia Santa Cruz (UCSC) genome browser resource (Supplementary Figure S3). The majority
of peaks identified at 1% oxygen were also present at 0.1% oxygen (Supplementary Figure S4).
Over-representation analysis was performed on the subunit unique genes to identify en-
riched immune-related gene sets. There were differences in the top 20 gene sets for the
unique immune-related genes bound to each subunit. HIF1α was associated with sig-
nalling related to adaptive immune responses such as interferon-associated signalling
(Figure 2A,B); and HIF2α with signalling related to innate immune responses such as hu-
moral and toll-like receptor signalling (Figure 2C,D). The top 20 enriched immune-related
pathways for both HIFs included T cell activation/differentiation (Figure 2).

Table 1. Percentage of immune-related genes bound to each HIF subunit.

Oxygen Concentration HIF Subunit Percent of Immune Genes Bound

1%
HIF1α 11.79
HIF1β 2.20
HIF2α 4.77

0.1%
HIF1α 13.43
HIF1β 1.76
HIF2α 7.54

Values are the percentages of genes annotated as immune-related by EBI Quick GO (n = 2494) for genes identified
as bound by each HIF subunit according to the stringent filtering level.
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Figure 2. Over-representation analysis for HIF1α unique immune genes in (A) 1% and (B) 0.1%
oxygen, and HIF2α unique immune genes in (C) 1% and (D) 0.1% oxygen. Enriched gene ontology
(GO) biological processes terms were identified with R package “clusterProfiler”. The top 20 terms
were plotted and ordered according to count. Count is the number of genes in this dataset that
mapped onto the given GO term. x-axis is the gene ratio, which is the count divided by the total
number of genes annotated to the given GO term, presented as a ratio.
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2.4. Hypoxia Associates with Myeloid, Neutrophil, and CD4+ T Cell Signalling Processes

Microarray transcriptomics was used to investigate differentially expressed genes
(DEGs) under hypoxia (0.1%, 0.2%, and 1% O2) compared to normoxia (21% O2) in four
MIBC cell lines (T24, J82, UMUC3, and HT1376). Gene Ontology (GO) over-representation
analysis was used to investigate DEGs (p < 0.1) that were significantly (p < 0.05) enriched
for biological processes under the GO search term “immun” for any of the cell lines
under each oxygen concentration. Biological processes associated with myeloid and neu-
trophil signalling were enriched in cells cultured in all three low oxygen concentrations
(0.1% O2 shown in Table 2; 1% and 0.2% shown in Supplementary Tables S3 and S4, re-
spectively). Gene set enrichment analysis (GSEA) using the hallmark pathways geneset
showed that under hypoxia Hallmark_TNFα_signalling_via_NFkB (1%, 0.2%, 0.1% O2) and
Hallmark_IL2_STAT5_signalling (1%, 0.2% O2) were in the top ten significantly enriched
pathways alongside Hallmark_hypoxia and Hallmark_glycolysis (1%, 0.2%, 0.1% O2) and
Hallmark_epithelial_to_mesenchymal_transition signalling (0.2%, 0.1% O2; Figure 3).

Table 2. GO terms filtered by the search term “immun” significantly enriched under 0.1% hypoxia.

Term ID Ont n DE P.DE

mitigation of host immune response by virus GO:0030683 BP 2 2 0.04
positive regulation of tolerance induction dependent upon

immune response GO:0002654 BP 2 2 0.04

positive regulation of immune response to tumour cell GO:0002839 BP 13 6 0.03
positive regulation of myeloid leukocyte cytokine production GO:0061081 BP 19 8 0.02

Neutrophil-mediated immunity GO:0002446 BP 501 127 <0.001
neutrophil activation involved in immune response GO:0002283 BP 490 121 0.003

myeloid-leukocyte-mediated immunity GO:0002444 BP 555 136 0.003
myeloid cell activation involved in immune response GO:0002275 BP 549 127 0.02

Ont is the gene ontology term, BP = biological process. n = number of genes in the GO term. DE = number of
differentially expressed genes from dataset present in the GO term. P.DE = p-value for over-representation of the
GO term in the set.

2.5. Hypoxia Associates with an Inflamed TME in MIBC Patient Tumours

To assess how hypoxia affects immune signalling in human tumours in situ, BCON
and TCGA-BLCA MIBC gene expression datasets were used to correlate hypoxia scores
with the expression of immune signalling pathways. The bladder cancer 24-gene hypoxia
gene signature was correlated with the scores of various immune-related gene signatures.
Heatmaps show that there is an increased expression of the immune-related gene signatures
in high-hypoxia tumours (hypoxia scores greater than the median), and low expression in
low-hypoxia samples in the BCON (Figure 4A) and TCGA cohorts (Figure 4B). Boxplots
show that MIBC with high versus low hypoxia has significantly increased expression of the
immune-related signatures, apart from mast cell signalling and NK cell signalling in the
BCON cohort (Supplementary Figure S5). ImSig and TIMER immune cell deconvolution
algorithms assessed the presence of immune cell infiltrates for low vs. high hypoxia
tumours in the BCON and TCGA-BLCA datasets. As shown in Figure 4, high-hypoxia
tumours had significantly more T cells and neutrophils, as shown by both algorithms.
ImSig further shows that high-hypoxia tumours had significantly more monocytes and NK
cells, whilst TIMER showed significantly more myeloid dendritic cells. Macrophages were
significantly increased in high-hypoxia tumours when analysed by ImSig but were not
significantly different when using TIMER for the BCON cohort (Figure 4C,E). Macrophages
were significantly increased in high-hypoxia tumours, as seen by both algorithms in the
TCGA cohort (Figure 4D,F). There were differences in B cell infiltrate levels for the two
algorithms; with TIMER showing a decrease in hypoxic tumours (not significant in TCGA)
and ImSig showing a significant increase (Figure 4).
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Figure 3. Gene set enrichment analysis showing the hallmark pathways significantly enriched
under (A) 1%, (B) 0.2%, (C) 0.1% hypoxia ordered according to normalised enrichment score. R
package “fgsea” was used for the analysis and significance was defined as p-value of <0.05, with
adjusted p-values shown in the figure legend using the colour key.
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Figure 4. Heatmaps showing the clustering of immune-related signature scores in relation to hypoxia
status, high or low, in (A) BCON and (B) TCGA cohorts. Boxplots showing the fraction of immune
cell population according to hypoxia status as deconvoluted by (C) TIMER, (E) ImSig for the BCON
cohort; and (D) TIMER, (F) ImSig for the TCGA cohort. The R package “ComplexHeatmap” was
used to generate the heatmap. Hypoxia status was stratified by the median hypoxia score of the
cohort. Statistics are p-values from t-tests represented as: ns = not significant, * p < 0.05, ** p < 0.01,
**** p < 0.0001.
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3. Discussion

There are several novel findings from this study regarding the role of HIF and hypoxia
in immune-related processes in MIBC. First, we show that HIF1 and HIF2 bind uniquely to
some immune-related genes in the T24 MIBC cell line, which was associated with distinct
immune-related processes, as demonstrated by the finding that only HIF2α bound to an
enhancer region of the PD-L1 gene. Second, we find that high-hypoxia tumours have
an increased presence of immune infiltrates compared to low hypoxia. Our work also
consolidates the findings showing that hypoxia upregulates signalling related to both
anti-tumour and immune-suppressive pathways in multiple cancers including bladder
cancer [24], which we now show in MIBC cohorts specifically.

In a similar manner to this study, Symthies et al. performed a HIF ChIP-seq experiment
on kidney and liver cancer cell lines cultured in 0.5% and 3% oxygen [25]. Smythies et al.
also found that oxygen concentration did not alter HIF binding locations but increased the
strength of binding, as we have demonstrated here. Our finding of a higher proportion of
binding sites for HIF1α compared to HIF2α is also consistent with the findings of others in
renal, breast, and liver human cell lines [25–27].

Smythies et al. found that HIF1 and HIF2 heterodimers bound to distinct regions of
the genome without competing and this was conserved across four human cancer cell lines
(HKC-8 and RCC4, renal; HepG2, liver; and MCF-7, breast) [25]. The work here showed that
HIF1 and HIF2 associate first with common processes of oxygen consumption and sugar
glycolysis and then with distinct biological processes. Smythies et al. also showed that
wherever HIF1β bound it was with an HIF-α isoform, in concordance with the published
literature [25,28]. The HIF1β sample obtained in this study is of worse quality than the
HIFα isoforms, as shown in Supplementary Figure S1. The lower quality decreased the
number of significant genes bound by HIF1β, compared to HIF1α and HIF2α that made
it through the stringent filtering. However, the results for the subunit unique immune
binding sites showed that most of the HIF1β binding sites overlap with either of the HIF-α
isoforms, confirming the binding of the subunits to form heterodimers as expected.

The results presented in this report show for the first time in MIBC that HIF1 and
HIF2 bind to some unique immune-related genes. These results show that ~10% of all
immune-related genes are bound by HIF in the T24 MIBC cell line. Although it is known
that HIF has a role in directly regulating many immune-related genes, a comprehensive
list of HIF-regulated immune genes has not been generated previously, so no comment
can be made on whether this proportion of immune-related gene binding is expected.
The published literature tends to focus on the immune-suppressive effects of HIF and its
binding of specific genes that contribute towards immune evasion mechanisms due to
their important effects on tumour progression and resistance to treatments [3]. Previous
studies have shown that HIF1α binds to the PD-L1 promoter, and Noman et al. further
showed that HIF2α does not, in prostate, breast, and melanoma cell lines [29,30]. In this
study, there were binding peaks for both HIF-α subunits when using the most lenient
filtering parameter but only HIF2α is retained when using stringent filtering. Under both
1% and 0.1% oxygen, HIF2α binding was enriched for an enhancer region of the PD-L1 gene
(CD274). Studies investigating the mechanisms governing PD-L1 expression at a genomic
level give rise to discrepancies and have rarely included bladder cancer [31]. As discussed
in our previous research, there are potential differences in the interaction between HIF
and PD-L1 across different tissue types, so this discrepancy is likely to be cell line/cancer-
type dependent [32]. A recent study by Bruns et al. showed that HIF1A induced CD274
expression in TCGA lung cancer but neither breast nor melanoma cancers which further
indicates the potential for tissue-specific HIF regulation of PD-L1 [33]. A study analysing
the role of HIF1α and -2α in inducing PD-L1 expression suggested that in kidney cancer,
HIF2α is the main regulator of PD-L1 expression and not HIF1α [34]. Additional studies
are needed to explore the interaction between HIF and PD-L1 in more MIBC cell lines and
to further elucidate the molecular mechanisms of PD-L1 expression overall.
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The results presented here show that the immune-related processes most enriched
by HIF binding in vitro are those associated with immune-stimulatory pathways. Inter-
feron is a class of cytokines that has a key role in the induction of anti-tumour immune
responses [35]. Enrichment of immune-related pathways revealed different immune-
related activities between HIF1 and HIF2. Unique HIF1α immune-related processes
were enriched for positive regulation of various interferon signalling pathways and T
cell activation and differentiation. Unique HIF2α immune-related processes were en-
riched for humoral responses, generic cytokine and chemokine regulation (some negative),
complement activation, some innate immune responses such as toll-like receptor and
lipopolysaccharide-sensing signalling, and also T cell activation and differentiation. Non-
unique over-represented immune-related pathways for HIF2α specifically also included
associations with immune suppressive roles such as myeloid cell differentiation and TGF-β
signalling. The enrichment of these immune pathways implies a broader role for HIF2α,
whilst HIF1α was enriched for pathways involved in the stimulation of anti-tumour im-
mune responses. These results are in agreement with the published literature showing the
role of both HIFs but mostly HIF1α in the activation and effector functions of T cells [22,23].

Expanding on the HIF-specific results, immune-related signalling in a panel of MIBC
cells under hypoxic conditions was enriched for myeloid and neutrophil signalling as
seen by gene ontology analysis. Whilst still being fully elucidated, TNFα is known to
have a role in tumour-promoting immune signalling via the induction of NF-kB [36].
TNFα via NF-kB has been shown to inhibit anti-tumour immune responses of leukocytes
and to contribute to tumour cell proliferation, migration, and metastasis [37]. TNFα
regulates macrophage activation and function and can induce pro-inflammatory cytokine
signalling [38]. IL-2 STAT5 signalling has a role in the differentiation of CD4+ cells, which
is mostly well-characterised for its role in maintaining Treg differentiation [39,40]. As
shown by GSEA analysis using hallmark pathways, both TNFα via NF-kB and IL2 STAT5
signalling was significantly enriched under hypoxia, along with EMT and hypoxia-related
signalling. These results indicate the potential difference between HIF-dependent and
hypoxia-associated effects on immune-related signalling by tumour cells. As considerable
cross-talk occurs between immune cells present in the TME, it is important to expand from
in vitro analysis to consider relationships between the immune TME and hypoxia in the
context of patient tumours.

Different immune gene signatures were used to associate immune signalling with
hypoxia using transcriptomic data for MIBC from the BCON and TCGA cohorts. A 24-gene
bladder cancer hypoxia gene signature assigned tumours as high- or low-hypoxia [41].
Heatmaps showed that tumours assigned as high hypoxia were associated with higher
expression of both immune-suppressive (checkpoint, TGFβ -ECM, M2 TAM, exhausted
CD8, macrophage, and neutrophil) and anti-tumour (M1 TAM, cytotoxic, DC, NK cell, and
T cell) gene signatures. Boxplots confirmed the statistical significance of the high versus low
hypoxia increases in immune-related signature expression. Hypoxia-associated increases
in tumour inflammation are supported by a study performed by Chen et al. analysing ten
different cancer types including bladder cancer [24].

To investigate if tumour hypoxia affects the presence of immune infiltrates, two
different immune cell deconvolution algorithms were used, ImSig and TIMER [42,43].
There was a high level of concordance between the two cohorts and algorithms, with
the exception of B cells where hypoxia was associated with increases using ImSig and
decreases using TIMER. All of the other immune infiltrates (monocytes, macrophages, DCs,
neutrophils, NK cells, and T cells) increased significantly in MIBC assigned as high hypoxia
versus low hypoxia. These results are further supported by three recently published
bladder cancer hypoxia-associated prognostic gene signatures. All three studies showed
that tumours assigned as hypoxic had increased infiltration of various immune cells and
enrichment of immune-related signalling [44–46].
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The work presented here is limited by the use of only one MIBC cell line and would
benefit from further ChIP-seq experiments on different MIBC cell lines. The lack of analysis
at the protein level is also a limitation of this study.

In conclusion, HIF1 and HIF2 associate with distinct immune-related signalling in
MIBC but this is likely to be tissue-type dependent and requires further elucidation. The
current literature indicates that hypoxia has an immune-suppressive role in a TME. The
work here shows that hypoxia increases both suppressive and anti-tumour-related immune
signalling and highlights the need to consider the balance between the two when analysing
hypoxia-driven immune signalling. Further work is needed to investigate the mechanisms
and differences between HIF-dependent and HIF-independent hypoxia-related immune
signalling in MIBC.

4. Materials and Methods
4.1. Cohorts

BCON was a prospective multicentre phase III clinical trial that recruited patients in
the UK from 2000 to 2006 (registered as CRUK/01/003), of which the trial protocol and
results are described in detail elsewhere [47]. Transcriptomic data (n = 152) were generated
previously as detailed elsewhere [41] and the updated long-term clinical outcomes were
used throughout [48]. RNAseq data from the TCGA bladder cancer cohort (n = 405) was
obtained using the R packages “TCGAUtils” and “curatedTCGAData”. TCGA (n = 401)
and BCON (n = 141) datasets were filtered to include only tumours stage 2 and above,
i.e., MIBC.

4.2. ChIP-Seq Data Generation

T24 bladder cancer cells were cultured for 24 h in both 0.1% and 1% O2. The protein–
DNA interactions were cross-linked using ChIP cross-link gold (Diagenode, Denville,
NJ, USA) and 1% formaldehyde before lysing the cells and shearing the chromatin into
200–300 bp fragments using a Biorupter Pico (Diagenode). Antibodies against HIF1α,
HIF2α, and HIF1β, and Dynabeads Protein G were used for immunoprecipitation
(Supplementary Table S1). The fragments were de-cross-linked and the DNA was eluted
using the phenol–chloroform method. DNA with no immunoprecipitation was processed
and sequenced in parallel as the input control. A qPCR was used to validate the ChIP exper-
iment before the samples were sequenced and mapped by the CRUK Manchester Institute
core facilities. Sequencing reads for all samples underwent quality control assessment and
adapter removal with FASTQC [49] and Trim Galore [50] software, respectively. Trimmed
fastq files were mapped against the hg19 reference assembly using bowtie2 with 1 allowed
mismatch in seed alignment (-N set to 1). Resulting SAM files were converted into BAM
format with samtools. Peaks were called with MACS2 software and subsequent annotation
of identified peaks was performed with Homer (v4.10) where peak-to-gene annotations
used the genes nearest to the transcriptional start site.

4.3. Microarray Data Generation

Microarray data were generated for a panel of MIBC cell lines (T24, J82, UMUC3,
and HT1376) under various oxygen concentrations (21%, 1%, 0.2%, and 0.1%). Cells
were cultured for 24 h in each condition and RNA was extracted using RNeasy Plus
Mini Kit (Qiagen). Gene expression arrays were generated using Clariom S pico HT
human assay (Thermo Fisher, Waltham, MA, USA) by Yourgene Health and batch-corrected
using ComBat function from the R package “sva” to produce log2 summarised gene
level expression.

4.4. Data Analysis

R and RStudio were used throughout, alongside the package “tidyverse”. All ChIP-
seq data analysis was performed using the most stringent filtering parameter (peaks
close to transcriptional start site and protein coding). Over-representation analysis was
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performed using the “clusterProfiler” package to generate the top 20 significant (ad-
justed p-value < 0.05) gene ontology biological processes and graphically represented
using “enrichplot”.

Gene signatures from the published literature were used and hypoxia scores were
assigned using the Yang et al. bladder cancer hypoxia gene signature. Median scores across
this panel of genes formed the basis for stratifying cohorts into low and high hypoxia
groups [41].

The R package “limma” was used to obtain differentially expressed genes (DEGs;
p < 0.1) across any of the cell lines in each oxygen concentration compared to normoxia. The
function “goana” was used with the DEGs to investigate gene ontologies annotated using
the search term “immun” that were significantly (p < 0.05) enriched under hypoxia. The R
package “fgsea” was used to perform the GSEA with hallmark pathways from “msigdb”
and the DEGs to investigate which hallmark pathways were significantly (p < 0.05) enriched
under hypoxia.

ImSig was applied using the R package “ImSig” [42] and TIMER deconvolution was
performed using the website http://timer.cistrome.org/ (accessed on 16 February 2022)
with BLCA as the cancer type [43].

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24108956/s1.
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