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Abstract: Chronic wounds in diabetic patients can take months or years to heal, representing a great
cost for the healthcare sector and impacts on patients’ lifestyles. Therefore, new effective treatment
alternatives are needed to accelerate the healing process. Exosomes are nanovesicles involved in the
modulation of signaling pathways that can be produced by any cell and can exert functions similar to
the cell of origin. For this reason, IMMUNEPOTENT CRP, which is a bovine spleen leukocyte extract,
was analyzed to identify the proteins present and is proposed as a source of exosomes. The exosomes
were isolated through ultracentrifugation and shape-size, characterized by atomic force microscopy.
The protein content in IMMUNEPOTENT CRP was characterized by EV-trap coupled to liquid
chromatography. The in silico analyses for biological pathways, tissue specificity, and transcription
factor inducement were performed in GOrilla ontology, Panther ontology, Metascape, and Reactome.
It was observed that IMMUNEPOTENT CRP contains diverse peptides. The peptide-containing
exosomes had an average size of 60 nm, and exomeres of 30 nm. They had biological activity capable
of modulating the wound healing process, through inflammation modulation and the activation of
signaling pathways such as PIP3-AKT, as well as other pathways activated by FOXE genes related to
specificity in the skin tissue.

Keywords: IMMUNEPOTENT CRP; dialyzable leukocytes extract; proteomics; wound healing; AKT

1. Introduction

Exosomes (50-150 nm) produced by plants and animals (secreted from cells through
an endosomal pathway dependent/independent of endosomal sorting complexes required
for transport) [1] can induce diverse biological functions due to their content, such as DNA,
mRNA, miRNA molecules, and proteins [2]. They possess characteristic biomarkers such
as CD63, HSP90, HSP70, TSG1, and HMGBI1 [3]. In addition to their function as delivery
vehicles, these nanometric vesicles can act as components in cell communication as they can
release bioactive compounds that possess stability, biocompatibility, and biorecognition [4].
They can be used as nano-vectors, as they can carry content able to induce signal pathway
expression, similar to their parental cell origin [1,2,4].

Non-healing wounds greatly affect a patient’s quality of life, and represent an im-
portant economic burden. In the United States alone, they account for approximately
USD 50 billion in healthcare costs each year, while scars from surgical incisions and trauma
account for nearly USD 12 billion and burns account for USD 7.5 billion each year. Several
therapies for wound healing are partially effective [5], but more effective therapies need to
be developed.

Chronic wounds can take months or years to heal, and are characterized by high
levels of inflammatory cytokines, loss of angiogenesis, and defective macrophages, etc. [6].
Peripheral neuropathy is one of the main causes of diabetic foot ulceration (DFUs) when
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peripheral nerves in limbs are involved [7]. Given that 85% of amputations are preceded by
DEFUs [7], they represent a health problem of importance. It has been reported that exosomes
derived from mesenchymal stem cells used in a diabetic foot ulcer mice model induced
accelerated wound healing through the activation of the PI3K-PTEN-AKT pathway [8,9].
In addition, adipose stem-cell-derived exosomes activated the same pathway in diabetic
wounds [10].

IMMUNEPOTENT CRP (ICRP) is a mixture of low molecular weight substances that
are less than 12 kDa, and is obtained from the dialyzable extract of bovine leukocytes
from the spleen. It has been shown to be capable of modifying the immune response
by regulating inflammation and inducing an antioxidant effect [11]. It has also been
employed in clinical trials evaluating inflammation modulation after application in third
molar extraction [12].

Splenic stem cells of Hox11 lineage can differentiate when injuries exist in pancreatic
islet tissues [13]. Thus, the spleen is now also considered as a source for cellular replacement
to ameliorate [3-islet cells, suggesting the use of ICRP on diabetic wounds.

Based on the diversity of biological functions of ICRP, there have been research ef-
forts to identify compounds responsible for each function. Nevertheless, there have not
been conclusive results, except that ICRP has greater antitumoral activity when used as a
complete spleen dialyzed extract. However, new biological applications can be elucidated
more clearly when their peptides are identified and analyzed. Furthermore, previous
studies using proteinase-K treatment on the whole extract increased antitumor and antiox-
idant activities in vitro [14]. Additionally, the high temperature (90 °C) required for its
production [15] raises the suspicion that its activity could be attributed to the presence of
exosomes. Therefore, we centered our analysis on this question. The main purpose of this
paper is to determine the putative functions of ICRP using bioinformatic tools to analyze
the proteomic content of the extract and exosomes isolated from it. These analyses can
suggest the biological functions induced by the product and indicate the pathway of future
investigations into diseases involving immunomodulation.

2. Results

ICRP contains exosomes capable of surviving the freeze-drying process of the com-
mercial product. They maintain a semi-spherical shape of approximately 60 nm (Figure 1,
Supplementary Table S1). Due to the nature of the AFM technique, it can be assumed
that the exosome extraction method results in a pure sample, as can be seen in Figure 1.
Charts with darker yellow coloration indicate a higher probability that certain processes
would be induced. As observed in Figure 2 and Supplementary Table S2, the peptides
present in ICRP corresponded to components characteristic of exosomes (rich in keratin
filaments), with a p < 1 x 10°; moreover, they had catalytic activities, such as hydrolase
and transferase activity, with the same p-value. Both the proteomic and AFM analyses
confirmed the presence of exosomes exerting biological functions.

The analysis using GOrilla software identified that the outstanding biological processes
induced by the ICRP were keratinization and cornification, in darker yellow (p <1 x 107 to
1 x 109) in Figure 3, and the secondary processes included cellular response to chemokine,
neutrophil degranulation, the regulation of the intracellular estrogen receptor signaling path-
way, and the regulation of fat cell differentiation, in lighter yellow (p <1 x 10° to 1 x 107)
(Figure 3). Based on significant p-value, keratinization (4 x 10°) and cornification (5.98 x 10°)
values are shown in Table 1. The former shows a higher enrichment value (1.61), based on
the number of genes related to biological process (based on the mHG model with the FDR
g-value (correction of the random error) in the correction of the p-value using the Benjamini-
Hochberg logarithm, with only 2% chance of having false positives for the keratinization
process and 2.25% for cornification (Supplementary Table S2).
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Figure 1. IMMUNEPOTENT CRP contains exosomes with a 60 nm average size. Exosomes were
isolated with ExoQuick kit and characterized by AFM presenting a semi-spheroid shape. Exomeres
of 30 nm were also observed. (a). Exosome distribution in 3 axes. (b). Two-dimensional distribution
of exosomes (each exosome size is shown in Supplementary Table S1, listed by number).
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Figure 2. ICRP contains exosomes and peptides from the ICRP which putatively possess transferase
activity and hydrolase activity acting on carbon-nitrogen (but not peptide bonds). The ICRP peptide
content was entered into the GOrilla software with default values for predictions in Homo sapiens,
considered significant when represented in a colored box for p-value < 1 x 103 to p-value < 1 x 10°
and p-value < 1 x 10° to p-value < 1 x 107. (a) Exosomes possess catalytic properties such as hydro-
lase activity and transferase activity; (b) ICRP contains an extracellular component characteristic of
exosomes and keratin filaments.
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Figure 3. ICRP putatively and prominently shows keratinizing and cornifying functions as biological

processes. The ICRP peptide content was entered into the GOrilla software with default values for

predictions in Homo sapiens. Results considered significant are represented in a colored box when the

pvalue <1 x 103.

Table 1. Biological processes induced by peptides present in the ICRP via GOrilla ontology.

Description p-Value FDR Q-Value Enrichment (N, B, n, b) *
Keratinization 0.000004 0.0301 1.61 (1283, 40, 757, 38)
Cornification 0.00000598 0.0225 1.58 (1283, 44, 757, 41)
Exocytosis 0.0000369 0.0923 1.22 (1283, 160, 891, 136)
Leukocyte degranulation 0.0000521 0.098 1.25 (1283, 123, 891, 107)
Regulated exocytosis 0.0000541 0.0813 1.22 (1283, 154, 891, 131)
Immune effector process 0.0000609 0.0763 1.18 (1283, 169, 973, 151)
Granulocyte activation 0.0000674 0.0724 1.25 (1283, 122, 891, 106)
Neutrophil activation 0.0000674 0.0634 1.25 (1283, 122, 891, 106)
Myeloid cell activation involved in immune response 0.0000675 0.0564 1.25 (1283, 122, 891, 106)
Response to chemokine 0.000073 0.0549 28.51 (1283, 3, 45, 3)
Cellular response to chemokine 0.000073 0.0499 28.51 (1283, 3, 45, 3)
Neutrophil degranulation 0.0000846 0.053 1.25 (1283, 121, 891, 105)
Neutrophil activation involved in immune response 0.0000846 0.0489 1.25 (1283, 121, 891, 105)
Secretion by cell 0.0000888 0.0477 1.21 (1283, 173, 882, 144)
Myeloid leukocyte activation 0.0000952 0.0477 1.24 (1283, 125, 891, 108)
Leukocyte activation involved in immune response 0.000106 0.0499 1.20 (1283, 131, 973, 119)
Cell activation involved in immune response 0.000106 0.047 1.20 (1283, 131, 973, 119)
Leukocyte activation 0.000144 0.0603 1.18 (1283, 153, 973, 137)
Nervous system process 0.000164 0.065 2.77 (1283, 36, 232, 18)
Regulation of .intra.cellular estrogen receptor 0.00027 0.101 106.92 (1283, 4, 6, 2)
Signaling pathway
Secretion 0.000384 0.137 1.19 (1283, 178, 882, 146)

* Enrichment (N, B, n, b) is defined as follows: N—Total number of genes. B—Total number of genes associated
with a specific GO term. n—Number of genes in the top of the user’s input list or in the target set when appropriate.
b—Number of genes in the intersection. Enrichment = (b/n)/(B/N).
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These pathways coincide with the ones shown by Panther ontology (Fisher’s Exact test)
(Figure 4, Table 2), especially inflammation mediated by chemokine and cytokine signaling
pathway GO terms, with cellular responses to chemokines or neutrophil degranulation from
GOrilla ontology GO terms, as well as between glycolysis GO term with the regulation
of intracellular estrogen receptor signaling pathway GO term, as both programs show
interactions between peptides present in the extract with components involved in those
biological processes or pathways, not necessarily inducing them. It is worth mentioning
that Panther ontology displayed results with significant FDR-p > 0.05 diminishing false
positives, as observed in Figure 4b, where the biological pathway predicted less difference
between “observed” and “expected” for inflammation mediated by chemokine and cytokine
signaling pathways, validating the predictions made.
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Figure 4. ICRP has peptides involved in the processes of inflammation mediated by cytokines
and chemokines, Huntington’s disease, integrin signaling pathway, Parkinson’s disease, cytoskele-
ton regulation by GTPase Rho, and glycolysis. ICRP peptide content was entered into the
Panther 17.0 ontology software with default values for predictions in Homo sapiens considering the
Bos taurus proteomic origin. (a) Pathways induced based on gene percentage related to process (blue
bars), in contrast with Homo sapiens reference lists per pathway (red bars). (b) Logarithmic fractional
difference between observed and expected results.

Table 2. Biological pathways induced by peptides present in the ICRP using Panther ontology.

Fold Raw p
PANTHER Pathways # # Expected Enrichment Value FDR

Glycolysis 20 9 1.35 6.69 0.0000484 0.00129

Cytoskeletal regulation by Rho 86 33 5.79 5.7 224 x 108 1.79 x 1011
GTPase

Parkinson’s disease 101 29 6.79 427 1.82 x 10°  7.28 x 108
Huntington’s disease 152 39 10.22 3.81 537 x 1011 2.87 x 10°
Integrin signaling pathway 200 39 13.45 2.9 4.26 x 108 0.00000136

Inflammation mediated by chemokine 261 33 17.56 1.88 0.00146 0.0334

and cytokine signaling pathways

Unclassified 17,971 1103 1208.89 0.91 1.64 x 10* 2,62 x 10'2

The prediction of biological processes for exosomes based on the peptides present for a
Homo sapiens model showed two main processes: neutrophil degranulation and cornifica-
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tion (p = 3.05 x 10° for both) (Figure 5 and Table 3). Whilst the pathways showed a primary
or better p-value (0.000004 for keratinization) in the ICRP extract, exosomes appeared to be
secondary (0.0000178 for keratinization) but within same color scheme (Figures 1 and 5).
Nevertheless, one that remains in the strongest induced pathways for both is the cornifi-
cation process (p = 0.00000598 for ICRP and p = 0.00000305 for exosomes). For exosomes,
the pathways most strongly induced were granulocyte activation (p = 0.00000222), neu-
trophil activation (p = 0.00000222), myeloid leukocyte activation (p = 0.00000234), and
cornification, as mentioned (Table 3). For Mus musculus, however, the catabolic protea-
somal ubiquitin-independent protein prediction model emerged as the only pathway
(p = 0.0000633) (Figure 6a), which coincides with keratin filaments for the Homo sapiens
model both for exosomes and ICRP (Figures 2b and 6b). Nevertheless, when introducing a
target list in GOrilla ontology with peptides with an abundance ratio from 6.06% to 100%
p-values change, keratinization (p = 0.00000738) and cornification (0.00000183) (Figure 7)
processes move to the top of the list (Table 4). This demonstrates that the thousands of
combinations made by the logarithm depend on the number of proteins/peptides in the
target list, and so do the p- and ¢-FDR values. Therefore, keratinization cannot be ruled out
as one of the possible main functions that exosomes could perform.
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Figure 5. Exosomes possess neutrophil degranulation and cornification as suggested pathways. Based
on proteins overexpressed in exosomes (target) relative to proteins present in the ICRP (background),
1-100% abundance ratio in a model of Homo sapiens (p <1 x 10).
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Table 3. Biological processes induced by peptides present in exosomes using GOrilla ontology
(exosomes abundance ratio: 1-100%).

Description p-Value FDR g-Value Enrichment (N, B, n, b)
Granulocyte activation 0.00000222 0.0167 1.32 (1283, 122, 764, 96)
Neutrophil activation 0.00000222 0.00835 1.32 (1283, 122, 764, 96)
Myeloid leukocyte activation 0.00000234 0.00587 1.32 (1283, 125, 764, 98)
Cornification 0.00000305 0.00573 1.53 (1283, 44, 764, 40)
Neutrophil degranulation 0.00000305 0.00459 1.32 (1283, 121, 764, 95)
Neutrophil activation involved in immune response 0.00000305 0.00383 1.32 (1283, 121, 764, 95)
Leukocyte degranulation 0.00000439 0.00472 1.31 (1283, 123, 764, 96)
Myeloid cell activation involved in immune response 0.00000599 0.00563 1.31 (1283, 122, 764, 95)
Regulated exocytosis 0.00000966 0.00807 1.26 (1283, 154, 764, 116)
Leukocyte activation involved in immune response 0.0000164 0.0123 1.28 (1283, 131, 764, 100)
Cell activation involved in immune response 0.0000164 0.0112 1.28 (1283, 131, 764, 100)
Keratinization 0.0000178 0.0111 1.51 (1283, 40, 764, 36)
Leukocyte activation 0.0000287 0.0166 1.25 (1283, 153, 764, 114)
Cell activation 0.0000751 0.0403 1.23 (1283, 161, 764, 118)
Immune effector process 0.0000887 0.0445 1.22 (1283, 169, 764, 123)
Multi-organism process 0.0000919 0.0432 1.19 (1283, 217, 764, 154)
Exocytosis 0.0000964 0.0426 1.23 (1283, 160, 764, 117)
Secretion by cell 0.000261 0.109 1.20 (1283, 173, 764, 124)
Secretion 0.000561 0.222 1.19 (1283, 178, 764, 126)
Proteasomal ubiquiti‘n—independent protein 0.000671 0.252 1.68 (1283, 14, 764, 14)
catabolic process
Regulation of response to biotic stimulus 0.000671 0.24 1.68 (1283, 14, 764, 14)
Positive regulation of protein complex assembly 0.000784 0.268 1.36 (1283, 52, 764, 42)
Immune system process 0.000933 0.305 1.14 (1283, 287, 764, 194)
(a) (b)
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Figure 6. The proteasomal ubiquitin-independent protein catabolic process is suggested as a process
pathway induced by ICRP-derived exosomes. Based on proteins overexpressed in exosomes (target)
relative to proteins present in the ICRP (background), 1-100% abundance ratio in a model of Mus
musculus (p <1 x 10% top <1 x 10°). (a) Shows proteasomal ubiquitin-independent protein catabolic
as a biological process. (b) Shows keratin filament as an outstanding cellular component.
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Figure 7. Cornification and keratinization as the main putative pathways induced by exosomes.
Suggested functional pathways induced by ICRP-derived exosomes based on proteins overexpressed
in exosomes (target) relative to proteins present in the ICRP (background), 6.06-100% overexpressed

in a Homo sapiens model.

Table 4. Biological processes induced by peptides present in exosomes via GOrilla ontology (exosomes
abundance ratio: 6.06-100%).

Description p-Value FDR g-Value Enrichment (N, B, n, b)
Cornification 0.00000183 0.0138 1.98 (1283, 44, 457, 31)
Keratinization 0.00000738 0.0277 1.97 (1283, 40, 457, 28)

Catabolic process 0.000202 0.507 1.30 (1283, 225, 457, 104)
Response to corticosteroid 0.000537 1 2.25 (1283, 15, 457, 12)
Cellular catabolic process 0.000566 0.851 1.28 (1283, 212, 457, 97)
Epidermis development 0.000945 1 2.34 (1283, 12, 457, 10)

According to the Panther Classification System, peptides with an abundance of exo-
somes could interact with components of pathways relevant to wound healing, such as
angiogenesis, the EGF receptor signaling pathway, the endothelin signaling pathway, the
FGF signaling pathway, and the VEGF signaling pathway (Figure 8a), as well as B cell acti-
vation. When observing the biological processes (Figure 8b), exosomes play an important
role in biological adhesion, which is correlated to a cell-to-cell junction; those peptides are
also involved in biological regulation, localization, and signaling. The last process is the
reason the next analysis was performed in the METASCAPE online server for the prediction
of pathways, using a platform that also connects with drug target annotations and a protein
atlas for tissue specificity. Through METASCAPE, we were able to observe a bar map in
which color indicated a better p-value score for said process (Figure 9); those decisions were
made taking into account the prioritization of genes. The program annotates enrichments,
identifies statistically enriched pathways, and builds protein—protein interaction networks.
Furthermore, enrichment in several genetic signatures such as cell types, transcription
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factors, and disease implications is carried out for quality control purposes. Terms with a
p-value smaller than 0.01, a minimum count of 3, and an enrichment factor greater than
1.5 (the enrichment factor is the ratio of the observed counts to the counts expected by
chance) are collected and grouped into groups based on their similarities of membership
(subtrees with similarity greater than 0.3 are considered a group) and corrected using the
Benjamini-Hochberg algorithm. This analysis coincides with some predictions made in
GOrilla and Panther, such as regarding neutrophil degranulation and cellular response
to stimulate angiogenesis at different levels (Figures 9 and 10). As observed in Table 5,
the process showed a better p-value score for neutrophil degranulation. Other biological
processes of interest include, for example, salmonella infection; this does not mean that
proteins support the infection, but exosomes contain peptides involved in the said process,
which probably hijack infectious processes, coinciding with the immune response processes
mentioned by the previous software (Panther 17.0). It is worth highlighting that the PID-
ILK pathway mentioned in Table 5 as canonical under normal healthy conditions could be
induced under exosome treatment in a diabetes context; the said pathway is involved in the
cell-to-cell junction and extracellular matrix expression, both important for wound healing.
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Figure 8. Peptides belonging to exosomes putatively induce Angiogenesis, B-cell activation, EGF re-
ceptor, FGF, and endothelin signaling pathways according to Panther Classification System. (a) Target
list was analyzed (exosome peptides with abundance ratio from 1% to 100%) for a Homo sapiens
model. (b) Biological Process (p-FDR < 0.05).
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Figure 9. Peptides belonging to exosomes induce neutrophil degranulation, VEGFQQ VEGFR2
signaling pathway, regulation of cellular localization, HSP90 chaperone cycle for steroid hormone
receptor, PID ILK pathway, epithelial cell differentiation, regulation of cell morphogenesis and
EGF/EGEFR signaling pathway. A background and target list (abundance peptide in exosomes from
1% to 100%) in METASCAPE online server and prediction for homo sapiens were performed with
predetermined values.
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Figure 10. Peptides belonging to exosomes are involved in cellular processes, localization, signaling,
and immune system processes. A background, and target list (abundance peptide in exosomes from
1% to 100%) in METASCAPE online server and prediction for homo sapiens were performed with
predetermined values.
Table 5. Pathways induced by exosomes (abundance ratio 1-100%) according to METASCAPE.
GO Category Description Count % Logl0(P)  Logl0(q)
R-HSA-6798695 Reactome Gene Sets Neutrophil degranulation 94 11.75 —52.85 —485
R-HSA-8953897 Reactome Gene Sets Cellular responses to stimuli 111 13.88 —48.49 —44.45
R-HSA-194315 Reactome Gene Sets Signaling by Rho GTPases 98 12.25 —41.21 —37.59
WP3888 WikiPathways VEGFA-VEGEFR? signaling pathway 72 9.00 —35.01 —31.51
GO:0097435 GO Biological Processes Supramolecular fiber organization 76 9.50 —33.32 —29.88
R-HAS-6809371 Reactome Gene Sets Formation of the cornified envelope 40 5.00 —30.75 —27.58
R-HSA-72766 Reactome Gene Sets Translation 52 6.50 —27.18 —24.11
R-HSA-5653656 Reactome Gene Sets Vesicle-mediated transport 76 9.50 —25.95 —23.02
GO:1903311 GO Biological Processes Regulation of mRNA 47 5.88 ~2252  -19.70
metabolic process
GO:0006457 GO Biological Processes Protein folding 38 4.75 —20.58 —17.87
hsa05132 KEGG Pathway Salmonella infection 41 512 —20.15 —17.51
GO:0043254 GO Biological Processes ~ Regulation of protein-containing 50 6.25 ~19.00  —1643
complex assembly
GO:0043086 GO Biological Processes Negative regulation of 71 8.88 ~1867  —1611
catalytic activity
GO:0060341 GO Biological Processes Regulation of cellular localization 70 8.75 —18.02 —1551
GO:0051129 GO Biological Processes Negative regulation of cellular 64 8.00 ~1761 1516
component organization
R-HAS-75153 Reactome Gene Sets Apoptotic execution phase 19 2.38 —16.53 —14.20
HSP90 chaperone cycle for steroid
R-HSA-3371497 Reactome Gene Sets hormone receptors (SHR) in the 19 2.38 —16.00 —-13.72
presence of ligand
GO:0022613 GO Biological Processes Ribonucleoprotein 48 6.00 1574  —1347
complex biogenesis
Hsa04810 KEGG Pathway Regulation of actin cytoskeleton 33 412 —15.21 —13.00
M71 Canonical Pathway PID ILK Pathway 17 2.12 —15.14 —12.95

When peptides are grouped in a protein—protein network of interaction, niches are
grouped per pathway, represented in Figure 11a by color, demonstrating that the majority
of pathways have an intersection between one another. Results from GOrilla and Panther
indicated that peptides have a catalytic effect, probably activating intermediates that have
cross-talk between pathways. The majority of them were involved in the activation of the
immune system, angiogenesis, and the development of the cornified envelope, among
other things. In addition, in Figure 11b the protein—protein network interaction is shown
with the intensity of the color based on p-value, locating the closest pathways and with
the highest value to the center and right side of the scheme, this being the pathways’
cellular response to stimuli, supramolecular fiber organization, the regulation of the actin
cytoskeleton, the regulation of the protein-containing complex assembly, translation, and
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(a)

the formation of a cornified envelope (p =1 x 10! to 1 x 10%°). Moreover, peptides have
more interaction in skin tissue (p = 1 x 10'%) (Figure 12 and Supplementary Table S3) and
seem to interact or induce the action of transcription factors such as SP1 and BRCA1, among
others (Figure 13 by TRUST analysis p = 1 x 107), with a remarque expression of FOXE1
target genes (p = 1 x 10%0) (Figure 14).

(b)

M Neutrophil degranulation 1072
W Cellular responses to stimuli [ EBY
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PID ILK PATHWAY

Figure 11. Pathways with better p-value scores are closely related and involved in cellular responses
to stimuli, supramolecular fiber organization, and formation of cornified envelope. A background
and target list (abundance peptide in exosomes from 1% to 100%) in METASCAPE online server
and prediction for Homo sapiens were performed with predetermined values. (a) Protein—protein
network interaction by pathway in colors. (b) Protein—protein network interaction by a pathway red

intensity based on p-value.
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Figure 12. Peptides belonging to exosomes have an affinity to the skin. A background and target list
(abundance peptide in exosomes from 1% to 100%) in METASCAPE online server and prediction for

Homo sapiens were performed with predetermined values.
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Figure 13. Transcription factors and target gene expressions are putatively induced by peptides be-
longing to exosomes. A background and target list (abundance peptide in exosomes from 1% to 100%)
in METASCAPE online server and prediction for Homo sapiens were performed with predetermined
values employing TRUST calculations. (a) The putative genes induced by the exosomes. (b) The
transcription factor putatively induced by exosomes.
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PIP3 activates AKT signaling: Bos taurus

Figure 14. Exosomes derived from ICRP activate the PIP3-AKT pathway. A background and
target list (abundance peptide in exosomes from 1% to 100%) in METASCAPE online server
and prediction for Homo sapiens were performed with predetermined values corrected by the
Benjamini— Hochberg algorithm.

For this reason, the PIP3-AKT signaling pathway was analyzed. In Figure 14, color
boxes that represent pathway activation through the interaction between peptides be-
longing to exosomes with a component of the pathway can be observed, ending on the
FOXO genes’ expression; these genes are involved in cell differentiation and migration,
besides regulating inflammation. In Supplementary Table S4, interactors per component
are shown considering the score from Reactome version 84 software as significant when
bigger than 0.400. In addition to the PIP3-AKT pathway, other pathways seemed to
activate when interaction occurred between peptides from exosomes, with protein com-
ponents of the pathways’ cell-cell junction (Supplementary Table S5), signaling by FGFR1
(Supplementary Table S6), signaling by IGFIR (Supplementary Table S7), and signaling
by Sonic Hedgehog protein (Supplementary Table S8) all being related to the wound
healing process.

3. Discussion

Exosomes can be secreted by all cells in the body, and thus we hoped to observe
their presence in a spleen extract such as IMMUNEPOTENT CRP, derived from a variety
of cells that arrive in that organ. The presence of exosomes in IMMUNEPOTENT CRP
was demonstrated by AFM and matches with the size range for an exosome, between
50 and 200 nm [1,16], showing an average size of 60 nm, in addition to the presence
of exomeres around 30 nm, the last ones also participating in signaling pathways due
to their protein and nucleic acid content [17,18]. Proteomic analysis demonstrated the
presence of common exosome protein markers such as HSP90AA1, HSP90AB1, HSPA1A,
HSPA2, TLN1, and HMGB], characteristic of bovine exosomes [3]. Based on proteins
present, the ontology enrichment analysis in GOrilla software for Homo sapiens predicted
the intended final destiny of the product in the keratinizing and cornifying functions and
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the processes of cellular response to chemokines, neutrophil degranulation, the regulation
of intracellular estrogen receptor, and the regulation of fat cell differentiation as secondary
functions with statistical significance in processes, matching with the putative functions of
the other program. Panther ontology for Bos taurus prediction also showed similar values
for Homo sapiens, as observed in Figure 3. Focusing on the cellular response to chemokine
and neutrophil degranulation could induce downstream signaling pathways, and within
possible biological functions we could find angiogenesis and B cell activation, among
others, that were observed in the Metascape program, allowing the possibility of treating
infected wounds [19-21]. The formation of vessels and the control of possible infections
are important for the wound healing process, whereas the keratinization and cornification
process upstream functions could be induced by vessel formation in an infected wound,
which could be reflected as a result, as was displayed in the Gorilla ontology of the
most outstanding processes, resulting in a probable re-epithelialization of the wound. A
remarkable result from Panther ontology that did not match with GOrilla ontology was the
regulation over the cytoskeleton by GTPase Rho.

In the D. melanogaster cell repair processes, Rho has been reported to be required for
the activation of myosin II, leading to its association with actin, which functions in the
formation of actin filaments [22,23]. The ICRP has shown some processes to be secondary,
whilst the same ones in exosomes stood out as primary processes; neutrophil degranulation
correlated with the previous reports on the functions of IMMUNEPOTENT CRP, which
modulates the immune system, probably due to exosomes activity [24]. However, the
cornification process remains one of the most probable functions when examining proteins
overexpressed in exosomes with respect to the whole extract (cornification process from IM-
MUNEPOTENT CRP extract, p-value = 0.00000598, and for exosomes p-value = 0.00000305),
which means with higher enrichment in exosomes than in the whole extract. When the
proteins overexpressed from 6.06% to 100% in exosomes were examined, the functions
outstanding in the whole extract were the same for exosomes in a prediction model of
Homo sapiens (keratinization p-value = 0.000004 and cornification p-value = 0.00000598 for
IMMUNEPOTENT CRP, and keratinization p-value = 0.00000738 and cornification p-value
= 0.00000183), increasing enrichment for the cornification process; this could imply that
the biological effects exerted by the ICRP are attributed to the exosomes present in the
extract, although a potency test is necessary to prove that. In addition, when cellular com-
ponents of IMMUNEPOTENT CRP were evaluated, the presence of extracellular exosomes
in the sample was highlighted with significant differences (sharing importance with keratin
filament cellular components), for which the biological functions of the extract could be
attributed to the exosomes, as those are one of the main components.

Moreover, the presence of specific types of keratins supports the hypothesis that the
exosomes that possess keratin filaments present in IMMUNEPOTENT CRP can induce
wound healing. In the exosomes, over-expressed keratins 1 and 2 can be found with respect
to IMMUNEPOTENT CRP, and they have been reported to be overproduced in the healing
process [25] in comparison with keratins 6 and 16, which are present in untreated skin; it
is probable that the exosomes activate the cornification process by the presence of those
keratin filaments.

In diabetic patients, wounds become chronic easily due to the lack of control of hyper-
glycemia, and these patients are reported to have defects in vessel formation, besides an
inefficient closure of the wound with the formation of ulcers, and an inability to control
infections [26]. The Panther ontology prediction of biological processes induced by exo-
somes indicated the activation of angiogenesis and VEGF signaling pathways, which are a
key step in first phases of wound healing [26]. Furthermore, the expression of adrenaline
and noradrenaline is implicated in the modulation of inflammation and expediting wound
closure, besides the suggestion of protection against infection [27]. In terms of accelerating
wound closure, biological functions of EGF and FGF signaling are probably induced, and
neutrophil degranulation was remarked on if effective in Gorilla ontology; in Panther ontol-
ogy, B cell activation was remarked on. Therefore, in a context of an infected diabetic foot
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ulcer, the exosomes could be employed as a treatment, supported in biological processes by
Panther ontology, especially biological adhesion. Predictions in the METASCAPE online
server remarked on possible pathways that match with previous software mentioned, and
a new method of regulation for Salmonella infection that we hope can be used against
infection, given that case reports have been published in human diabetic ulcers [28,29].
In addition, the heatmap from METASCAPE matched with the predictions from the last
software, focusing on infection control, the formation of blood vessels, and the induction of
proliferation in cells present in the dermis.

An Important concern is the site of action of a treatment; in our case, the main site
of action was in skin tissue in a prediction for humans, suggesting a possible treatment
employing exosomes isolated from IMMUNEPOTENT CRP in diabetic foot ulcers. We
hypothesized that the exosomes activate proliferation-inflammation pathways, such as
PIP3-AKT, as the pathway was significantly highlighted at different points, probably
through the phosphorylation of MKRN1 and BAD, ending in the activation of genes; for
example, FOXO genes correlating in Reactome and METASCAPE analysis. This path-
way has been reported to induce wound healing in diabetic models [30], resulting in the
differentiation of fibroblasts from myofibroblasts, which are the main cells in charge of
wound healing in the first phases [31]. Other biological pathways highlighted were the
cell—cell junction, the FGFR1 signaling pathway, the IGFIR signaling pathway, and the
Sonic Hedgehog signaling pathway;, all related to the wound healing process [32-35].

4. Materials and Methods
4.1. IMMUNEPOTENT CRP Protein Characterization

IMMUNEPOTENT CRP is a registered product composed of a mixture of substances
of <12 kDa from spleen extract manufactured by LONGEVEDEN SA de CV, sold in a
lyophilized presentation in Mexico. For proteomic analysis, a lyophilized pool was created
from different batches to assure homology and representative data of the product. Then,
this pool was analyzed using Tymora Analytics Operations (West Lafayette, IN, USA) to
identify the proteins and digested to prepare a sample for liquid chromatography coupled
to mass spectrometry coupled in tandem (LC-MS/MS), as described by Wu et al. [36]. The
company sent us the list of proteins present in the extract, which was considered as the
target list for bioinformatic analysis.

4.2. Exosome Proteomics Characterization

From the pool of ICRP sent to Tymora Analytical Operations Company (West Lafayette,
IN, USA), a part of this mixture was separated to isolate the exosomes through EVtrap
methodology with automated magnetic bead separation. After that, they were lysed to
liberate protein content. Then, proteins were extracted and digested in an SDC buffer, and
later proteins were identified through LC-MS/MS analysis as specified by Wu et al. [36].
This list of proteins was considered as a target list for bioinformatics analysis. Since
background and target lists were available, the company provided the relative abundance
(%) of each protein on the target list compared to the background list.

4.3. Exosome Shape and Size Characterization through Atomic Force Microscopy

Exosomes were isolated from a pool from different batches of lyophilized ICRP em-
ploying the kit Exoquick (Invitrogen, Waltham, MA, USA) that separates extracellular
vesicles through ultracentrifugation. After that, the pellet was resuspended in sterile PBS
1X and analyzed with atomic force microscopy. The samples were observed using an
NT-MDT Spectrum, NTEGRA Prima AFM at room temperature, with an RTESPA probe
(Bruker, Billerica, MA, USA) of spring constant k = 40 N/m in intermittent contact mode.
Images of height, deflection, and phase were obtained; 20 x 20, 10 x 10 and 5 x 5 um?
image sizes were captured systematically for each sample at three different regions at
least. The samples were analyzed with Gwyddion version 1.6 software to observe the
morphological aspect of the exosome [16].
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4.4. Biological Pathway Functions Prediction

The background and target lists were composed of the gene names that codified the
proteins. First, putative biological pathway functions were predicted on the online software
Gene Ontology enRIchment analysis and visuaLizAtion tool (GOrilla) using a background
list and target list (selecting as prediction models Homo sapiens and Mus musculus). Two
simulations were performed in the target list, one including all proteins present in the
exosomes (1% to 100% relative abundance) and a second one with overexpressed proteins
in exosomes (6.06% to 100% relative abundance) with respect to the background list; for
predictions employing the target list, the background list was introduced as reference. The
same procedure was performed in Panther ontology, specifying as model organisms Bos
indicus, Homo sapiens, and Mus musculus. The software gave us data for molecular functions,
cellular components, and biological processes.

For biological pathway prediction, proteins relating to transcription factors and tissue
specificity in a Homo sapiens model, the Metascape v3.5.20230501software was used. In the
software, the two lists function was used to introduce background and target lists with
automatic parameters.

4.5. Evaluation of Wound-Healing-Related Signaling Pathways

Lastly, to identify the proteins (interactors) that interacted with components of cell
signaling pathways related to wound healing in the literature and those correlated with the
results obtained in previous software, Reactome version 84 software was used, entering
background and target lists in the analyze gene list section (enabling the button to show
interactors in the results), and with the PADOG analysis method, introducing “compare
Homo sapiens with Bos taurus” in species comparison sections. The program showed yellow
coloration in components of the pathway that show interactions with the proteins in the
lists. With this information, Supplementary Tables S5-58 were built. Signaling component
interactors present in exosomes and ICRP were identified, with their score of probability
according to the Benjamini-Hochberg logarithm for multiple tests counting analysis.

5. Conclusions

We determined that the different biological activities of spleen cells’ dialyzed extract
(IMMUNEPOTENT CRP) can in part be attributed to their total peptide content and
peptides contained in exosomes, and not exclusively to a particular peptide. Furthermore,
the in silico analysis coordinated with activities described before, such as anti-inflammatory
capacity, but new activity, such as wound healing, was found, which could lead to new
preclinical research to elucidate its activity, both regarding the effect of the total ICRP
extract and its exosomes. Predictions indicated a putative route in which the ICRP could
exert a wound healing process through inflammation modulation and the activation of
signaling pathways such as PIP3-AKT, among others.
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