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Abstract: Although early recognition of sepsis is essential for timely treatment and can improve
sepsis outcomes, no marker has demonstrated sufficient discriminatory power to diagnose sepsis.
This study aimed to compare gene expression profiles between patients with sepsis and healthy
volunteers to determine the accuracy of these profiles in diagnosing sepsis and to predict sepsis
outcomes by combining bioinformatics data with molecular experiments and clinical information. We
identified 422 differentially expressed genes (DEGs) between the sepsis and control groups, of which
93 immune-related DEGs were considered for further studies due to immune-related pathways being
the most highly enriched. Key genes upregulated during sepsis, including S100A8, S100A9, and CR1,
are responsible for cell cycle regulation and immune responses. Key downregulated genes, including
CD79A, HLA-DQB2, PLD4, and CCR7, are responsible for immune responses. Furthermore, the
key upregulated genes showed excellent to fair accuracy in diagnosing sepsis (area under the curve
0.747–0.931) and predicting in-hospital mortality (0.863–0.966) of patients with sepsis. In contrast,
the key downregulated genes showed excellent accuracy in predicting mortality of patients with
sepsis (0.918–0.961) but failed to effectively diagnosis sepsis. In conclusion, bioinformatics analysis
identified key genes that may serve as biomarkers for diagnosing sepsis and predicting outcomes
among patients with sepsis.

Keywords: sepsis; biomarkers; diagnosis; genes; bioinformatics

1. Introduction

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host re-
sponse [1]. Sepsis and septic shock are major healthcare problems that affect millions
of patients worldwide each year and kill approximately 17–33% of those affected [2,3].
Unfortunately, the reported incidence of sepsis and its associated healthcare burden are
both currently on the rise due to the global trend of population aging and patients having a
greater number of comorbidities [4,5]. Biomarker development could serve as a cornerstone
of sepsis management and may ameliorate the healthcare burden of sepsis because early
recognition is essential for timely treatment and the improvement of sepsis outcomes [6].

Numerous biomarkers for sepsis, including C-reactive protein and procalcitonin,
have been investigated previously [7,8]. However, to date no marker has demonstrated
sufficient discriminatory power [9,10]. Bioinformatics approaches integrate computational
and life sciences to screen molecular and clinical data via data mining, pathway analysis,
statistical analysis, and visual processing. These methods can investigate disease on
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the molecular level and have been widely used to identify significant biomarkers for
sepsis [11–15]. In addition to the previous studies using datasets downloaded from public
repositories, some prospective cohort studies also performed bioinformatics analysis to
explore potential biomarkers for sepsis diagnosis [16,17]. Although previous studies have
provided important insight into biomarkers and the pathophysiology of sepsis, more
bioinformatics studies are warranted to validate the study results in association with
real-world clinical outcomes.

Thus, the present study aimed to (1) use bioinformatics analyses to explore key
differentially expressed genes (DEGs) between patients with sepsis from a prospective
cohort and healthy volunteers and (2) validate the accuracy of bioinformatics analyses for
diagnosing sepsis and predicting sepsis outcomes by integrating molecular experiments
with clinical information.

2. Results
2.1. Clinical Characteristics of Patients with Sepsis

During the study period, we enrolled 133 critically ill patients with sepsis after ex-
cluding 63 who were not diagnosed with sepsis and two who withdrew their consent.
Of the 133 patients, 90 (67.7%) were male, and the median age of patients was 66 years
(interquartile range (IQR), 58–73 years). When patients were admitted to intensive care
units, 60 (45.1%) and 69 (51.9%) received mechanical ventilation therapy and vasopressors,
respectively. With respect to the severity of illness, the median SAPS 3 score was 55 (IQR,
47–63), the APACHE II score was 24 (IQR, 20–30), and the initial Sequential Organ Failure
Assessment score was 9 (IQR, 7–11). The rates of 28-day mortality and in-hospital mortality
were 16.5% and 24.8%, respectively (Table 1).

Table 1. Characteristics of patients with sepsis.

Variable Value (n = 133)

Age (years) 66 (58–73)
Male 90 (67.7)
Comorbidities

All malignancies 51 (38.3)
Solid organ malignancies 35 (26.3)
Hematologic malignancies 16 (12.0)
Diabetes mellitus 41 (30.8)
Chronic obstructive pulmonary disease 16 (12.0)
Chronic kidney disease 10 (7.5)
Myocardial infarction 8 (6.0)
Congestive heart failure 7 (5.3)
Cerebrovascular disease 8 (6.0)
Chronic liver disease 11 (8.3)

Charlson Comorbidity Index 2 (1–3)
Clinical status on ICU admission

Mechanical ventilation 60 (45.1)
Vasopressor support 69 (51.9)

Laboratory findings
WBC (/µL) 13,640 (5060–20,340)
Hemoglobin (g/dL) 10.1 (8.9–11.7)
Platelet (/µL) 136,000 (59,000–214,000)
Albumin (g/dL) 2.9 (2.6–3.2)
CRP (mg/dL) 12.5 (5.8–24.5)
Lactate (mg/dL) 3.0 (2.0–4.4)
PaO2/FiO2 ratio 216 (135–323)

Severity of illness
SAPS 3 score 55 (47–63)
APACHE II score 24 (20–30)
SOFA score, initial 9 (7–11)

Outcome
28-day mortality 22 (16.5)
In-hospital mortality 33 (24.8)

Data are presented as count (percentage) or median (interquartile range). Abbreviations: APACHE II, Acute
Physiology and Chronic Health Evaluation II; COPD, chronic obstructive pulmonary disease; CRP, C-reactive
protein; ICU, intensive care unit; PaO2/FiO2 ratio, ratio of arterial oxygen pressure to fractional inspired oxygen;
SAPS 3, Simplified Acute Physiology Score 3; SOFA, Sequential Organ Failure Assessment.
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2.2. Identification of Candidate mRNAs: Bioinformatics Analyses

This study initially identified 422 DEGs between 133 patients with sepsis and 12 healthy
volunteers. A principal component analysis (PCA) of global gene expression profiles re-
vealed that sepsis patients were clearly separate from healthy volunteers (Figure 1A). In
addition, distinct patterns of gene expression existed in sepsis patients when transcrip-
tomic profiles of sepsis patients were compared to those of healthy volunteers (Figure 1B).
Further bioinformatics analyses were conducted to identify key genes related to sepsis.
First, enriched gene ontology (GO) functional analysis revealed that the identified DEGs
were mainly involved in the immune response (Figure 1C,D).
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Figure 1. Gene ontology (GO) enrichment analysis of 422 differentially expressed genes (DEGs) be-

tween patients with sepsis and healthy volunteers. (A) Principal component analysis of the RNA 

transcriptome from sepsis patients (green) and that from healthy volunteers (blue). (B) Volcano plot 

of DEGs showing upregulated genes in red and downregulated genes in green. (C) GO enrichment 

analysis visualizing main DEGs that are mainly involved in the response to sepsis. (D) Number of 

identified DEGs according to their biological process (red), cellular component (blue), or molecular 

function (green) categorization. 
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Figure 1. Gene ontology (GO) enrichment analysis of 422 differentially expressed genes (DEGs)
between patients with sepsis and healthy volunteers. (A) Principal component analysis of the RNA
transcriptome from sepsis patients (green) and that from healthy volunteers (blue). (B) Volcano plot
of DEGs showing upregulated genes in red and downregulated genes in green. (C) GO enrichment
analysis visualizing main DEGs that are mainly involved in the response to sepsis. (D) Number of
identified DEGs according to their biological process (red), cellular component (blue), or molecular
function (green) categorization.

Second, a protein–protein interaction (PPI) network analysis of the 422 DEGs also
showed that the most extensive module was composed of 78 seeds, 1381 nodes, and
1823 edges. Moreover, it appeared to be most strongly enriched in immune-related
pathways (Figure 2).
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A following PPI network analysis of 93 immune-related DEGs revealed that these en-
riched immune-related pathways included adaptive immune response, positive regulation
of immune response, positive regulation of leukocyte cell–cell adhesion, cell activation, and
positive regulation of cytokine production (Figure 3).
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Figure 4. Molecular complex detection analysis results used to screen the significant modules
identified in the protein–protein interaction network.

The 93 immune-related DEGs identified here included 51 upregulated and 42 downreg-
ulated genes in patients with sepsis compared to healthy volunteers. Table 2 summarizes
the top 10 upregulated and downregulated genes in patients with sepsis. Significantly
upregulated genes included S100A8, VNN1, HMGB2, and S100A9, whereas significantly
downregulated genes included CD79A, HLA-DQB2, PLD4, and CCR7.

Table 2. Top 10 upregulated and downregulated immune-related genes in patients with sepsis relative
to healthy volunteers.

Top 10 Upregulated Genes Top 10 Downregulated Genes

Entrez ID Gene Symbol Fold Change Entrez ID Gene Symbol Fold Change

6279 S100A8 16.17 973 CD79A 0.12
8876 VNN1 7.83 3120 HLA-DQB2 0.13
3148 HMGB2 7.23 122618 PLD4 0.14
6280 S100A9 5.43 1236 CCR7 0.15
301 ANXA1 5.42 259197 NCR3 0.17
665 BNIP3L 4.67 29802 VPREB3 0.18

200315 APOBEC3A 4.61 6932 TCF7 0.199
353514 LILRA5 4.49 933 CD22 0.201

1378 CR1 4.46 10578 GNLY 0.206
1604 CD55 4.29 974 CD79B 0.213

Abbreviations: S100A8, S100 calcium-binding protein A8; VNN1, vanin 1; HMGB2, high-mobility group box
2; S100A9, S100 calcium-binding protein A9; ANXA1, annexin A1; BNIP3L, BCL2 interacting protein 3-like;
APOBEC3A, apolipoprotein B mRNA editing enzyme catalytic subunit 3A; LILRA5, leukocyte immunoglobulin-
like receptor A5; CR1, complement C3b/C4b receptor 1; CD55, CD55 molecule; CD79A, CD79a molecule;
HLA-DQB2, major histocompatibility complex, class II, DQ beta 2; PLD4, phospholipase D family member
4; CCR7, C-C motif chemokine receptor 7; NCR3, natural cytotoxicity triggering receptor 3; VPREB3, V-set
pre-B cell surrogate chain 3; TCF7, transcription factor 7; CD22, CD22 molecule; GNLY, granulysin; CD79B,
CD79b molecule.

2.3. Experimental and Clinical Validation of Potential Biomarkers from the mRNA Profile

Next, we used quantitative real-time PCR (qPCR) to measure the expression levels of
identified DEGs and thereby validate our bioinformatics analyses using molecular data
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in 133 patients with sepsis and 12 healthy volunteers. Among the 10 upregulated and
10 downregulated genes, 3 upregulated and 4 downregulated genes showed consistent
results with bioinformatics analysis. The three upregulated genes, S100A8, S100A9, and
CR1, showed significantly higher expression levels in patients with sepsis than in healthy
volunteers (p < 0.001 for S100A8 and S100A9, and p = 0.005 for CR1), whereas the four
downregulated genes, CD79A, HLA-DQB2, PLD4, and CCR7, showed significantly lower
expression levels in patients with sepsis than in healthy volunteers (p < 0.001 for all
four genes) (Table 3).

Table 3. Comparisons of the expression levels of differentially expressed genes between patients with
sepsis and healthy volunteers, and between patients who died and survived.

Patients with Sepsis vs. Healthy Volunteers *

Patients with Sepsis Healthy Volunteers p-Value

Upregulated genes S100A8 19.8 (11.6–24.2) 7.6 (7.1–8.2) <0.001
S100A9 7.6 (3.8–10.3) 3.8 (2.6–4.2) <0.001

CR1 5.5 (2.5–8.8) 2.7 (2.3–2.8) 0.005
Downregulated genes CD79A 0.3 (0.2–0.4) 0.5 (0.5–0.6) <0.001

HLA-DQB2 0.2 (0.2–0.2) 0.3 (0.3–0.4) <0.001
PLD4 0.5 (0.2–0.7) 0.9 (0.9–1.0) <0.001
CCR7 0.3 (0.1–0.4) 0.5 (0.5–0.6) <0.001

The Dead vs. Surviving among Patients with Sepsis *

Patients (Dead) Patients (Surviving) p-Value

Upregulated genes S100A8 25.9 (24.1–27.8) 17.1 (11.4–21.2) <0.001
S100A9 10.7 (9.7–11.8) 6.3 (3.2–8.5) <0.001

CR1 10.3 (9.3–11.9) 4.0 (2.0–6.6) <0.001
Downregulated genes CD79A 0.5 (0.4–0.6) 0.2 (0.1–0.3) <0.001

HLA-DQB2 0.3 (0.2–0.3) 0.2 (0.1–0.2) <0.001
PLD4 0.7 (0.6–0.8) 0.4 (0.2–0.6) <0.001
CCR7 0.4 (0.4–0.5) 0.2 (0.1–0.3) <0.001

Data are presented as median (interquartile range). * Values denote fold changes of genes.

A receiver operating characteristic (ROC) curve analysis was then conducted to deter-
mine the accuracy of these seven genes in diagnosing sepsis: S100A8 showed very high
accuracy (i.e., area under the curve (AUC): 0.931, 95% confidence interval (CI): 0.880–0.982),
while both S100A9 (AUC: 0.791, 95% CI: 0.711–0.871) and CR1 (AUC: 0.747, 95% CI:
0.647–0.820) showed fair accuracy. In contrast to the three upregulated genes, all four
downregulated genes failed to effectively discriminate between patients with sepsis and
healthy volunteers (Table 4).

Further analyses were then performed to compare gene expression in patients with
sepsis who died and survived among the 133 with sepsis. All three upregulated genes
(S100A8, S100A9, and CR1) and all four downregulated genes (CD79A, HLA-DQB2, PLD4,
and CCR7) showed significantly higher expression levels in the dead than in the survivors
among patients with sepsis (p < 0.001 for all) (Table 3). The ROC curve analysis was then
used to assess the accuracy of the seven genes in predicting in-hospital mortality among
patients with sepsis. All upregulated and downregulated genes demonstrated excellent
accuracy, with CR1 showing the highest accuracy (AUC: 0.966, 95% CI: 0.939–0.993), fol-
lowed by CD79A (AUC: 0.961, 95% CI: 0.930–0.992) and HLA-DQB2 (AUC: 0.936, 95% CI:
0.895–0.978) (Table 4).
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Table 4. Receiver operating characteristic curve analysis and suggested optimal cut-off values of
seven mRNAs in diagnosing sepsis and predicting in-hospital mortality among patients with sepsis.

mRNAs
Sepsis Diagnosis

AUC SE 95% CI Optimal
Cut-Off Sensitivity Specificity

S100A8 0.931 0.026 0.880–0.982 ≥9.0 94.0% 83.3%
S100A9 0.791 0.041 0.711–0.871 ≥5.0 69.2% 100%

CR1 0.747 0.037 0.674–0.820 ≥3.0 72.9% 100%
CD79A 0.113 0.028 0.059–0.168 NA NA NA

HLA-DQB2 0.003 0.003 0–0.009 NA NA NA
PLD4 0.013 0.013 0–0.038 NA NA NA
CCR7 0.016 0.010 0–0.036 NA NA NA

Mortality Prediction in Sepsis

AUC SE 95% CI Optimal
Cut-Off Sensitivity Specificity

S100A8 0.919 0.026 0.868–0.970 ≥23.6 84.9% 88.0%
S100A9 0.863 0.033 0.797–0.928 ≥9.6 78.8% 85.0%

CR1 0.966 0.014 0.939–0.993 ≥9.0 84.9% 95.0%
CD79A 0.961 0.016 0.930–0.992 ≥0.42 93.9% 92.0%

HLA-DQB2 0.936 0.021 0.895–0.978 ≥0.23 84.9% 88.0%
PLD4 0.918 0.026 0.866–0.969 ≥0.64 84.9% 88.0%
CCR7 0.918 0.026 0.866–0.969 ≥0.39 78.8% 90.0%

Abbreviations: AUC, area under curve; SE, standard error; CI, confidence interval; NA, not applicable.

3. Discussion

In the present study, bioinformatics analysis revealed that immune-related pathways
were strongly enriched in patients with sepsis relative to healthy volunteers. In addition, we
identified three key genes that were upregulated in patients with sepsis (S100A8, S100A9,
and CR1) as well as four key genes that were downregulated (CD79A, HLA-DQB2, PLD4,
and CCR7). Furthermore, validation of these findings by molecular experiments and clinical
outcomes determined that the key upregulated genes showed excellent to fair accuracy
for both diagnosing sepsis and predicting in-hospital mortality of patients with sepsis. In
contrast, the key downregulated genes showed excellent accuracy in predicting in-hospital
mortality of patients with sepsis but failed to effectively diagnose sepsis.

Immune-related pathways were the most highly enriched biological pathways in
patients with sepsis relative to healthy volunteers; this finding is consistent with pre-
vious bioinformatics studies, which also revealed DEGs were significantly enriched in
pathways related to neutrophil activation, the TNF signaling pathway, and cytokine
secretion [11,13–16,18]. These results suggest that the pathophysiology of sepsis is driven
by “an aberrant or dysregulated host response to infection”, which is also reflected in the
current definition of sepsis [1]. Furthermore, a recent RNA sequencing study provided
more insights into the pathophysiology of sepsis. The study compared RNA sequencing
results between 18 immunocompromised patients with sepsis and 18 Sequential Organ
Failure Assessment score-matched immunocompetent controls, and it demonstrated that
patients with sepsis were more likely to show compromised T cell function, decreased T
cell diversity, and altered metabolic signaling than controls [19]. In this way, bioinformatics
studies will increasingly contribute to unveiling the pathophysiology of sepsis.

Notably, the key genes upregulated during sepsis are responsible for regulating cell
cycle progression and differentiation (i.e., S100A8 and S100A9) and immune responses
(i.e., ANXA1, APOBEC3A, LILRA5, CR1, and CD55) [20]. In agreement with our findings,
one Chinese prospective cohort study also performed a comprehensive transcriptome
profile analysis and qPCR validation, and suggested S100A8, S100A9, and ANXA3 as
key genes differentially expressed between sepsis patients and healthy controls [16]. Po-
tential underlying mechanisms of upregulated S100A8 and S100A9 may also include
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altering MyD88-dependent gene programs, which consequently prevent hyperinflamma-
tory responses without impairing pathogen defense [21], and mediating endotoxin-induced
cardiomyocyte dysfunction [16,22]. Our qPCR results and ROC curve analyses confirmed
the accuracy of S100A8, S100A9, and CR1 in diagnosing sepsis as well as in predicting
in-hospital mortality among patients with sepsis. Thus, our results suggest that the expres-
sion levels of the key upregulated genes identified here may serve as potential biomarkers
of sepsis.

In this study, the key genes downregulated during sepsis also encoded proteins respon-
sible for the immune response, including the expression of antigen-presenting cells, the
regulation of cytokine production, and the activation of B and T lymphocytes (i.e., CD79A,
HLA-DQB2, PLD4, and CCR7) [20]. This is in line with prior studies showing that genes
involving Jak-STAT signaling, T cell receptor signaling, and natural killer cell-mediated
pathways were downregulated [23–25]. The results showed that genes participating in the
immune response have mixed differential expression patterns of both up- and downregu-
lation. Considering sepsis has been found to manifest a balance between competing pro-
and anti-inflammatory pathways [26], the downregulation of immune response genes in
patients with sepsis implies the homeostatic regulation of immunity during sepsis. Thus,
the failed homeostatic regulation of immunity may have consequently resulted in the de-
velopment and progression of sepsis. Interestingly, the key downregulated genes revealed
an excellent accuracy in predicting in-hospital mortality of patients with sepsis but failed
to diagnose sepsis in the ROC curve analyses. Taken together, key downregulated genes
helped us understand more about sepsis pathophysiology; however, they may not be useful
as sepsis biomarkers compared with key upregulated genes.

This study’s most important strength is the validation of key DEGs between patients
with sepsis and healthy volunteers via molecular experiments and clinical information
from a prospective cohort. These validation methods can elucidate which genes may act as
biomarkers of the diagnosis and mortality prediction of sepsis. Nonetheless, two limitations
to this study should also be acknowledged. First, the study population was relatively
small; thus, future bioinformatics studies, including a larger sample size, are necessary to
confirm our findings. Second, this study was conducted in Korea, which might limit the
generalizability of our results to other countries or ethnic groups.

4. Materials and Methods
4.1. Study Population

This study included patients with sepsis from the Samsung Medical Center Registry of
Critical Illness (SMC-RoCI), a prospective observational study conducted at the Samsung
Medical Center (i.e., a 1989-bed, university-affiliated, tertiary referral hospital in Seoul,
Republic of Korea) between October 2015 and January 2020 as previously described [27].
Sepsis was defined according to the third edition of the International Consensus Definitions
for Sepsis and Septic Shock (Sepsis-3) [1]. Consequently, patients enrolled before the release
of this new definition were reclassified according to the Sepsis-3 scheme.

In addition to patients with sepsis, we used a control consisting of 12 healthy vol-
unteers (≥19 years of age) who donated blood specimens for research purposes. Written
informed consent was obtained from all participants or their legally authorized representa-
tives before enrollment. This study was conducted according to the Declaration of Helsinki,
and all experimental procedures were approved by the institutional review board of the
Samsung Medical Center (Application No. 2013-12-033).

4.2. Sample Collection

Blood samples consisted of 19 mL of whole blood collected into ethylenediaminete-
traacetic acid tubes within 48 h of enrollment in the SMC-ROCI. Samples were centrifuged
at 480× g (Eppendorf Centrifuge 5810 No. 0012529-rotor A-4-81) for 10 min at 4 ◦C within
4 h of collection. Several plasma aliquots from each study participant were then isolated
and stored at −80 ◦C for further analysis.
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4.3. Total RNA Isolation and Quality Analysis

For RNA isolation, whole blood (2 mL) was also collected in PAXgene tubes, using
BD PAXgene blood RNA tubes (BD, cat. no. 762165). Total RNA was isolated from
whole blood using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA) following the
manufacturer’s protocol [28]. RNA quantity and purity were measured using a NanoDrop
2000 (Thermo Fisher Scientific, Wilmington, DE, USA). RNA quality, yield, and distribution
were determined using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA) [29]. Blood samples (5 mL) were also collected from healthy volunteers; these
samples were also prepared using the method described above.

4.4. Library Preparation and Sequencing

Libraries were prepared from total RNA using a NEBNext Ultra II Directional RNA-
Seq Kit (New England BioLabs, UK). Messenger RNA (mRNA) was isolated using a Poly(A)
RNA Selection Kit (Lexogen, Inc., Vienna, Austria). Isolated mRNA was then used for
cDNA synthesis and shearing by following the manufacturer’s instructions. Indexing was
performed using Illumina indices 1–12. Enrichment was performed by polymerase chain re-
action (PCR). Subsequently, libraries were checked using an Agilent 2100 Bioanalyzer (DNA
High Sensitivity Kit) to evaluate the mean fragment size. Quantification was performed
using a library quantification kit on a StepOne Real-Time PCR System (Applied Biosystems
Life Technologies, Carlsbad, CA, USA). High-throughput sequencing was performed as
paired-end 100 bp sequencing on a NovaSeq 6000 sequencing platform (Illumina, Inc.,
San Diego, CA, USA) [29,30].

4.5. Data Analysis

Quality control of the raw sequencing data was performed using FastQC [31]. Adapter
sequences and low-quality reads (<Q20) were removed using the fastx_clipper function
implemented in the FASTX_Toolkit and by BBMap [32]. Trimmed reads were then mapped
to the reference genome using TopHat [33]. Gene expression levels were estimated as
fragments per kilobase of transcript per million (FPKM) mapped reads values as determined
by Cufflinks [34]. All FPKM values were normalized based on the quantile normalization
method implemented by the EdgeR package for R [35].

4.6. Identification of DEGs

GEO2R was used to screen for DEGs between the sepsis and control groups. GEO2R
is an R-based interactive web tool that helps to identify and visualize differential gene
expression [36]. PCA of the different groups’ samples was performed on the gene expression
matrix. We set the threshold of differential expression to the default standard (i.e., |log2
(fold change [FC])| > 1 and adjusted p < 0.05) to identify significant DEGs between the
two groups. Thus, significantly upregulated DEGs showed log2 FC > 1, and significantly
downregulated DEGs showed log2 FC < 1 [37]. Significance was defined as an adjusted
p value < 0.05 to control for type I errors in multiple tests.

4.7. Functional and Pathway Enrichment Analyses

To further recognize the underlying biological functions of the DEGs identified in
the previous step, we performed GO functional analysis to annotate all DEGs according
to the three main GO categories: molecular function, cellular component, and biological
process [38]. Furthermore, to further elucidate the DEG pathways, we performed a Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis [39]. For GO
functional annotation and KEGG pathway enrichment analyses, we used the WEB-based
Gene SeT AnaLysis Toolkit (WebGestalt), the web-based Database for Annotation, Visual-
ization, and Integrated Discovery (DAVID) tool version 6.8 [37,40], and Metascape [41].
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4.8. Protein–Protein Interaction Network Analysis

Because proteins function in a coordinated manner within a complicated and dynamic
network, we constructed a PPI network of the target genes using the Search Tool for
the Retrieval of Interacting Genes (STRING) database, version 11.0 [42]. In addition, the
Cytoscape plug-in Network Analyzer was also used for further analyses. Furthermore,
the topological properties of the PPI network, including node degree, were calculated by
searching for hub genes using the PPI network [43]. MCODE analysis implemented in
Cytoscape was then performed to screen for significant modules of the PPI network using the
following cut-off parameters: node score cut-off = 0.2, K-core = 2, and degree cut-off = 2.

4.9. Quantitative Real-Time PCR

To evaluate the expression levels of key genes, we performed qPCR analyses in
duplicate. The reaction conditions were as follows: an initial step of 50 ◦C for 2 min,
denaturing at 95 ◦C for 5 min, followed by 40 cycles of 95 ◦C for 30 s and 58.5 ◦C for 1 min.
qPCR was performed on an ABI ViiA 7 Real-Time PCR System (Applied Biosystems) and
was followed by a melting curve analysis. Glyceraldehyde-3-phosphate dehydrogenase
was selected as an internal control. The 2−∆∆CT algorithm (∆CT = Ct. target − Ct. reference)
was employed for downstream data analysis [44].

4.10. Statistical Analysis

Categorical variables were compared using the chi-square or Fisher’s exact tests. Con-
tinuous variables were compared using Mann–Whitney U tests. For clinical validation of
bioinformatics analysis results, an ROC curve was used to analyze the diagnostic accuracy
of mRNA expression for (1) discriminating between patients with sepsis and healthy vol-
unteers and (2) predicting in-hospital mortality among patients with sepsis. The sensitivity
and specificity were also calculated to suggest the optimal cut-off value of each gene. All
tests were two-tailed, and p < 0.05 was used as the threshold of statistical significance. Data
were analyzed using STATA version 16 (Stata Corp., College Station, TX, USA).

5. Conclusions

Bioinformatics analysis revealed that immune-related pathways were the most en-
riched in patients with sepsis relative to healthy volunteers. In addition, we identified
key genes that were upregulated in sepsis, namely, S100A8, S100A9, and CR1, as well as
those that were downregulated, namely, CD79A, HLA-DQB2, PLD4, and CCR7. The key
upregulated genes showed excellent to fair accuracy in diagnosing sepsis and predicting
in-hospital sepsis mortality; however, the key downregulated genes showed excellent
accuracy in predicting in-hospital sepsis mortality but failed to effectively diagnose sepsis.
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