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Abstract: Malignant tumors remain one of the main sources of morbidity and mortality around the
world. A chemotherapeutic approach to cancer treatment poses a multitude of challenges, primarily
due to the low selectivity and genotoxicity of the majority of chemotherapeutic drugs currently used in
the clinical practice, often leading to treatment-induced tumors formation. Highly selective antitumor
drugs can largely resolve this issue, but their high selectivity leads to significant drawbacks due to
the intrinsic tumor heterogeneity. In contrast, plant polyphenols can simultaneously affect many
processes that are involved in the acquiring and maintaining of hallmark properties of malignant
cells, and their toxic dose is typically much higher than the therapeutic one. In the present work
we describe the mechanisms of the action of polyphenols on cancer cells, including their effects on
genetic and epigenetic instability, tumor-promoting inflammation, and altered microbiota.

Keywords: polyphenols; cancer; chemoprevention; mutation; antioxidant; epigenetics; inflamma-
tion; microbiota

1. Introduction

Malignant tumors are among the longest-known diseases in the mankind history [1].
The most significant progress in cancer research was made during the last century and a
half, and today, most of the cancers are considered as a set of acquired genetic disorders
that lead to uncontrolled proliferation of the affected cells [2,3]. Despite the significant
progress that was achieved in this field, malignant tumors continue to be one of the
most important sources of morbidity and mortality throughout the world [4]. One of
the most important causes of this situation is significant inter- and intra-tumor genetic
heterogeneity. This heterogeneity arises from genetic differences between individuals and
from different trajectories of acquiring malignant properties. This variety was described
as the hallmarks of cancer; the list of these hallmark properties initially consisted of 6
positions5. Later decades confirmed the applicability of this concept [5,6], and the number of
the hallmark properties and cancer-enabling characteristics grew up to 125. Cancer-enabling
characteristics, such as genetic and epigenetic instability, chronic inflammation, and altered
microbiota, do not comprise malignant phenotype per se, but they may accompany the
entire process of tumorigenesis, facilitating malignant transformation.

Acquiring all of these properties requires many large-scale changes in cellular physiol-
ogy and genetics, which, with the exception of rare cases of chromotrypsis [7], cannot be
made as a result of a single mutational event. Instead, malignant transformation happens
as a result of a gradual accumulation of mutations during several years, or even decades [8].
This process includes three stages, called initiation, promotion, and progression [9]; each
stage corresponds to a different type of lesion formed by affected cells: microscopic tu-
mor at the stage of initiation, benign tumor with well-defined boundaries at the stage
of promotion, and an invasive malignant tumor at the stage of progression [10]. At the
stage of initiation, the first genetic alteration is acquired by the affected cells, providing
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them with an initial proliferative advantage. The stage of promotion is characterized by
preneoplastic cell proliferation and by accumulation of additional genetic alterations. The
stage of progression concludes the formation of a malignant tumor; it is characterized by
constant and aggressive cell proliferation, invasiveness, and the ability to metastasize. The
exact trajectory of acquisition of all the hallmark properties may not be identical for all cells
within the neoplastic lesion, resulting in an intra-tumor genetic heterogeneity. Formation
of metastases also contributes to the genetic heterogeneity of malignant tumors in a single
organism, as metastases usually form at the distant sites from the primary tumors, where
they are exposed to new factors that could be absent in their initial microenvironment [11].
This sequence of events only approximately describes the course of malignant transfor-
mation. Thus, in some cases, the metastases start to form long before the malignization
process is concluded [12]. A single mutation is not always responsible for the emergence
of a single hallmark property: it was established that as few as three mutations were
sufficient for malignant transformation, at least for certain tumors [9,13]. Currently, it
is considered that the number of tumor-promoting mutations in tumor cells at the early
stages of carcinogenesis is relatively small; but as the disease progresses, the number grows
accordingly. As the progressive deregulation encompasses more genes and processes in
the cell, affected signaling pathways that are involved in supporting the cancer hallmark
properties gradually become functionally redundant.

Processes responsible for the development of a malignant tumor are controlled by a
small set of mutations for only a limited period of time. During the rest of the malignant
transformation, its progression is driven by a broad spectrum of factors that simultaneously
affect a multitude of cellular components and processes. At the same time, a number
of anticancer drugs that are currently used and developed are characterized by a high
specificity to their targets, and, although these drugs are able to slow tumor growth or even
cause a significant reduction in its volume, their efficiency decreases drastically during
long-term use. Such a decrease is caused by intra-tumor genetic heterogeneity, as the small
number of malignant cells that are insensitive to the selected drug already exist within
the tumor at the beginning of the therapy. Even a combination of several highly specific
anticancer drugs cannot always prevent the emergence of this effect. Development of
anticancer drugs with multiple molecular targets was proposed in order to overcome this
drawback [14,15]. Another group of anticancer drugs that are currently in use in clinical
practice consists of substances capable of damaging cellular DNA or inhibiting cell division.
While their activity is not limited to a certain molecular target, they lack the selectivity for
cancer cells, and the alterations of the genome of normal cells caused by these substances
often lead to the formation of therapy-induced tumors.

One approach to reduce the cancer-caused mortality is to prevent the development of
a malignancy rather than trying to cure it. It is established that around 45% of cancer cases
are preventable [16]. The most straightforward approach to cancer prevention is avoidance
of exposure to the environmental carcinogenic factors. This approach, in different forms, is
applied in many countries around the world. However, not every environmental factor
that is potentially carcinogenic, can be effectively avoided, either because of its ubiquitous
nature, or because this particular factor is not yet identified as carcinogenic. Moreover, only
a limited fraction of mutations that drive the process of carcinogenesis can be attributed
to the environmental factors, with an average of around 29% of driver mutations that are
caused by the external sources [17].

Cell-intrinsic processes might also be the cause of cellular DNA damage. Aside
from mistakes made by replicative DNA polymerase during each S-period, there are also
a multitude of sources of highly reactive compounds within the cells, such as reactive
oxygen species [18]. To effectively mitigate DNA-damaging activity of both intrinsic
and environmental factors, preventive measures should last for a long period of time,
as malignant transformation and formation of metastases take years or even decades to
conclude. The concept of cancer chemoprevention implies that such mitigation can be
achieved either by neutralizing the DNA-damaging factors with chemopreventive drugs,
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thus abrogating initiation of tumorigenesis, or by preventing accumulation of the changes in
cellular physiology, resulting in deceleration or even halting the promotion and progression
stages of malignant transformation [19]. Chemopreventive compounds that abrogate the
initiation step of malignant transformation are referred to as blockers. Agents that impede
the transition of a pre-neoplastic lesion through the promotion and progression stages are
known as suppressors. Chemopreventive compounds differ not only by their mechanisms
of action, but also by the stage of the malignant transformation at which they act. Based
on this criterion, these agents are classified into primary, secondary, and tertiary [20].
Primary chemopreventors suppress the formation of tumors, secondary chemopreventors
are aimed at suppressing the transition of a benign pre-neoplastic lesion into malignant one,
while tertiary chemopreventors reduce the risk of tumor recurrence after the successful
therapeutic intervention. Thus, a potential chemopreventive drug should be suited for a
long-term application, be well tolerated by the human organism, and should have a high
toxic-to-therapeutic dose ratio.

When discussing anticancer chemotherapeutic and chemopreventive drugs, their cost
is also a concern. Indeed, the annual cost of a chemotherapeutic anticancer drug may be as
high as USD 100,000 annually [21]. For chemopreventive drugs, which are typically used
for a long period of time, the problem of cost efficiency is of even higher relevance.

In summary, duration and mechanism of malignant transformation dictate a long list
of requirements for a potential anticancer or chemopreventive drug: it should be highly
specific towards tumor cells while having low or no toxicity, a broad spectrum of intra-
cellular targets in a tumor, and high cost efficiency. At the first glance, these requirements
cannot be achieved simultaneously. However, during the past decade, a dependence of
cancer morbidity on diet was discovered: for individuals whose diet included a large
amount of plant-based food, the incidence of cancer was lowered. Subsequent studies
established that the main factor responsible for this correlation was the enrichment of
dietary substances with plant polyphenols [22]. These compounds belong to the vast group
of chemicals known as plant secondary metabolites, and are characterized by the presence
of one or more aromatic rings and at least one hydroxyl group. Following the initial
discovery of anticancer activity of plant polyphenols, it was found out that these substances
can exert this activity by affecting multiple signaling pathways simultaneously. Their
toxic concentration was also much higher than the therapeutic one. This combination of
properties drew significant attention towards the possible use of plant phenolic compounds
as anticancer and chemopreventive drugs. Here, we discuss the effects of polyphenols on
cancer-enabling factors.

2. Structure and Properties of Plant Polyphenols

One of the most prominent features of plant biochemistry, which is almost completely
absent in the animal kingdom, is the ability of plants to synthesize a broad spectrum of
small organic molecules of multiple different structures, which are collectively known
as plant secondary metabolites [23]. More than 200,000 different members of this group
are currently known [24]. Secondary metabolites carry out a variety of functions, which
include protection from ultraviolet radiation, regulation of physiological processes, resis-
tance to physical stress, and interaction with different organisms, such as herbivorous
animals or parasitic fungi [25]. Plant polyphenols are one of the largest groups of sec-
ondary metabolites—it includes around 8000 compounds with different structures [26].
Polyphenols may vary significantly by their chemical structure and molecular weight, but
they always include at least one aromatic ring and hydroxyl group [27]. Several different
variants of classification of the phenolic compounds were proposed. The most widely
accepted of these variants divides plant phenolic compounds into two groups: flavonoids
and non-flavonoids [28] (Figure 1). Flavonoids are derived from aromatic amino acids,
and share a common tricyclic C6-C3-C6 structure [29]. Flavonoids are further divided
into flavonols, flavones, isoflavones, flavanones, flavanols, anthocyanins, and anthocyani-
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dins [30]. The group of non-flavonoid polyphenols includes phenolic acids, xanthones,
stilbenes, tannins, and lignans [31] (Figure 1).
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Polyphenolic compounds can be found in large quantities in fruits, seeds, and other
edible parts of plants [32,33]. Fruits, berries, legumes, and other plant-derived foods
and beverages [34], such as tea [35], wine [36], olive oil [37], or seasonings [38], are rich
with polyphenols. Medicinal plants are another source of polyphenolic compounds [39].
The amount of polyphenols in a diet may differ drastically for different regions of the
planet [40,41]. Epidemiological studies of the influence of a polyphenol-rich diet on human
health suggest that the regular consumption of these compounds is associated with a lower
incidence of a multitude of serious chronic diseases, such as metabolic syndrome [42], type
II diabetes mellitus [43], neurodegenerative amyloidosis [44], cardiovascular diseases [45],
and cancer [46].

As malignant transformation includes several stages and requires a long period of
time to be completed [8], decrease in the incidence of cancer observed for individuals
on a polyphenol-rich diet may be caused by the anticancer or chemopreventive proper-
ties of these compounds. Further experiments with tumor cell cultures and models, as
well as clinical studies, established that polyphenolic compounds possess both of these
activities [47,48]. For example, the treatment of different tumor cell cultures with plant
phenolic compounds revealed the antiproliferative, antiangiogenic, cell cycle-arresting, and
proapoptotic activity of these substances [49]. In particular, proapoptotic and antiprolifera-
tive activity of polyphenols was demonstrated for the MCF-7 breast cancer cell line [50,51],
as well as for several prostate cancer cell lines [52]. Antiangiogenic activity of plant phe-
nolics was demonstrated for murine [53] and human [54] healthy and tumor cell lines
treated with these compounds. Anticancer and chemopreventive activity of polyphenols
was confirmed by the results of in vivo experiments involving animal-induced tumorigen-
esis and tumor xenografts [55,56]. Treatment with polyphenols lowered the incidence of
neoplastic lesions after initiation of tumorigenesis by N-nitrosobis(2-oxopropyl)amine [57]
and suppressed the development of tumors stimulated by 1,2-dimethylhydrazine [58] and
azoxymethane [59]. A similar treatment of the animals carrying tumor xenografts led
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to a significant reduction in tumor volumes and tumor growth rates [60,61]. Finally, the
effectiveness of plant phenolic compounds as potential anticancer and chemopreventive
drugs was confirmed by several clinical studies [62,63]. Phenolic compounds have an-
titumor activities not only alone [64,65], but also in combinations with other anticancer
drugs [66,67]. At the same time, there are clinical studies in which plant polyphenols failed
to demonstrate any anticancer or chemopreventive activity [68,69]. Some studies suggest
that polyphenols might even facilitate tumorigenesis [70].

Confirmation of the anticancer and chemopreventive properties of polyphenols brought
forth a question about the exact molecular mechanisms that underlie these activities. Unlike
many other clinically used plant secondary metabolites that can interact with a limited
number of molecular targets, or even with only a single one, plant phenolic compounds are
able to interact with a broad spectrum of biological macromolecules of several different
classes [71]. It was demonstrated that the anticancer activity of polyphenols might be deter-
mined by their specific interaction with signaling [72], catalytic [73], regulatory [74], and
receptor [75,76] proteins, as well as by their non-specific chaperone activity [77]. The ability
of phenolic compounds to specifically accumulate in cellular membrane lipid rafts, thus
causing changes in cell surface receptor protein expression, were also demonstrated [78].
Nucleic acids are yet another molecular target of polyphenols. Polyphenols are not only able
to bind to dsDNA, acting as intercalators [79], or major and minor groove ligands [80], but
they also may interact with nucleic acid having secondary structures, such as tRNAs [81]
or guanine quadruplexes [82].

Evidence of the biological activity of plant phenolic compounds accumulated to date,
combined with data regarding their interaction with cellular targets, makes it possible to
consider these substances as a basis for the development of perspective anticancer and
chemopreventive drugs. Nevertheless, mostly non-specific binding of polyphenols to
their molecular targets and a broad range of these targets make it necessary to extensively
study the influence of polyphenols on regulatory pathways and processes involved in
tumorigenesis and the development of cancer-enabling characteristics.

3. Genetic Instability

Human cells are exposed to a wide variety of DNA-damaging substances, both ex-
ogenous and endogenous, which include polycyclic aromatic hydrocarbons [83], poly-
cyclic aromatic amines [84], and a number of other genotoxic agents of various chemical
natures [85,86]. Some of them are carcinogens per se, while others are procarcinogens,
and may exert carcinogenic properties only after they underwent metabolic activation.
Metabolism of procarcinogens, as well as the other xenobiotics, consists of three sequen-
tial stages: metabolic activation, conjugation, and excretion [87]. Aromatic hydrocarbon
receptor AhR plays a key role in the activation of the xenobiotic metabolism by regulating
expression of metabolic activation and conjugation enzymes [88,89] (Figure 2). Binding
AhR to its ligand causes a conformational change, thus leading to exposure of a nuclear
translocation signal, which is covered by molecules of chaperones, such as p23 or Hsp90,
while AhR is in an inactive state. The nuclear translocation signal mediates transfer of the
AhR-chaperone complex to the nucleus, where chaperones dissociate from AhR, and the
receptor, in turn, forms a heterodimer with Arnt. In this heterodimeric state, AhR is able to
bind xenobiotic response elements (XREs) on cell DNA, thus activating the expression of
enzymes involved in xenobiotic metabolism. This receptor is also involved in regulating
inflammatory response, reaction to hypoxia, and cell cycle progression [90]. Organic com-
pounds with several aromatic rings, including plant polyphenols, are the main ligands of
AhR. Direct interaction between AhR and polyphenols was demonstrated for many com-
pounds of this group [91]. The binding of polyphenols to AhR can modulate activity of this
receptor by several different mechanisms (Figure 2); the most extensively studied among
these is direct competitive inhibition. It was demonstrated that a number of polypheno-
lic compounds, namely curcumin [92], quercitin [93], and resveratrol [94], together with
flavone, apigenin, luteolin, and galangin [95], may prevent AhR activation by polycyclic
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organic ligands in cellular extracts. Effective inhibitory concentrations of polyphenols in
these experiments ranged from 0.019 to 50 µM. Kaempferol, luteolin, apigenin, and fisetin
were able to prevent dioxin-mediated activation of AhR-regulated CYP1A1 gene in Caco2
human colon carcinoma cell culture. At the same time, treatment of the same cell culture
with quercitin, robinetin, morin, and taxifolin alone, or in combination with dioxin, did
not cause any reduction in AhR-regulated genes expression. Moreover, expression of these
genes was significantly increased, suggesting that these phenolic compounds act as AhR
agonists [96]. It was also demonstrated that quercitin, naringin, hesperidin, and hesperitin
were able to enhance luciferase gene expression, which was put under AhR transcriptional
control in genetically engineered reporter H1L6.1c2 cell culture [97]. Authors noted that
only polyphenols with five hydroxyl residues in their structure were able to act as AhR
agonists, whereas phenolic compounds with a different number of hydroxyls acted as
antagonists or showed no activity towards AhR. Analysis of the interactions between plant
phenolics and AhR made possible the development of molecular models that can predict
in vitro agonistic activity of certain types of polyphenols towards this receptor protein [98].
Nevertheless, the principles that govern type and intensity of AhR modulation by plant
phenolic molecules are yet to be fully understood [99]. Our understanding of these princi-
ples is limited by the prominent structural diversity of the polyphenolic substances and
by controversial experimental results: depending on experimental conditions, the same
phenolic compound demonstrated opposite effects towards AhR.
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Mechanisms of modulation of AhR activity by polyphenols are not limited to direct
competitive inhibition or agonism (Figure 2). Phenolic compounds can also affect a number
of stages of the AhR signal transduction pathway. It was demonstrated that galangin,
luteolin, apigenin, flavone, kaempferol [100], curcumin [101], and resveratrol [94] in con-
centrations around 5–50 µM were able to prevent the nuclear translocation of AhR in
MCF-7 and Hepa-1c1c7 cell cultures. It was also shown that treatment of Hepa-1c1c7 cells
with polyphenols can prevent formation of an active AhR-Arnt heterodimer: this ability
was also demonstrated for galangin [102], naringenin, kaempferol, apigenin [100], and
epigallocatechin gallate (EGCG) [100,103]. These compounds block AhR-Arnt heterodimer
by different mechanisms: EGCG and galangin prevent association of AhR and Arnt by
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blocking the dissociation of chaperones from AhR. Apigenin and kaempferol stabilize
the ternary complex between AhR, Arnt, and chaperones, while naringenin, kaempferol,
apigenin, and EGCG were able to prevent Arnt phosphorylation, which is necessary for
dimerization. The binding of polyphenols to active AhR-Arnt dimer may also inhibit
activation of AhR-regulated genes by preventing binding of the dimer to the XRE DNA
elements: the ability of preventing binding of the dimer to the XREs in tumor cell cultures
was demonstrated for resveratrol [104], curcumin [101], quercitin, kaempferol [93], and
galangin [102]. Plant phenolic compounds may also prevent activation of AhR-responsible
genes by inhibiting recruitment of coregulators, such as the ERα estrogen receptor. This
ability was demonstrated for resveratrol [94], genistein [105], and kaempferol [106], but
the extent of the effect of this inhibition on the efficiency of the activation of transcrip-
tion is yet to be determined. It is also noteworthy that in some cases, treatment with
polyphenols instead of inhibition caused an enhancement of certain stages of the AhR
signal transduction pathway: thus, treatment of Hepa-1c1c7 cells with curcumin facilitated
nuclear translocation of ligand-bound AhR [101]. At the same time, curcumin efficiently
inhibits subsequent stages of AhR activation, such as AhR-Arnt heterodimer formation.
The mechanisms of plant polyphenol action on the AhR signal transduction pathway are
summarized in Table 1.

Table 1. Mechanisms of action of plant polyphenols on the AhR signal transduction pathway.

Compound Structure Mechanism Reference

Curcumin Phenolic acid homodimer

Direct competitive inhibition of AhR in cell-free
extracts

[92]

Quercetin Flavonol [93]
Resveratrol Stilbenoid [94]

Flavone Flavone

[95]

Luteolin Flavone
Apigenin Flavone
Galangin Flavonol

Kaempferol Flavonol

Inhibition of AhR in Caco2 cell culture

[96]

Luteolin Flavone
Apigenin Flavone

Fisetin Flavonol

Quercetin Flavonol

Agonism of AhR in Caco2 cell cultureRobinetin Flavone
Taxifolin Flavonol

Morin Flavone

Quercetin Flavonol
Stimulation of AhR-regulated luciferase gene
expression in H1L6.1c2 reporter cell culture [97]

Naringin Glycosylated flavanone
Hesperidin Glycosylated flavanone
Hesperitin Flavanone

Galangin Flavonol

Prevention of nuclear translocation of AhR in
MCF-7 and Hepa-1c1c7 cell cultures

[100]

Apigenin Flavone
Luteolin Flavone
Flavone Flavone

Kaempferol Flavonol
Curcumin Phenolic acid homodimer [101]

Resveratrol Stilbenoid [94]

Naringenin Flavanone

Prevention of active AhR-Arnt heterodimer
formation in cell cultures

[100]Apigenin Flavone
Kaempferol Flavonol

Galangin Flavonol [102]
EGCG Flavanol and phenolic acid heterodimer [100,103]
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Table 1. Cont.

Compound Structure Mechanism Reference

Curcumin Phenolic acid homodimer

Prevention of XRE binding by AhR-Arnt dimer
in tumor cell cultures

[101]
Galangin Flavonol [102]

Resveratrol Stilbenoid [104]
Quercetin Flavonol

[93]Kaempferol Flavonol

Resveratrol Stilbenoid
Prevention of AhR-Arnt coactivator recruitment

[94]
Genistein Isoflavone [105]

Kaempferol Flavonol [106]

The most important proteins, the expression of which is regulated by the AhR sig-
naling pathway, are several proteins of the cytochrome P450 family. The human genome
contains more than 50 genes of these redox enzymes. These enzymes participate not only
in xenobiotic activation, but also in fatty acid and cholesterol biosynthesis, the metabolism
of steroid hormones and vitamins, and unsaturated fatty acid oxidation [107]. Reactions of
the metabolic activation of small organic molecules, which are responsible for procarcino-
gen activation, are catalyzed by cytochromes of subfamilies 1, 2, and 3; CYP1A1, A2 and
A6, CYP2A13, CYP2B6, CYP2C9, and CYP3A4 are the most important among them [108].
Plant polyphenols can modulate activity of proteins of this family not only by affecting
regulation of their expression, but also by interacting directly with the molecules. Using
a combination of spectroscopic methods and molecular modeling approaches it was es-
tablished that a large number of natural flavonoids is capable of binding to the active site
of cytochromesCYP1A1, 1A2, 1B1, 2C9 and 3A4 [109]. For the latter two isoforms it was
also found out that inhibition of their activity by flavonoid molecules is carried out by
both competitive and non-competitive mechanisms [110]. It is noteworthy that for some
flavonoids, such as amentoflavone, apigenin, and galangin, their half-maximal inhibitory
concentration measured during this experiment was significantly lower than their pre-
viously determined concentration in human plasma, which suggests that the inhibitory
activity of these polyphenols is physiologically relevant.

Plant polyphenols are not only able to prevent DNA damage, but also facilitate their
detection and repair. For example, treatment with natural phenolic compounds might
affect expression of the γH2AX histone variant that marks double-stranded DNA breaks in
interphase chromatin, thus leading either to repair of these breaks [111] or to sensitization
of tumors to DNA-damaging therapeutic agents [112]. Treatment with these compounds
might stimulate DNA repair activity in normal tissues and promote apoptosis in tumor
cells [113]. The latter type of activity suggests that natural phenolic compounds may
enhance the efficiency of DNA-damaging anticancer therapy. Recent experimental results
confirm the higher efficiency of this combined therapy [114].

Organic and inorganic free radicals are other important classes of DNA-damaging
substances [115,116]. These compounds are not only capable of damaging DNA molecules
by themselves, but they may also react with procarcinogens, thus activating them [117].
The main sources of free radicals in the cell are metabolic reactions and exposure to elec-
tromagnetic radiation. They may also form as by-products of the reactions catalyzed by
ions of transition metals, such as iron and copper [118]. Free radicals can also damage
cellular proteins, yielding them unable to carry out their functions [119]. As formation
of the free radicals is unavoidable, living organisms had to develop effective measures
to counteract their deleterious effects, such as redox enzymes and their cofactors, which
can react with free radicals to neutralize them [120]. Numerous hydroxyl groups and
certain other structural features determine the ability of plant polyphenols to react with free
radicals, thus effectively scavenging them [121,122]. There are four known types of these
reactions: three of them are based on proton and electron transfer from phenolic molecules
to free radicals by different mechanisms; the fourth type includes adducts formed after
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interaction between polyphenol and a free radical [123]. Catechins and their derivatives, as
well as plant extracts containing these substances, have the ability to effectively neutralize
organic radicals [124] and reactive oxygen and nitrogen species [124,125] in vitro. EGCG
has antioxidant activity in vivo, significantly reducing the effect of the induction of inor-
ganic radical formation by sodium fluoride [126]. Gallic acid was able to reduce the severity
of dimethylhydrazine-induced oxidative stress in rats, thus preventing induction of colon
carcinoma by this carcinogenic compound [127]. Quercitin has a similar chemopreventive
activity; it works by effectively mitigating the oxidative stress after induction of prostate car-
cinoma by high doses of testosterone in Sprague–Dawley rats [128]. Phenolic compounds
from an extract of green tea leaves were able to increase the antioxidant potential of human
plasma [129,130]. According to numerous clinical studies, consumption of anthocyanins
and anthocyanin-rich dietary substances led to a significant decrease in the concentration of
oxidative stress biomarkers, such as malonyldialdehyde and oxidized low-density lipopro-
teins [131]. Increase in the activity of gluthatione peroxidase and superoxide dismutase, as
well as a general increase in antioxidant capacity, was also observed. These effects were
more prominent for patients with diseases than for healthy volunteers.

Plant polyphenols can mitigate the oxidative stress not only by free radical scavenging,
but also by preventing their formation. It was established that phenolic compounds can
act as chelators of metal ions, thus decreasing the rate of free radical formation catalyzed
by these ions. This kind of activity was demonstrated for flavonoids [132] and for non-
flavonoid plant phenolic compounds, including phenolic acids, the structures of which
include only a single aromatic ring [133].

Despite the significant amount of evidence of the antioxidant activity of plant polyphe-
nols obtained during the experiments with cell-free extracts, cell cultures, and in vivo
studies, the influence of natural phenolic compounds on the cellular redox status turned
out to be more complex, and even prooxidant [134]. Polyphenols exerted their prooxidant
activity in high concentrations, under high pH values, or in the presence of ions of certain
transition metals [135]. Paradoxically, this pro-oxidant activity may also result in an in-
crease in cellular antioxidant defenses: under physiologically relevant concentrations of
polyphenols, the amount of reactive oxygen species that are formed by these reactions is not
sufficient to induce any significant DNA damage, but enough to elicit cellular mechanisms
of protection against the oxidative stress [136]. It is noteworthy that EGCG, previously
viewed as a potent antioxidant, demonstrated pro-oxidant activity in this research. It
was also established that certain cultivated cancer cells with metabolism and signaling
networks distorted by malignant transformation react to the treatment with polyphenols in
the opposite way as normal cells. Instead of lowering the severity of oxidative stress and
decreasing the concentration of free radicals, this treatment led to a decrease in proliferative
activity and to an induction of apoptosis, as the concentration of free radicals was increased
to cytotoxic values [135].

Antioxidant activity of plant phenolic compounds is not limited to direct radical scav-
enging. Polyphenols can also affect the redox status of the cell by attenuating metabolic
processes involved in the generation and neutralization of free radicals. Nrf2 is one of
the most important transcription factors responsible for activation of the expression of
oxidative stress response proteins. Oxidative stress induces dissociation of the Keap1-Nrf2
complex, preventing its Keap1 ubiquitination-induced proteasomal degradation, and thus
leading to an accumulation of active Nrf2 and to the activation of the transcription of
Nrf2-regulated genes [137]. It was established that quercitin may prevent ubiquitination of
Keap1, facilitating accumulation and activation of Nrf2 [138]. EGCG was able to enhance
Nrf2 activity in lung tissue in rats, abrogating fluoride-induced oxidative stress [126]. Re-
sults of molecular docking suggest that this effect could be determined by the interaction
between EGCG and Keap1, preventing this protein from binding to Nrf2 and mediating its
proteasome degradation. Similar results were obtained during treatment of L02 human
hepatocyte culture with gallic acid, where this phenolic compound mitigated tert-butyl
hydroperoxide-induced oxidative stress by preventing formation of the Nrf2-Keap1 com-
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plex [139]. Apigenin also has the ability to facilitate accumulation of Nrf2 in the cell, and to
prevent high-fructose diet-induced oxidative stress [140]. Molecular modeling of interac-
tions between apigenin and Keap1 suggest that these molecules may form a stable complex
that is unable to bind to Nrf2.

Plant polyphenols can also modulate the activity of other proteins involved in the
maintenance of the cellular redox status. Green tea polyphenols have an inhibitory activity
towards expression of NADPH oxidase subunits, thus attenuating production of reactive
oxygen species. The ability of EGCG and theaflavin-3,3′-digallate to inhibit lipopolysaccha-
ride (LPS)-induced induction of inducible nitric oxide synthase (iNOS) expression was also
established [141,142].

When considering the antioxidant activity of polyphenols for anticancer and chemo-
preventive applications, it should be kept in mind that reactive oxygen species are involved
in regulation of a number of cellular processes, and in turn, are subjected to strict regula-
tion [143]. There is also evidence that the mode of action of natural antioxidants in vivo
differs significantly from the mechanisms identified by in vitro experiments [144]. These
concerns raised doubts about the efficiency of high doses of natural antioxidants as anti-
cancer measures [145], especially in combination with the other therapeutic approaches,
whose mechanisms of action are based on induction of free radical formation in cancer
cells [146,147]. All these complications demand separation of the antitumor and chemopre-
ventive applications of polyphenolic antioxidants [148].

4. Epigenetic Reprogramming

DNA damage imposed by different factors affects the expression and functions of
cellular proteins in a straightforward manner—by changing DNA sequence and thus
affecting activity of the encoded proteins or misregulating their expression. However, the
activity of the regulatory elements of the cellular genome is regulated not only by DNA
sequence, but also by a number of non-genomic hereditable markers, commonly known
as epigenetic factors. These factors include methylation of DNA, methylation, acetylation,
and other post-translational modifications of histones, histone variants incorporated into
chromatin, and non-coding RNAs [149]. It was established that disorders of epigenetic
regulation may lead to development of one or more cancer hallmark properties, marking
epigenetic instability as a cancer-enabling characteristic [150,151]. For example, global
DNA hypomethylation found in many cancer cells enhances transcriptional activity in
a non-selective manner, whereas hypermethylation of regulatory sequences of tumor
suppressor genes may lead to activation of a number of genes and thus facilitate the
malignant transformation [152]. Disorders of epigenetic labeling of histone writers, readers,
or erasers lead to changes in interphase chromatin compaction and activity and affect gene
expression [153]. Chromatin structure and activity is also regulated by the inclusion of
different nucleosome core [154,155] and linker [156,157] histone variants. Aberrant activity
of microRNA may facilitate expression of pro-oncogenic signaling pathway proteins or
inhibit expression of tumor suppressor proteins at a translational level [158]. Finally,
guanine quadruplexes might represent yet another system of epigenetic regulation, as
suggested by the reverse correlation between the number of folded quadruplexes and the
degree of cellular differentiation [159].

Plant phenolic compounds affect a multitude of cellular processes involved in epi-
genetic regulation. EGCG might attenuate activity of DNMT DNA methyltransferases
by downregulating their expression [160], and by inhibiting their catalytic activity [161]
after binding directly to these proteins [162,163]. Attenuation of the activity of methyl-
transferases was detected in cultures of esophageal carcinoma (KYSE 150), colon carcinoma
(HT29), prostate adenocarcinoma (PC3), and breast cancer (MCF-7 andMDA-MB-231) cell
lines, as well as for tumor xenografts, and led to reactivation of tumor suppressor genes
silenced by hypermethylation. Curcumin was also able to rescue the expression of tumor
suppressor genes by reversing their hypermethylation. Treatment of cultures of lung (A549
and H460) [164] and breast (MCF-7) [165] cancer cells with this phenolic compound led
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to a decrease in DNMT3b and DNMT1 methyltransferase expression, respectively. It is
noteworthy that the inhibition of hypermethylation was detected at lower concentrations
of this polyphenol, starting from 10 µM [166]. Treatment with quercitin potentiated the in-
hibitory activity of curcumin towards DNA methyltransferases of PC3 and DU145 prostate
cancer cells: simultaneous treatment with both compounds inhibited the methyltrans-
ferase activity more efficiently than treatment with either substance separately [167]. Other
plant polyphenols may also affect the DNA methylation. It was found that resveratrol,
applied to MDA-MB-157 breast cancer cell culture in combination with pterostilbene, can
decrease the levels of methylation of certain regions of genome by inhibiting the recruiting
of DNA methyltransferases by STRT1 histone deacetylase [168]. Resveratrol was also able
to selectively reverse hypermethylation of regulatory regions of tumor suppressor genes
in MDA-MB-231 breast cancer cell culture [169]. Similar activity towards the RASSF-1α
tumor suppressor gene was registered during clinical studies [170]. Remarkably, without
pterostilbene, resveratrol has antiproliferative activity towards the MCF10CA1a breast
cancer cell culture by the opposite mechanism: treatment with this phenolic compound led
to recruitment of DNMT3b methyltransferase for the regulatory sequences of oncogenes,
thus attenuating their expression by hypermethylation. Genistein also exerted suppression
of DNA methyltransferase activity towards renal (A498, ACHN) [171], prostate (LNCaP,
PC3) [172], and breast (MDA-MB-468, MCF-7) cancer cell lines; for the latter cultures, the
inhibitory concentration of this phenolic compound was as low as 3.125 µM [173].

Plant polyphenols can also modulate activity of proteins involved in the epigenetic
modification of histones in tumor cells. It was established that treatment of LNCaP [174]
prostate and RKO, HCT-116 иHT-29 [175] colon cancer cell cultures with EGCG inhibited
expression of HDAC 1-3 histone deacetylases. Treatment of HeLa cell culture with this
polyphenol did not inhibit histone deacetylases, but instead resulted in the inhibition of his-
tone acetyltransferase activity [176]. Curcumin-inhibited histone deacetylases, as treatment
of Raji lymphoblast and several medulloblastoma cell cultures with this polyphenol, sup-
pressed their proliferation by downregulating expression of histone deacetylases [177,178].
Quercitin also exerted modulatory activity towards both histone acetyltransferases and
deacetylases, as treatment of HL-60 human leukemia cell culture led to inhibition of deacety-
lases and to an increase in acetyltransferase activity [179]. At the same time, treatment of
MDA-MB-231 and MCF-7 human breast cancer cell cultures resulted in the inhibition of
activity of p300 acetyltransferase [180]. Resveratrol can enhance activity of SIRT1 histone
deacetylase by binding to its active site, thus leading to the inhibition of the proliferation
of breast cancer cells derived from BRCA-1-knockout mice [181]. This plant phenolic
compound can also attenuate one of the multiple activities of NuRD histone deacetylase
complex by destabilizing its interaction with MTA1 coregulator protein, thus increasing
the concentration of active acetylated forms of p53 and PTEN tumor suppressors [182,183].
Treatment with genistein promotes acetylation of histones at the transcription start sites
of p16 and p21 tumor suppressor genes in prostate (LNCaP and DuPro) [184] and breast
(MDA-MB-231) [185] cancer cell cultures, and of BTG3 tumor suppressor genes in renal
(A498, ACHN) [171] and prostate (LNCaP, PC3) [172] cancer cell cultures.

Epigenetic mechanisms can regulate the expression of cellular genes both at the stage
of their transcription and by changing the amount or activity of its mRNA. The key compo-
nents of these regulatory systems are non-coding RNAs (ncRNA) known as microRNAs
(miRNAs), capable of inhibiting translation of mRNAs or promoting their degradation [186].
There is a number of other regulatory ncRNAs, such as long or circular ncRNAs, whose
regulatory activities towards gene expression are based on different mechanisms [187].
It is well established that aberrant miRNA activity in the cell might promote malignant
transformation, as these molecules are involved in regulation of the expression of numerous
oncogenes and tumor suppressors [188]. Clinical relevance of non-coding RNAs increases
steadily during the last few years; a number of clinical studies consider these regulatory
molecules as biomarkers or therapeutic targets [189].
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Many plant polyphenols can modulate expression of ncRNA, thus affecting their regu-
latory activity. It was established that treatment of HepG2 human hepatocellular carcinoma
cell culture with EGCG downregulated the expression of 48 different miRNAs, while upreg-
ulating expression of another 13 miRNAs at the same time. Upregulated miRNAs included
miR-16, which targets mRNA encoding Bcl-2 antiapoptotic protein, causing suppression
of the proliferation and induction of apoptosis [190]. Treatment of SK-N-BE2 and IMR-32
malignant human neuroblastoma cell cultures with this phenolic compound suppressed
expression of oncogenic miR-92, miR-93, and miR-106b miRNAs, and upregulated expres-
sion of tumor suppressors miR-7-1, miR-34a, and miR-99a, causing suppression of the
proliferation and induction of apoptosis; treatment with N-(-4-hydroxyphenil)-retinamide
potentiated this effect [191]. In CL13 murine lung adenocarcinoma and H1299 human
non-small cell lung carcinoma cell cultures, treatment with EGCG suppressed proliferation
by upregulating expression of miR-210 caused by the binding of EGCG to hypoxia-induced
transcription factor HIF-1α, resulting in its stabilization [192]. This plant phenolic com-
pound can also induce apoptosis in MCF-7 human breast cancer cell culture and mouse
xenografts by suppressing the expression of miR-25 [193]. The tumor suppressor miRNAs
of the let-7 family is also affected by EGCG: proliferation of human NCI-H446 small-cell
cancer and MSTO-211 lung mesothelioma cell cultures was inhibited through the upregu-
lated expression of miRNAs of this family after EGCG treatment [194]. EGCG and quercitin
were able to reduce invasiveness of BxPc-3 and MIA-PaCa2 human pancreatic ductal ade-
nocarcinoma cells in culture by upregulating miR-let-7a that belongs to the let-7 miRNA
family [195].

Curcumin also modulates miRNA expression. In a recent study, the ability of this
polyphenol to induce global changes in mRNA and miRNA expression in MCF-7, MDA-
MB-321, and T47D human breast cancer cell cultures was established; the exact pattern
of changes in RNA expression was individual for each cell line [196]. Downregulation
of oncogenic miR-21 miRNA expression by curcumin suppressed proliferation of human
MCF-7 breast cancer [197], AGS gastric adenocarcinoma [198], A549 non-small cell lung
adenocarcinoma [199], and Rko and HCT116 colon carcinoma cell cultures [200]. For
colon carcinoma cell cultures, a significant decrease in invasiveness and motility was
also observed. The ability to inhibit miR-21 expression was demonstrated not only for
curcumin, but for its synthetic analogs as well [201,202]. Treatment of MCF-7 human
breast cancer cell cultures with this polyphenol downregulated expression of oncogenic
miR-19a and miR-19-b, leading to inhibition of proliferation [203]. Curcumin also has the
ability to simultaneously modulate the expression of multiple miRNAs: changes in the
level of expression of around 30 miRNAs were detected in a BxPC-3 human pancreatic
carcinoma cell culture after curcumin treatment [204]. This polyphenol also upregulated
four miRNAs and downregulated miR-136 and miR-186* in a A549/DDP human lung
adenocarcinoma cell culture, thus leading to induction of apoptosis [205]. The effects of
curcumin on expression of miR-34 and miR-98 were also demonstrated: curcumin-mediated
increase in the expression of miR-34 led to inhibition of the proliferation of 22RV1, PC-3,
and DU145 human prostate carcinoma cell cultures [206] and miR-98 of A549 human
lung adenocarcinoma cell culture [207]. In the latter case, treatment with this phenolic
compound also decreased invasiveness of tumor cells by downregulating expression of
MMP2 and 9 extracellular matrix metalloproteinases.

Modulation of miRNA expression in several cancer cell lines that led to inhibition of
the proliferation and induction of apoptosis was also demonstrated for quercitin. Treatment
with this polyphenol upregulated expression of miR-16 in HSC-6 and SSC-9 human oral
cavity squamous cell carcinoma cell cultures, leading to inhibition of proliferation [208];
similar downregulation of this miRNA expression in A549 human lung adenocarcinoma
cell culture by this polyphenol led to a decrease in claudin-2 expression [209]. Suppression
of the proliferation and induction of apoptosis by quercitin-induced upregulation of the
tumor suppressor miR-34 in HepG2 human hepatocellular carcinoma cell culture was also
demonstrated [210]. It was established that treatment with this plant phenolic compound
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upregulates expression of miR-146a in MCF-7 and MDA-MB-231 human breast cancer
cell cultures and mouse xenograft models, leading to inhibition of proliferation [211].
Treatment of BEAS-2B normal human bronchial epithelial cells with quercitin prevented
induction of their Cr(VI) ions-induced malignant transformation by downregulation of
miR-21 expression, both in cell cultures and in the mouse xenograft model [212]. Quercitin
was also able to suppress the proliferative activity of several pancreatic ductal carcinoma
cell lines in culture and in xenograft models by upregulating let-7c miRNA expression [213].
In combination with resveratrol, this polyphenol exerted antiproliferative and proapoptotic
activities towards HT-29 human colon adenocarcinoma cell culture by downregulating
miR-27a [214].

Resveratrol also causes modulatory activity towards miRNA expression in tumor cells.
It was demonstrated that treatment of murine C6 glioma cell cultures and xenografts with
this phenolic compound downregulated expression of miR-21, miR-30a-5p, and miR19,
leading to global changes in cellular proteome and inhibition of proliferative activity [215].
Antiproliferative and proapoptotic activity of resveratrol mediated by downregulation
of miR-21 was shown for human U251 glioblastoma [216], T24 and 5637 urinary bladder
carcinoma [217], and DU145 prostate carcinoma cell cultures [218]. Treatment of human
HT-29 and HCT-116 colon cancer and U87 and U251 malignant glioma cell cultures with
resveratrol resulted in a reduction in their invasiveness and motility mediated by upregu-
lation of mir-34c in colon carcinoma and miR-34a in malignant glioma cells [219,220]. In
MCF-7 and MDA-MB-231 breast cancer cell cultures, this phenolic compound was able to
promote apoptosis by modulating expression of more than 40 miRNAs; miR-542-3p, miR-
122-5p, miR-199a-5p, miR-125b-1-3p, miR-140-5p, and miR-20a-5p, known for participation
in tumorigenesis, were the most important among them [221].

Genistein also has modulatory activity towards miRNA expression. Treatment of
human C918 uveal melanoma C918 [222] and SKOV3 ovarian cancer cell cultures [223]
inhibited their proliferation by downregulating miR-27a expression. Remarkably, genistein-
induced decrease in the viability of cultivated human A549 non-small cell lung adenocarci-
noma cells was mediated by the opposite effect: expression of miR-27a was upregulated
by polyphenol treatment [224]. Suppression of the proliferation of human MCF-7 breast
cancer cell culture by genistein treatment-induced upregulation of miR-23b expression was
demonstrated [225]. This plant polyphenol also downregulated expression of miR-151 in
human DU145 and PC3 prostate cancer cell cultures, thus suppressing cellular mobility
and invasiveness [226]. Downregulation of miR-155 by genistein has a proapoptotic effect
on human MDA-MB-435 aggressively metastasizing breast cancer cell cultures [227]. This
phenolic compound also has antiproliferative and proapoptotic effects on human AsPC-1
and MiaPaCa-2 pancreatic cancer [228] and PC3 и DU145 prostate cancer cell lines [229]
through upregulation of miR-34a expression. It is noteworthy that in the latter case, HO-
TAIR long regulatory ncRNA, which is associated with malignant cell proliferation and
invasiveness, was one of the molecular targets of miR-34a. During the last few years, a
growing number of reports on the activity of plant phenolic compounds towards this class
of regulatory ncRNAs appeared [230].

A significant amount of data on the modulatory activity of natural polyphenols and
on multiple mechanisms of epigenetic regulation were accumulated to the present day,
allowing for the possible development of anticancer and chemopreventive drugs that
may utilize this activity to prevent or reverse cancer-associated epigenetic disorders. The
list of plant polyphenolic compounds that are known to modulate epigenetic regulation
systems is not limited to the compounds described above, and is expanding rapidly [231].
The ability of a single polyphenol to simultaneously affect a number of molecular targets
may allow a hypothetical polyphenol-based anticancer drug to affect a broad spectrum of
tumors and/or alleviate multiple pre-malignant disorders. At the same time, this potential
advantage significantly complicates development and application of such hypothetic drugs,
as the effect of a given polyphenol on different epigenetic regulation systems might be
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highly context-dependent and difficult to predict. The mechanisms behind the effects of
plant polyphenols on epigenetic regulatory mechanisms are summarized in Table 2.

Table 2. Mechanisms behind the effects of plant polyphenols on epigenetic regulatory mechanisms.

Compound Structure Mechanism Reference
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5. Tumor-Promoting Inflammation

Inflammation is a complex response of innate and acquired components of the immune
system after a traumatic or infective injury of tissues that includes activation, recruitment,
and proliferation of various immune cells and facilitates tissue regeneration and restora-
tion of its normal functioning. The exact characteristics of a site of inflammation, such
as composition of immune cells attracted to it and chemical factors secreted by these
cells, are dependent on the nature of the damage that caused the inflammatory response.
Acute inflammation usually resolves completely after the inflammation-causing lesion is
repaired, but in certain cases, it may switch to a chronic inflammation, or in the case of
systemic inflammation, which is not caused by infection or trauma, it might develop as
a chronic form. A site of chronic inflammation can be viewed as “a wound that never
heals” [232]. Damage repair at the inflammatory site must include elimination of tissue
debris, modification of the extracellular matrix, induction of angiogenesis, and survival
and proliferation of normal cells. These processes facilitate the return of a damaged tissue
to homeostasis, but they may also promote malignant transformation: certain forms of
immune response are carried out by the production of DNA-damaging reactive oxygen and
nitrogen species by neutrophils and macrophages, the induction of angiogenesis supplies
the growing tumor with nutrients and oxygen, and modifications of extracellular matrix
facilitate the process of metastasizing [233]. These events mark chronic inflammation as a
cancer-enabling characteristic, and anti-inflammatory measures are now considered as an
important part of antitumor therapy and chemoprevention.

Transcription factors of the NF-κB family are one of the most important regulators
of inflammation-associated gene expression. Each of these factors have the Rel homology
domain, which is responsible for dimerization of NF-κB proteins and their binding to
DNA [234]. Inactive NF-κB dimers form ternary complexes with IκB inhibitor proteins;
ubiquitination and subsequent proteasomal degradation of IκB are necessary steps in
NF-κB activation. The canonical pathway of NF-κB activation involves phosphorylation
of IKK1/2 IκB kinases mediated by NEMO (NF-κB essential modulator) scaffold protein
bound to the kinases. This NF-κB activation pathway can be activated by the signals
from toll-like receptors (TLR), interleukin-1 receptors (IL-1R), and tumor necrosis factor
receptors (TNFR) [235]. The non-canonical NF-κB activation pathway is independent of
NEMO activity and is activated by signals from the B-cell activating factor receptor (BAFFR),
lymphotoxin β receptor (LTβR), receptor activator of NF-κB (RANK), TNFR2, and fn14.
Activation of these receptors leads to activation of NF-κB-inducing kinase (NIK) that
phosphorylates IKK1. Activated IKK1 phosphorylates the p100 NF-κB precursor protein,
inducing its processing and thus leading to an increase in the concentration of active NF-κB
p52 in cytoplasm [236]. IKK1 also phosphorylates those p100 molecules that are bound to
preexisting NF-κB dimers, thus acting as their inhibitors (inhibitory p100 is known as IκBδ).
Phosphorylation of IκBδ leads to its dissociation and to activation of the NF-κB dimer it was
bound to. Canonical and non-canonical pathways of NF-κB activation differ by the intensity
and duration of NF-κB activation and by genes regulated by these pathways: the canonical
pathway is mainly responsible for activation of an inflammation-associated response,
while the non-canonical pathway is involved in cell differentiation and organogenesis [237].
Activation of NF-κB stimulates the cytotoxic immune cell-mediated antitumor activity [238],
and also induces expression of antiapoptotic genes, pro-inflammatory cytokines (TNF-
αandIL-1, 6 and 8) [239], angiogenesis factors (VEGFand its receptors) [240], and cell
metabolism regulators (HIF-1α) [241], thus facilitating the malignant transformation.

Plant phenolic compounds might inhibit NF-κB activation at different stages of signal
transduction (Figure 3). Treatment of HCA-7 human colon adenocarcinoma cell culture
with EGCG led to the general decrease in NF-κB activity [242]. This phenolic compound
was also able to inhibit IKK activity in A549 human lung cancer cell culture, preventing the
activation of NF-κB by TNF-α [243]. EGCG also prevented IL-1β-mediated degradation of
IRAK receptor-associated kinase in this cell culture, thus inhibiting IKK activation, IκBα
degradation, and NF-κBp65 phosphorylation [244]. Inhibition of IKK activity by this phe-
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nolic compound was also demonstrated for rat IEC-6 normal small intestine epithelial cell
culture [245]. Treatment of rheumatoid arthritis-associated synovial fibroblast culture with
EGCG prevented activation of IKK by inhibiting TAK-1 TNF-β-dependent kinase [246,247].
Molecular modeling studies of EGCG interaction with components of NF-κB signal trans-
duction pathways suggested that the inhibitory activity of this compound may be mediated
by its interaction with ATP binding site ofTAK-1 and IRAK kinases. The inhibitory activity
of this plant phenolic compound towards NF-κB signaling pathway was also demonstrated
in vivo: treatment with EGCG alleviated the development of picrylsulfonic acid-induced
colitis in Wistar rats by inhibiting activation of this transcription factor, presumably by bind-
ing to the IKK inhibitor binding site, as suggested by the results of molecular docking [248].
The ability of EGCG to inhibit the interaction of NF-κB with DNA by covalent modification
of thiol groups of cysteine residues of this protein was also demonstrated [249].
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The inhibitory activity of curcumin towards NF-κB signaling pathway was also demon-
strated. Treatment of MDA-MB-231 human breast cancer cell cultures with this phenolic
compound inhibited NF-κB-mediated expression of CXCL-1 and -2 pro-inflammatory
cytokines by preventing IκB phosphorylation [250]. In RAW264.7 murine macrophage
cultures, curcumin was able to reduce the efficiency of NF-κB binding to DNA, thus leading
to inhibition of TNF-α, IL-1β, and IL-6 expression [251]. Although this polyphenol failed
to demonstrate similar activity towards MCF-7 human breast adenocarcinoma cell cultures,
curcumin-loaded chitosan-protamine nanoparticles did reduce the levels of NF-κB, IL-6
and TNF-α [252]. Treatment of T47D human breast cancer cell culture with curcumin
suppressed the activity of NF-κB signaling pathway both by suppressing activity of this
transcription factors and by downregulating expression of NF-κB and IKK [253]. Downreg-
ulation of NF-κB expression upon curcumin treatment in HeLa human cervical carcinoma
cell culture was also observed [254]. Treatment of Eca109 and EC9706 esophageal squamous
cell carcinoma cell cultures and xenografts with this plant polyphenol also resulted in down-
regulation of NF-κB expression, as well as in suppression of IκB phosphorylation [255].
In WERI-Rb-1 human retinoblastoma cell culture, curcumin suppressed the activation of
NF-κB, thus preventing its nuclear translocation and downregulating expression of VEGF
and MMP-2 and -9 [256].
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Quercitin has activity towards NF-κB and its regulators. Treatment of Caco2 human
colon adenocarcinoma cell culture with this phenolic compound downregulated expression
of NF-κBp65, thus suppressing cellular motility and invasiveness [257]. Expression of
the other components of the NF-κB signaling pathway was also affected by quercitin. In
Caco-2 and SW-620 human colon carcinoma cell cultures, this polyphenol demonstrated
pro-apoptotic activity by upregulating expression of IκBα, suppressing its phosphorylation,
and reduction in the efficiency of NF-κB binding to DNA [258]. It was also established that
in H460 non-small cell lung cancer cell cultures, quercitin was able to promote apoptosis
by downregulating expression of NF-κB while simultaneously upregulating expression of
IκBα [259]. Treatment of SAS human oral squamous cell carcinoma cell culture with this
phenolic compound resulted in suppression of cellular invasiveness by simultaneously
reducing both NF-κB and IκB expression and lowering the presence of phosphorylated
IKK1/2 [260]. Quercitin also exerted its activity towards NF-κB during in vivo studies:
treatment with this compound abrogated induction of oral adenocarcinoma in Syrian
hamster buccal pouches with dimethylbenzanthracene by promoting apoptosis of tumor
cells and downregulating expression of NF-κBp50 and p65 [261]. Similar results were
obtained during induction of tumorigenesis by dimethylhydrazine in rats: treatment with
quercitin lowered the number of colonic tumors and prevented the upregulation of NF-κB
expression [262].

A certain degree of controversy exists regarding the modulatory activity of resveratrol
towards the NF-κB signaling pathway. It was established that treatment of several human
cervical cancer cell cultures with this phenolic compound resulted in reduction in the
proliferation and induction of apoptosis; for CaSki cell cultures, these effects were the
most prominent. In C33A, HeLa, CaLo, and CaSki cell cultures, the antiproliferative and
proapoptotic activities of resveratrol were accompanied by a significant decrease in NF-κB
p65 expression [263]. In human colon cancer cell cultures, resveratrol prevented nuclear
translocation of NF-κB, presumably by binding to its monomer, and thus preventing its
dimerization [264]. This phenolic compound was also able to suppress proliferation of
human MV3 and A375 melanoma cells, both in culture and in a mouse xenograft model,
by downregulating the expression of NF-κB and NF-κB-regulated miR-221, thus leading
to the enhancement of the expression of TFG tumor suppressors, the mRNA of which
is targeted by miR-221 [265]. The chemopreventive activity of resveratrol, mediated by
inhibition of NF-κB activity with this polyphenol, was also reported. Treatment of KC mice
that spontaneously develop pancreatic dysplasias and malignant tumors with resveratrol
led to reduction in the number and severity of pre-malignant lesions and to suppression of
NF-κB activity in these structures [266]. After induction of hepatocelular carcinoma in rats
by ethanol and aflatoxin treatment, this plant phenolic compound alleviated the induction
of malignant transformation by preventing the reduction in the activity of antioxidant
enzymes and increasing the NF-κB-inhibiting SIRT1 activity [267]. Nevertheless, treatment
with resveratrol did not result in suppression of tumor cell growth. This polyphenol was
able to suppress proliferation of NF-κB-overexpressing SKOV3 human ovarian cancer
cells in aggregates by inhibiting activation of this transcription factor. At the same time,
resveratrol failed to demonstrate any significant antiproliferative activity towards OVCAR5
ovarian cancer cell aggregates, whose expression of NF-κB is far less pronounced [268].
Treatment with resveratrol also had no effect on the secretion of VEGF by OVCAR5 cells,
while treatment of SKOV3 aggregates with this phenolic compound resulted in a significant
decrease in the efficiency of the secretion of this factor. Moreover, secretion of pro-survival
interleukin IL-8 by both cell cultures increased significantly upon treatment with resver-
atrol. Growth stimulatory activity of low concentrations (less than 10 µM) of resveratrol
towards MDA-MB-495c human breast cancer cell culture was reported; at the same time,
this polyphenol has antiproliferative activity towards MDA-MB-231 and MCF-7 human
breast cancer and DU145 human prostate adenocarcinoma cell cultures in all concentration
values [269]. The stimulatory effect of resveratrol treatment on MDA-MB-495c cell culture
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was exerted by promotion of IκB phosphorylation and NF-κB expression, and by facilitation
of nuclear translocation of NF-κB.

Certain cases of genistein activity towards the NF-κB signaling pathway are also con-
troversial. Genistein causes pro-apoptotic activity towards U266 human multiple myeloma
cell culture by upregulating miR-29b that suppresses NF-κB p65 expression [270]. It was
established that treatment of CAL-62 and CGTH-W1 human thyroid carcinoma cell cul-
tures with this phenolic compound resulted in a decrease in the viability of cultured cells
through a reduction in the amount of mRNAs of several pro-tumorigenic proteins, includ-
ing NF-κB [271]. Reduction in the amount of NF-κB mRNA after genistein treatment was
also detected for A549 human lung carcinoma, along with pro-apoptotic activity and down-
regulation of AKT, HIF1, and COX-2 expression [272]. In HT-29 human colon carcinoma cell
culture, this polyphenol promoted apoptosis and reverted the epithelial-to-mesenchymal
phenotype transition by downregulating expression of NF-κB and Notch-1, thus causing a
decrease in expression of invasiveness-related proteins and upregulation of the expression
of pro-apoptotic factors [273]. Results of treatment of MDA-MB-231 human breast cancer
cell culture with genistein also suggest involvement of Notch-1 in the inhibition of the
NF-κB signaling pathway by this phenolic compound, as genistein exerted antiprolifera-
tive and proapoptotic activity towards this cell culture by downregulating expression of
Notch-1, accompanied by inhibition of NF-κB activation [274]. Genistein was also able to
suppress proliferation of LoVo and HT-29 human colon carcinoma cell cultures by prevent-
ing IκBα phosphorylation, thus abrogating phosphorylation of NF-κB p65 and its nuclear
translocation [275]. It is noteworthy that genistein- and daidzein-rich biotransformed soy-
bean extract has pro-apoptotic activity towards A375 human melanoma cell culture by the
opposite mechanism: overexpression of TNF receptors TNFR1/2 caused by this treatment
led to IKK activation and to an increase in NF-κBp65 phosphorylation [276]. Moreover,
treatment of HT-29 and SW620 human colon adenocarcinoma cell cultures with genistein
decreased the viability of the latter culture [277]. This decrease in viability, however, was
induced by an increase in H2O2 concentration caused by the upregulation of the expression
of antioxidant enzymes, such as SOD1 and 2, accompanied by activation of NF-κB nuclear
translocation and subsequent stimulation of the expression of pro-inflammatory proteins,
such as TNF and CXC chemokines. These effects were observed for both cell cultures, but
in HT-29 cell culture, they had no significant proapoptotic effect.

The anticancer and chemopreventive activity of plant polyphenols, carried out through
activation of the NF-κB signaling pathway by these compounds, was demonstrated on a
multitude of objects, including cell cultures, tumor xenografts, and the models of induced
carcinogenesis. Suppression of NF-κB activation led to a decrease in the efficiency of
antiapoptotic, pro-angiogenic, and prometastatic inflammatory signals in tumor tissue.
Mechanisms of modulation of the NF-κB signaling pathway by plant polyphenols are
summarized in Table 3. The anti-inflammatory activity of natural phenolic compounds
towards normal tissues was also demonstrated, and the mechanisms underlying this activ-
ity were not limited to inhibition of NF-κB activation [278]. These mechanisms may also
include inhibition of activity of the other key pro-inflammatory enzymes and signaling
molecules, such as COX-2 cyclooxygenase [279], iNOS inducible NO synthase275, and
pro-inflammatory cytokines [280]. These properties suggest the possible use of polyphe-
nols as chemopreventive drugs that suppress pro-tumorigenic influence of inflammation
during the entire tumorigenesis. Nevertheless, evidence of growth-stimulatory and pro-
inflammatory activity of natural phenolic compounds in cell cultures calls out for the
additional study of the activity of polyphenols in the inflammation sites before such drugs
could be designed and introduced in clinical practice.
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Table 3. Modulation of NF-κB signal transduction pathway by plant polyphenols.

Compound Structure Mechanism Reference

Curcumin
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6. Interactions with Cancer-Associated Microbiota

Human organisms are inhabited by microorganisms that modulate normal physi-
ological processes [281] and various diseases [282], including malignant tumors [283].
Certain microorganisms of human microbiota might produce genotoxic substances capa-
ble of damaging the host cellular genome; colibactin-producing Escherichia coli [284] and
cytolethal distending toxin-producing Campylobacter jejuni [285] are the examples of such
microorganisms. Other bacterial toxins may promote tumorigenesis by modulation of cel-
lular signaling pathways: toxins produced by F. nucleatum activate the β-catenin signaling
pathway and suppress the antitumor activity of NK cells [286]. CagA and VacA proteins
secreted by H. pylori attenuate activity of tumor suppressors, stimulate proliferation, fa-
cilitate the acquisition of the mesenchymal phenotype, and modulate the host immune
response [287]. Accumulated evidence of procarcinogenic activity of this microorganism
was sufficient to classify it as a IARC class 1 carcinogen [288]. Non-specific products of
bacterial metabolism might also affect the process of tumorigenesis. Bacterial metabolites
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of fatty acids, trimethylamine-n-oxide, and hydrogen sulfide facilitate development of
tumors, whereas short-chain fatty acids (SCFA) and niacin suppress this process [289]. It is
also established that colonic malignancies are often accompanied by changes in the species
composition of gut microbiota [290], but it is largely unclear whether these changes are the
cause of tumorigenesis or the consequence of this process [291].

Plant polyphenols have antibacterial properties [292], which allow them to modulate
the intestinal microflora. Silibinin was able to suppress the H. pylori culture growth by pro-
moting changes in bacterial morphology and suppressing cell division [293]. Kaempferol
and (-)-epicatechin demonstrated antibacterial and bacteriostatic effects towards this
pathogen in vitro [294]. Similar activity was demonstrated for ellagic and gallic acid,
as well as for quercitin aglycon and its glycosylated form [295]. Antibacterial activity
of baicalin and baicalein towards this microorganism was registered both in vitro and
in vivo: these phenolic substances decreased the bacterial load in H. pylori-infected mice
by inhibiting the adhesiveness and invasiveness of this microorganism [296]. Antibacte-
rial activities of polyphenol-containing natural and artificial mixtures were also detected.
Citrus juices and extracts from citrus plants have antibacterial activity towards H. pylori
culture in vitro, and alleviated H. pylori-induced gastritis in vivo by suppressing bacterial
colonization of mucosa and abrogating inflammation elicited by the infection [297]. Similar
antibacterial activity of extracts of fruits of Rubus crataegifolius and bark of Ulmus macrocarpa
was described [298]. The antibacterial activity of plant polyphenols towards H. pylori was
determined by the ability of these substances to impair functioning of transmembrane
energetic of this microorganism [299].

Natural phenolic compounds demonstrated antibacterial properties towards C. jejuni
as well. The antibacterial activity of curcumin was demonstrated by treatment of C. jejuni
culture with this substance [300]. Similar antibacterial properties of EGCG were also
demonstrated, along with the ability of this polyphenol to impair motility and biofilm
formation by these microorganisms and to suppress activity of bacterial autoinducer-2, thus
disturbing quorum-sensing activity [301]. Treatment with resveratrol prevents C. jejuni-
induced loosening of cellular junctions between intestinal epithelial cells and alleviates
infection-induced apoptosis both in vitro and in vivo, thus facilitating epithelial barrier
function and preventing development of inflammation [302,303].

EGCG, theaflavines and other tea polyphenols have antibacterial activity towards
F. nucleatum in vitro by disturbing integrity of the plasma membrane of this organism and by
reducing its adhesiveness along with the ability of biofilm formation [304]. Similar activity
was demonstrated for complexes of resveratrol with cyclodextrane together with inhibitory
activity towards F. nucleatum-induced inflammation [305]. Treatment of female rats on a
high-fat diet with genistein prevented the increase in the presence of Enterobacteriaceae
in the microflora of their progeny, accompanied by a lower risk of mammary cancer
recurrence [306]. The antibacterial activity of plant polyphenols towards cancer-associated
microorganisms is summarized in Table 4.

Microbiota-associated chemopreventive activity of plant polyphenols may be carried
out not only by their antibacterial activity towards certain microorganisms, but also by
modulation of species composition of gut microbiota. Dietary supplementation of sausages
with powder of dried anthocyanine-rich berries reduced the number of intestinal tumors in-
duced by azoxymethane treatment in rats, and alleviated the presence of pro-inflammatory
Bilophila wadsworthia in their microflora [307]. Treatment of IL10−/− mice with curcumin
in a similar tumorigenesis induction experiment resulted in a decrease in tumor burden
and in prevention of cancer-associated changes in microbiota [308]. Anthocyanine-rich
extract from Rubus occidentalis berries was able to reduce the number of tumors and abro-
gate inflammatory response during azoxymethane-induced carcinogenesis in mice, along
with promotion of Neisseria and butyrate-producing bacteria growth and suppression of
pathogenic H. pylori, Campylobacter, Bacteroides, and Prevotella [309]. Treatment of rats with
polymethoxyflavone mix during induction of carcinogenesis by benzo-a-pyrene prevented
changes in species composition of intestinal microbiota by alleviating the increase in the
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abundance of Sphingobacteriia, Bacilli and Gammaproteobacteria classes, Erysipelotrichales
and Lactobacillales orders, and the Parabacteroides family, and by promoting an increase
in the abundance of butyrate-producing Ruminococcaceae family [310]. Treatment of rats
with isoliquiritigenin during azoxymethane/dextransulfate-induced carcinogenesis re-
sulted in the reduction in tumor incidence by preventing the increase in the abundance
of Firmicutes phylum in their microflora, while simultaneously decreasing abundance of
Bacteroidetes [311]. This phenolic compound also decreased the presence of opportunis-
tic pathogens, such as Escherichia and Enterococcus, while simultaneously increasing the
abundance of butyrate-producing bacteria, such as Bytiricicoccus, Ruminococcus, and Clostrid-
ium. Induction of carcinogenesis with a high-fat diet in APCmin/+ mice was abrogated by
neohesperidin by inducing the opposite direction of changes of abundance of Firmicutes
and Bacteroidetes: this phenolic compound decreased the abundance of Bacteroidetes and
increased the abundance of Firmicutes and Proteobacteria [312]. The opposite direction
of changes in the relative abundance of Firmicutes and Bacteroidetes in these experiments
might suggest that the analysis of cancer-associated microbiota changes at the phylum level
may not be informative enough, as only a portion of species of aforementioned phyla are
associated with carcinogenesis [313]. Results of the experiments of cancer chemoprevention
in azoxymethane-treated mice with EGCG speak in favor of this hypothesis. Treatment
with EGCG reduced the severity and number of tumors by preventing the changes in
the abundance of different taxa of the Firmicutes phylum: this plant phenolic compound
prevented the increase in the abundance of Anaerotruncus, Faecalibacterium and Streptococcus
and decrease in the abundance of Clostridiaceae, Lactobacillis and Lachnospiraceae311 [314].
EGCG also promoted an increase in the abundance of Bacteroides and decrease in the abun-
dance of Fusobacterium, Ruminococcus, and Veillonella. Dietary supplementation of mice
xenograft with MCA-205 and E0771 murine cancer cells with castalagin-rich Myrciaria dubia
berries led to sensibilization of MCA-205 to PD-1 inhibitor therapy, and circumvention
of resistance of E0771 to these inhibitors [315]. Castalagin exerted this potentiating effect
by promoting the selective enrichment of murine gut microbiota with Alistipes, Blautia,
and Ruminococcus.

Table 4. Antibacterial activity of plant polyphenols towards cancer-associated microorganisms.

Compound Structure Mechanism Reference

Silibinin Flavonol and phenolic acid
heterodimer

Suppression of H. pylori growth

[293]

Kaempferol Flavonol [294](-)-epicatechin Flavanol
Ellagic acid Tannin

[295]Gallic acid Phenolic acid
Quercitin Favonol

Curcumin Phenolic acid homodimer Suppression of C. jejuni growth and
prevention of C. jejuni-induced

lesions

[300]

EGCG Flavanol and phenolic acid
heterodimer [301]

Resveratrol Stilbene [302,303]

EGCG Flavanol and phenolic acid
heterodimer

Suppression of biofilm formation by
F. nucleatum, combined with

alleviation of inflammation induced
by this microorganism

[304]
Theaflavines Condensated flavanols
Resveratrol Stilbene [305]

These data emphasize the interplay between intestinal microbiota, the host organism
immune system, and tumor microenvironment, and outline its crucial role in the process
of tumorigenesis. Contacts with bacteria and their presence in the human organism since
the earliest postnatal period are essential for priming the immune system for response
to pathogen infections [316]. The interaction of bacteria and their metabolites with host
dendritic cells is necessary for developing different immune reactions to commensal vs.
pathogenic microorganisms [317]. Activity of intestinal mucosa-associated T lymphocytes
is also modulated by microbiota: presence of microorganisms facilitate development CD4+
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and cytotoxic CD8+ T lymphocytes [318]. Induction of peripheral RORγ+ regulatory T lym-
phocytes (Tregs) is responsible for regulating the inflammatory response and maintaining
homeostasis of microbiota and is also dependent on intestinal microbiome composition dur-
ing the early period of life [319,320]. Bacterial metabolites are also involved in regulation
of the effect of the immune system on intestinal mucosa. Short-chain fatty acids decrease
abundance of Th1/Th17 T helpers while increasing the presence of Tregs, thus reducing
the intensity of inflammatory response [321,322]. Secondary bile acids were also able to
modulate differentiation of Th17 and RORγ+ Tregs [323,324]. The relative abundance of
different components of the immune system plays a crucial role in the determination of the
outcome of immune response: an increase in abundance of tumor-associated macrophages
and fibroblasts, Tregs, regulatory B cells, and myeloid-derived suppressor cells (MDSCs) is
associated with rapid and unimpeded tumor growth [325], while increase in the abundance
of CD8+ cytotoxic T lymphocytes, natural killer (NK) cells, and M1 macrophages and CD4+
T lymphocytes is associated with the direct destruction of tumor cells or with stimulation
of this process [326,327].

Plant polyphenolic compounds can modulate tumor microenvironments either in-
directly, by regulating the composition of intestinal microbiota, or directly, by mediating
interactions between different types of immune cells. For example, polyphenols can
stabilize the relative abundance of different immune cells on the intestinal mucosa and
prevent development of chronic inflammation by preventing carcinogen-induced dysbio-
sis. Moreover, maintenance of intestinal eubiosis can be associated with sensitivity to
immune checkpoint therapy; however, the exact molecular mechanisms responsible for
this association are yet to be determined [328].

Mechanisms of the modulation of tumor immune microenvironments by plant phe-
nolic compounds are not limited to prevention of dysbiosis. During multiple in vitro
experiments, an increase in the abundance of CD8+ T lymphocytes and enhancement of
their cytotoxic activity upon polyphenol treatment were observed [329]. Thus, treatment
of the murine Lewis lung adenocarcinoma model with curcumin led to suppression of
MDSCs, resulting in an increase in the number of CD8+ T lymphocytes [330]. Cytotoxic
activity of NK cells can also be increased by natural phenolic compounds: treatment of
human L3.4 pancreatic ductal adenocarcinoma cell culture and MIA PaCa-2 pancreatic ade-
nocarcinoma cell culture with curcuminoids led to the enhancement of cytotoxic activity of
co-cultured donor NK cells [331]. Immunomodulatory effects of plant phenolic compounds
that increase the anti-tumor immune response were also observed during in vivo studies.
Treatment of mice xenografted with B16F10 murine melanoma cells with resveratrol led
to the increase in intra-tumoral NK cell cytotoxicity; stimulation with IL-2 additionally
enhanced this effect [332]. Life-long intake of genistein by rats resulted in lower incidence
of mammary tumors upon stimulation of tumorigenesis by dimethylbenzanthracene, as
well as the suppression of CD4+ Tregs proliferation and an increase in the abundance of
CD8+ cytotoxic T lymphocytes, thus resulting in enhancement of the sensitivity of these
tumors to tamoxifen [333].

Interactions between immune cells in tumor microenvironments are targeted by the
immune checkpoint inhibitors—anticancer drugs that prevent the suppression of cytotoxic
T lymphocyte activity [334]. These drugs can be used in combination with other types of
anticancer therapy, such as photodynamic therapy [335]. Among several different immune
checkpoints, the system that consists of PD-1 receptor and PD-L1 ligand system is the most
studied to date. Activation of membrane PD-1 of T lymphocytes leads to a decrease in
their activity, proliferation, and survival [336]. Recent studies indicate that plant pheno-
lic compounds can modulate this regulatory mechanism. Thus, resveratrol was able to
attenuate its activity by preventing PD-L1 glycosylation and dimerization in JIMT-1 human
breast adenocarcinoma cells that overexpress this ligand [337]. Treatment with apigenin
prevented induction of PD-L1 by γ-interferon in several melanoma cell cultures in vitro,
and enhanced infiltration of T lymphocytes in murine xenografts of these melanoma cells,
while simultaneously suppressing expression of PD-L1 in dendritic cells [338]. The similar
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activity of apigenin, along with luteolin, towards KRAS-mutated non-small cell lung carci-
noma cell cultures and xenografts was described: these compounds were able to prevent
γ-interferon-induced upregulation of PD-L1 expression by suppressing activity of the MUC-
1C/STAT3 signaling pathway; molecular docking results suggest that these polyphenols
can interact directly with STAT3 molecules [339]. Curcumin was also able to downregulate
PD-L1 expression in Cal27 and FaDu oral squamous cell carcinoma cultures, as well as
in the murine model of induction of oral squamous cell carcinoma by 4-nitroquinoline
oxide [340]. This phenolic compound also demonstrated similar PD-L1 downregulation
in Hep3B and CSQT-2 hepatocellular carcinoma cell cultures, an exerted synergistic effect
with the anti-PD-1 therapy of Hep3B murine xenografts [341]. Several other polyphenolic
compounds have inhibitory activity towards the PD-1/PD-L1 immune checkpoint; EGCG,
hesperidin, baicalin, and quercitin are the examples of these polyphenols [342]. At the same
time, it is important to emphasize that plant phenolic compounds can also demonstrate
the opposite activity: thus, treatment of A549, H460, and H1299 lung adenocarcinoma
cell cultures with resveratrol led to an increase in Snail protein stability, which in turn led
to the stimulation of the Wnt signaling pathway, and ultimately, upregulated the PD-L1
expression [343]. These data point out the necessity of further investigation of PD-1/PD-L1
immune checkpoint functioning, and of the mechanisms of plant polyphenol-mediated
changes in this regulatory system.

When considering the antitumor and chemopreventive activity of plant polyphenols,
another important aspect should be taken into account: natural phenolic compounds are
not metabolically inert, and may undergo extensive chemical modification by host micro-
biota [344]. It is established that the products of the bacterial metabolism of polyphenols
might have different activities as compared to the original compounds [345]. The most
prominent examples of such metabolites are equol [346,347] and urolithins [348,349], prod-
ucts of the modification of daidzein and ellagitannins, respectively. Their antitumor and
chemopreventive activity was demonstrated in a number of studies.

Treatment of MCF-7 human beast adenocarcinoma cell culture resulted in the suppres-
sion of the proliferation and induction of apoptosis by upregulating miR-10a-5p expression
and subsequent inhibition of the PI3K/AKT signaling pathway [350]. In HCT-15 colon
cancer cell cultures, equol was able to enhance expression of Nrf2, thus suppressing pro-
liferation of this culture [351]. Equol also exerted antimetastatic activity: treatment of
MDA-MB-231 human breast cancer cell culture with this compound led to a decrease
in the invasiveness of these cells by inhibiting MMP-2 expression [352]. Treatment of
MCF10 human breast cancer cell culture with equol led to abrogation of TNF-1-mediated
activation of Gli1, a member of the hedgehog signaling pathway, which is responsible
for induction of cellular motility [353]. The chemopreventive activity of equol was also
described: dietary supplementation of rats with this compound alleviated the efficiency of
dimethylbenzanthracene-induced carcinogenesis [354]. Similar dietary supplementation
reduced the efficiency of carcinogenesis by urethane in mice, while simultaneously increas-
ing the level of superoxide dismutase and reducing the concentration of oxidative stress
markers in blood serum [355].

The anticancer activity of urolithins was also demonstrated: treatment of Caco-2 colon
cancer cell culture with these compounds resulted in suppression of the proliferation and
induction of apoptosis [356], likely caused by the upregulation of CDKN1A expression [357].
In 22RV1 and LNCaP human prostate cancer cell cultures, various urolithins were able
to induce apoptosis and to increase p53 expression [358]. The similar activity of these
substances towards the expression of p53 in colon cancer cell cultures was described [359].
Treatment of these cultures with urolithin also led to cell cycle arrest, apoptosis induction,
and an increase in ROS production. Interestingly, treatment of normal human fibroblast
cell cultures with this phenolic compound had the opposite effect on ROS production [360].
Dependence of the direction of oxidative stress modulation by urolithins on the type of
cell culture was demonstrated in a number of studies, and the mechanisms behind this
phenomenon include the condition of cellular antioxidants and oxidative stress-inducing
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factors [361]. The proapoptotic and antiproliferative activity of urolithins is not limited
to the mechanisms mentioned above: these substances might also modulate PI3K/AKT,
NF-κB, and WNT/β-catenin signaling pathways [349].

7. Conclusions

Data accumulated over the decades of study on the effect of natural polyphenols on hu-
man health suggest that these compounds exert antitumor and chemopreventive activities
by multiple different mechanisms. Plant phenolic compounds can suppress metabolic acti-
vation of procarcinogens and reduce the levels of highly reactive compounds in the cell, thus
preventing damage of genomic DNA. These substances demonstrate activity towards fac-
tors involved in epigenetic regulation, such as miRNAs and DNA- and histone-modifying
enzymes, the misregulation of which probably contributes to malignant transformation.
The ability of polyphenols to mitigate the pro-survival and growth-stimulatory effects of
pro-inflammatory signals on tumor cells was also demonstrated. It was also established that
phenolic compounds can modulate the composition of the intestinal microbiota throughout
the entire process of tumorigenesis by suppressing growth of particular bacterial species
and by changing the overall abundance of different taxa.

At the same time, it was also established that the direction of the effect of a given
natural phenolic compound on cellular metabolism depends on a multitude of factors, such
as the exact chemical structure of a polyphenolic molecule and the type of cell culture or
parameters of an animal model. In some cases, the effects of different plant polyphenols on
a given physiological process were opposite: natural phenolic molecules might act either as
AhR antagonists, thus suppressing expression of phase I xenobiotic metabolism enzymes,
or as agonists of the same receptor. Under different conditions, polyphenols demonstrated
both prooxidant and antioxidant activities. Increasing pro-inflammatory signaling by plant
polyphenols was also described. The ambiguous nature of the influence of polyphenols
on physiological processes involved in malignant transformation raises doubts about the
possible anticancer and chemopreventive applications of these compounds. To rule out
these doubts, an in-depth understanding of the mechanisms of interaction of phenolic
substances with biological macromolecules and the physiological consequences of these
interactions is required. One of the possible ways to achieve this degree of understand-
ing is the application of high-throughput omics approaches to the study of polyphenol
activity [362].

High levels of chemical modifications of natural phenolic compounds by host micro-
biota, along with poor solubility of these compounds resulting in a low bioavailability,
pose another challenge to their therapeutic application. This problem affects both purified
polyphenols and polyphenol-rich foods and extracts. In some cases, even high doses of
phenolic substances supplemented to individuals did not result in any significant presence
of the substance in blood serum [363]. To circumvent the poor bioavailability of natural
phenolic compounds, new formulations are currently being developed, such as various
nanoparticles and liposomes [364].

Despite the long history of extensive study and the multifaceted antitumor and chemo-
preventve activity that encompass a vast number of physiological processes, it is still
too early to introduce the polyphenol-based drugs into the clinical practice as tertiary
chemopreventors. Yet, a polyphenol-rich diet could already be considered as an effective
primary and secondary chemopreventive measure due to the multi-targeted blocking and
suppressing activity exerted by the phenolic compounds it contains.
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