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Abstract: The instability and volatility of iodine is high, however, effective iodine biocidal species
can be readily stored in iodinated azoles and then be released upon decomposition or detonation.
Iodine azoles with high iodine content and high thermal stability are highly desired. In this work,
the strategy of methylene bridging with asymmetric structures of 3,4,5-triiodo-1-H-pyrazole (TIP),
2,4,5-triiodo-1H-imidazol (TIM), and tetraiodo-1H-pyrrole (TIPL) are proposed. Two highly sta-
ble fully iodinated methylene-bridged azole compounds 3,4,5-triiodo-1-((2,4,5-triiodo-1H-imidazol-
1-yl)methyl)-1H-pyrazole (3) and 3,4,5-triiodo-1-((tetraiodo-1H-pyrrol-1-yl)methyl)-1H-pyrazole
(4) were obtained with high iodine content and excellent thermal stability (iodine content: 84.27% for
compound 3 and 86.48% for compound 4; Td: 3: 285 ◦C, 4: 260 ◦C). Furthermore, their composites
with high-energy oxidant ammonium perchlorate (AP) were designed. The combustion behavior and
thermal decomposition properties of the formulations were tested and evaluated. This work may
open a new avenue to develop advanced energetic biocidal materials with well-balanced energetic
and biocidal properties and versatile functionality.

Keywords: polyiodo compound; energetic materials; methylene bridging; biocidal materials

1. Introduction

Biological organisms have always posed a threat to human beings, including but not
limited to the novel coronavirus [1], variola virus (VARV) [2], or HIV [3]. As humans strive
to combat viruses and bacteria, these pathogens continually mutate [4], making it incredibly
challenging to eliminate them entirely [5–10]. Implementing necessary protective measures,
such as elimination and isolation, can be effective [11–13]. Iodine has been proven to be
a highly effective fungicide and can be used to disinfect air environments [14–19]. It can
achieve a killing rate of 99.999% at 25 ◦C for a duration of 10 min under standard conditions,
with intestinal bacteria, amoebic cysts, and enteroviruses requiring 0.2 ppm, 3.5 ppm, and
14.6 ppm iodine residues, respectively [20]. However, the instability and volatility of iodine
make it inconvenient to be used directly as a biocidal agent under ambient conditions in its
normal solid state.

The storage of iodine through forming C-I bonds in azole compounds and then releas-
ing iodine upon decomposition or detonation is an effective way to stabilize iodine [21–24].
The fully iodinated single azole ring compounds, such as 3,4,5-triiodo-1-H-pyrazole (TIP,
iodine content = 85.41%) [25], 2,4,5-triiodo-1H-imidazol (TIM, iodine content = 85.41%) [26],
tetraiodo-1H-pyrrole (TIPL, iodine content = 88.95%), can readily achieve high iodine
content (more than 80%) [21]. However, due to the existence of acidic N-H, they may suffer
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compatibility issues when formulating with other oxidizers to obtain improved oxygen
balance in the consideration of practical applications, and their thermal stabilities still need
to be improved; for instance, TIPL has poor thermal stability and has been observed to start
decomposing at 168 ◦C.

The construction of a bridge connection (alkyl, C-N, C-C, N-N) is a well-established
strategy to improve the thermal stability of single-ring compounds as well as eliminate
acidic N-H, which are widely used in the field of energetic compounds [23,27–30]. A sym-
metric or asymmetric structure is always formed alternatively when a connecting bridge
is introduced. Compared with a symmetric structure that is limited by the constraints
of a single-ring molecular skeleton, an asymmetric structure can build more molecular
skeletons by freely combining different skeletons, resulting in more diversified molecu-
lar structures to achieve optimal comprehensive performance [31–42]. The asymmetric
bridge compounds based on oxadiazole rings through theoretical calculations and analy-
ses demonstrate that the formation enthalpy, density, and detonation performance of the
asymmetric compound are significantly improved [37]. Moreover, the effect of asymmetric
structures on improving thermal stability have also been verified. The combination of
pyrazole ring and 1,2,4-triazole ring, forming 3-(3,4-dinitro-1H-pyrazol-5-yl)-5-nitro-4H-
1,2,4-triazole, has been observed to achieve a higher thermal decomposition temperature
than the symmetrical bicyclic molecules [39]. Although 4-amino-3,5-dinitropyrazole (LLM-
116) is a representative compound with a high density and low-impact sensitivity, its
low decomposition temperature hinders its practical application. By methylene bridging
with different ring skeletons (1,2,3-triazole or tetrazole), along with adjustable regional
isomerization, it achieves higher thermal stability (Td: LLM-116: 178 ◦C, MPT-1: 190 ◦C,
MPT-2: 269 ◦C, DMPT-1: 191 ◦C, DMPT-2: 209 ◦C) (Figure 1a) [40,41]. Based on N, N′

ethylene-bridging, energetic polyiodoazole compounds IETA and PETA were synthesized
(Figure 1b) [42]; their iodine content decreased to a certain extent (iodine content:
IETA = 68.3%, PETA = 68.3%), and due to the introduction of high-energy tetrazole, the
thermal decomposition temperature of the compound decreased compared to the fully
iodinated single-ring compound (Td: IETA: 186.2 ◦C, PETA: 247.3 ◦C).
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Figure 1. (a) Enhancing thermal stability through asymmetric methylene bridging energetic com-
pounds. (b) Energetic derivation of asymmetric iodinated compounds based on ethylene bridging.
(c) Fully iodinated asymmetric compounds through methylene bridging (this work).
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In our continuing interests in developing novel polyiodoazole compounds,
two methylene-bridged asymmetrical fully iodinated compounds, 3,4,5-triiodo-1-((2,4,5-
triiodo-1H-imidazol-1-yl)methyl)-1H-pyrazole (3) and 3,4,5-triiodo-1-((tetraiodo-1H-pyrrol-
1-yl)methyl)-1H-pyrazole (4), were designed and synthesized (Figure 1c). Their structures
were characterized by NMR (nuclear magnetic resonance), IR (infrared radiation), EA
(element analysis), HRMS (high resolution mass spectroscopy), and X-ray single crystal
diffraction. Their properties were determined by DSC (differential scanning calorimetry)
and thermochemical computer code. In order to evaluate their application potentials, the
formulations of the prepared compounds with ammonium perchlorate (AP) were designed
based on the zero oxygen balance formula. The composite samples of 3 and 4 with AP
were prepared by mixing the components using mechanical grinding, and the composites
were characterized by EDS (energy dispersive spectroscopy), and IR. Their combustion
performances were tested by TGA (thermos gravimetric analyzer) and the hot spot test.

2. Results and Discussion
2.1. Synthesis

The starting material (TIP, TIM, and TIPL) was prepared based on methods found in
the literature [21,25,26]. The methylene bridge was introduced by reacting formaldehyde
with TIP, resulting in the intermediate 1, then it was treated with thionyl chloride in
chloroform to give 2, according to references (Scheme 1) [43]. Finally, 2 was reacted with
TIM potassium salt or TIPL sodium salt in acetonitrile or tetrahydrofuran by adding a
catalytic amount of tetrabutylammonium bromide (TBAB) as a phase-transfer catalyst to
obtain 3 or 4 with a yield of 86% and 85% yield, respectively.
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2.2. Single-Crystal X-ray Analysis

The suitable single crystal of 3 was obtained by slow evaporation of 3 in a saturated
DMSO solution. It crystallizes in monoclinic space group Fdd2 with a crystal density of
3.606 g cm−3 at 150 K (Figure 2a and Table S1). The pyrazole ring and imidazole ring forms
a dihedral angle of 89.27◦ (Figure 2b). A face-to-face stacking with a packing coefficient of
66.5% was observed in the packing diagram of 3. The distance between the two imidazole
layers is 3.57 Å, implying the existence of π-π interactions (Figure 2c).

2.3. Physicochemical and Energetic Properties

The thermal stability of the prepared compounds was measured by DSC, as shown in
Table 1, Figures S10 and S12. After linking by methylene bridge, the initial decomposition
temperature (Td) of 3 and 4 was significantly improved, at 33 ◦C and 94 ◦C higher than
TIM and TIPL, respectively (3: 285 ◦C, 4: 260 ◦C Figure S13). In order to have a better
understanding of the relationship between structure and properties, the analysis of surface
electrostatic potential (ESP) was performed by Multiwfn v3.8 software to investigate the
intermolecular halogen bond interactions [44]. The strength of the halogen bond is generally
measured by the V(s,max) in the σ-hole region of the electrostatic potential (ESP) [45–47].
As shown in Figure 3a,b, the V(s,max) of single-ring TIM and TIPL is around the N-H atom,
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which is not favorable to stabilizing the molecule. In 3 and 4, the V(s,max) is surrounding
the pyrazole ring and the methylene bridge, and the V(s,max) values are slightly higher than
that in TIM and TIPL, indicating that the strength of the halogen bond in a double-ring
system is higher than that in a single-ring system (3: 39.04 kcal mol−1; 4: 34.09 kcal mol−1,
TIM: 34.16 kcal mol−1; TIPL: 32.17 kcal mol−1). These results are also consistent with the
experimental results (Td: 3: 285 ◦C, 4: 260 ◦C, TIM: 252 ◦C, TIPL: 168 ◦C).
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Table 1. Physicochemical and energetic properties of compounds 1, 2, 3, and 4.

Compd Tm
a (◦C) Td

b (◦C) d c (g cm−3) ∆Hf
d (kJ

mol−1)
D e (m s−1) P f (Gpa)

Iodine
Content (%)

3 244 285 3.606 676.4 2574 6.77 84.27
4 187 260 3.024 967.8 2376 5.77 86.38

TIM 191 252 3.27 416.0 2646 4.37 85.41
TIPL - 168 3.62 449.9 2253 3.27 88.95

a Melting point temperature from DSC (5 ◦C min−1). b Decomposition temperature from DSC (5 ◦C min−1).
c Density measured using a gas pycnometer at 25 ◦C. d Heat of formation—Gaussian 09 (Revision E.01).
e Detonation velocity—EXPLO5 V6.05. f Detonation pressure—EXPLO5 V6.05.
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With high iodine content, the density of the compounds remains at a high level, with a
density of 3.606 g cm−3 and 3.024 g cm−3 for 3 and 4, respectively (Table 1 and Figure S13).
The heats of formation (∆Hf) were computed by Gaussian 09 software (see Supplementary
Materials Scheme S1 and Table S2). Based on the heat formation enthalpy (∆Hf) and density,
the detonation velocities (D) and pressures (P) were calculated using the EXPLO5 (V6.05)
program. It was observed that 3 and 4 have higher detonation pressures (6.77 GPa and
5.77 GPa, respectively) and detonation velocities (2574 and 2376 m s−1, respectively) than
the fully iodinated single-ring compound (D: TIM: 4.37 GPa, TIPL: 3.27 GPa; P: TIM:
416.0 m s−1, TIPL: 449.9 m s−1), which contributes to achieving a wider range of sterilization.

Microbiological tests were carried out to assess the bactericidal performances of
compound 3 and 4 against two representative bacteria: Gram-positive Staphylococcus aureus
(S. aureus) and Gram-negative Escherichia coli (E. coli). The sample was heated and burned
by an alcohol lamp to generate smoke containing iodine in a small test tube (33 mL), then
after waiting 5 s, the sample slowly and safely released large amounts of iodine vapor.
The stained paper was placed around the mouth of the test tube, thereby receiving direct
contact with the iodine vapor. Next, the treated stained paper was cultured overnight
in Luria-Bertani (LB) medium at 37 ◦C in an incubator shaker, and then quantitative
bactericidal performance was characterized by the plate count method. For comparison,
the stained paper samples were immersed with liquid bacterial growth media and were
directly cultured following the same procedure. The final concentration of bacteria was
5 × 105~5 × 106 CFU mL−1. The results showed that after a few seconds (5 s) in the
presence of small doses of 5 mg, both compound 3 and 4 showed high antibacterial effects
on the two bacteria, with an inhibition rate of ≥99.9% against S. aureus and E. coli (Figure 4).
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2.4. Design and Tests of High Iodine Content Composites

In order to achieve complete combustion and a better sterilization effect, the mixing of
fully iodinated compounds with ammonium perchlorate (AP) was designed and calculated.
The oxygen balanced composite materials of 3+AP (F1) and 4+AP (F2) were designed
to achieve zero oxygen balance (see Supplementary Materials Table S3). Based on the
calculated results, formulations with high iodine contents of 47.33% (F1) and 48.61% (F2)
of the prepared compounds with AP were produced by mechanical grinding. Energy
dispersive spectroscopy (EDS) tests and IR (Figure S14) were performed to examine the
element composition in both formulations. It can be seen from Figure 5a,b that all elements
were detected on both formulations, indicating that finely mixed composites were achieved.
A more uniform distribution of elemental iodine in F1 demonstrated a better mixing of
compound 3 and AP.
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The thermal decomposition processes of F1 and F2 were studied by differential scan-
ning calorimetry (DSC) and thermogravimetric analysis (TGA). They showed a thermal
decomposition temperature above 260 ◦C, indicating good thermal stability (F1: 289.34 ◦C,
F2: 265.11 ◦C) (see Supplementary Materials Figures S15 and S16). In the TG curve (see
Supplementary Materials Figure S17), both composites showed that a one-stage weight
loss started at 220 ◦C, with a weight loss of 97.45% for composite F1 and 94.60% for
F2. Compared to the neat samples of 3 or 4, a larger weight loss was observed after
mixing with AP, especially for 3, where more than 17% weight loss was achieved (see
Supplementary Materials). The decomposition process of 3 and 4 and their composition
with AP were tested by placing the samples on an asbestos mesh under heating. As shown
in Figure 6, the decomposition process of 3 and 4 was mild and generated continuous
smoking, with a large amount of remaining black residue observed. On the other hand, for
the decomposition process of the composite materials containing AP, a complete decompo-
sition was achieved and small amounts of solid residues were observed. Additionally, a
flame was observed during the composition process of both of the composite materials con-
taining AP, demonstrating that the formula composite material has better redox reactions
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and generates more gas products that are beneficial for distributing the iodine species to
a larger area.
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3. Materials and Methods
3.1. General Methods

1H and 13C NMR spectra were tested using a Bruker 400 MHz spectrometer (400 and
100 MHz, respectively) in d-DMSO. Chemical shifts are reported as δ values relative to
internal standard d-DMSO (δ 2.50 for 1H NMR and 39.52 for 13C NMR). Infrared spectra
(IR) were obtained on a PerkinElmer Spectrum BX FT-IR instrument equipped with an
ATR unit at 25 ◦C. Elemental analyses of C/H/N/I were investigated on a Vario EL III
Analyzer. The onset decomposition temperature was measured using a TA Instruments
DSC25 differential scanning calorimeter at a heating rate of 5 ◦C min−1 under dry nitrogen
atmosphere. Densities were determined at room temperature by a Micromeritics AccuPyc
1340 gas pycnometer.

Fully iodinated monocyclic compound precursors 3,4,5-triiodo-1H-pyrazole (TIP),
2,4,5-triiodo-1H-imidazole (TIM), and 2,3,4,5-tetraiodo-1H-pyrrole (TIPL) were synthesized
as references [16,20,21].

3.2. (3,4,5-Triiodo-1H-pyrazol-1-yl) Methanol (1)

To a 250 mL round bottle flask, 3,4,5-triiodo-1H-pyrazole (TIP) (4.46 g, 10 mmol) was
dissolved in 52 mL of ethanol. Subsequently, formaldehyde (HCHO, 37%) (10 mmol) was
added. The resulting mixture was heated at 60 ◦C for 1 h, then the reaction temperature
was slowly decreased to room temperature and reacted for another 48 h. The resulting
solution was poured into ice water (100 g). A white precipitate was deposited. The solid
was collected by filtration, and dried to yield 3.2 g of white solid compound 1 (67%). 1H
NMR (d6-DMSO): δ 7.04 (s, 1H), 5.46 (s, 2H) ppm. 13C NMR (d6-DMSO): δ 108.97, 97.80,
88.07, 75.64 ppm. IR (KBr pellet) υ 3069.74, 2943.57, 2807.72, 1427.48, 1384.11, 1313.03,
1290.81, 1270.44, 1186.61, 1071.79, 1040.75, 979.49, 961.46, 747.47, 648.17, 627.89, 509.87,
450.26, 418.64 cm−1. EA (C4H3N2I3O, 475.74): Calcd (%), C, 10.10; H, 0.64; I, 80.02; N, 5.89;
O, 3.36; Found (%), C, 10.00; H, 0.54; I, 80.23; N, 5.68; O, 3.26 (Figures S1 and S2).

To a 250 mL round bottle flask, 3,4,5-triiodo-1H-pyrazole (TIP) (4.46 g, 10 mmol) was
dissolved in 52 mL of ethanol. Subsequently, formaldehyde (HCHO, 37%) (10 mmol) was
added. The resulting mixture was heated at 60 ◦C for 1 h, then the reaction temperature
was slowly decreased to room temperature and reacted for another 48 h. The resulting
solution was poured into ice water (100 g). A white precipitate was deposited. The solid
was collected by filtration, and dried to yield 3.2 g of white solid compound 1 (67%). 1H
NMR (d6-DMSO): δ 7.04 (s, 1H), 5.46 (s, 2H) ppm. 13C NMR (d6-DMSO): δ 108.97, 97.80,
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88.07, 75.64 ppm. IR (KBr pellet) υ 3069.74, 2943.57, 2807.72, 1427.48, 1384.11, 1313.03,
1290.81, 1270.44, 1186.61, 1071.79, 1040.75, 979.49, 961.46, 747.47, 648.17, 627.89, 509.87,
450.26, 418.64 cm−1. EA (C4H3N2I3O, 475.74): Calcd (%), C, 10.10; H, 0.64; I, 80.02; N, 5.89;
O, 3.36; Found (%), C, 10.00; H, 0.54; I, 80.23; N, 5.68; O, 3.26 (Figures S1 and S2).

3.3. 1-(Chloromethyl)-3,4,5-triiodo-1H-pyrazole (2)

The compound 1 (3.5 g, 7.36 mmol) was dissolved in 18 mL of ethanol, then 4 mL
of SOCl2 was added dropwise. The reaction mixture was stirred at 60 ◦C for 10 h, then
solvent was removed under vacuum to yield 2.8 g of white solid compound 2 (78%).
1H NMR (d6-DMSO): δ 6.18(s, 2H) ppm. 13C NMR (d6-DMSO): δ 112.37, 100.78, 90.67,
60.17 ppm. IR (KBr pellet) υ 3039.54, 2979.94, 1443.21, 1425.28, 1392.40, 1301.87, 1280.19,
1146.90, 1029.23, 976.55, 921.38, 755.35, 672.84, 647.88, 606.94, 482.61, 426.82 cm−1. EA
(C4H2ClN2I3, 493.70): Calcd (%), C, 9.72; H, 0.41; Cl, 7.17; I, 77.03; N, 5.67; Found (%), C,
9.62; H, 0.45; Cl, 7.23; I, 77.12; N, 5.57 (Figures S3 and S4).

3.4. 3,4,5-Triiodo-1-((2,4,5-triiodo-1H-imidazol-1-yl)methyl)-1H-pyrazole (3)

TIM (0.18 g, 0.4 mmol) was dissolved in 5 mL of anhydrous acetonitrile, then KOH
(0.025 g 0.44 mmol) was added. The mixture was stirred at room temperature until a clear
solution was achieved. The excess KOH was filtered off, then 2 (0.25 g, 0.5 mmol) was
added to the above reaction mixture, followed by adding tetrabutylammonium bromide
(TBAB) (0.103 g, 0.32 mmol). The mixture was heated to 75 ◦C and refluxed for another
12 h. After the reaction mixture was cooled to room temperature, a white solid was
deposited and collected by filtration to yield 0.31 g of white solid compound 3 (86%). 1H
NMR (d6-DMSO): δ 6.23 (s, 2H) ppm. 13C NMR (d6-DMSO): δ 110.64, 100.63, 99.87, 98.23,
89.35, 88.71, 66.13 ppm. IR (KBr pellet) υ 1456.49, 1443.19, 1377.62, 1354.67, 1303.11, 1280.68,
1228.02, 1199.28, 1170.36, 997.15, 968.47, 948.04, 795.73, 757.07, 424.83 cm−1. EA (C7H2N4I6,
903.45 amu): Calcd (%), C, 9.31; H, 0.22; I, 84.27; N, 6.20; Found (%), C, 9.61; H, 0.32; I,
84.37; N, 6.44. HRMS (ESIMS): calcd for C7H3N4I6

+ [M+H] + 904.4620, found 904.4621
(Figures S5, S6 and S9).

3.5. 3,4,5-Triiodo-1-((periodo-1H-pyrrol-1-yl) methyl)-1H-pyrazole (4)

TIPL (0.21 g, 0.37 mmol) was dissolved in 5 mL of anhydrous tetrahydrofuran, then
NaH (9.3 mg, 0.44 mmol) was added, and the mixture was stirred at 60 ◦C for 30 min. After
the reaction mixture was cooled down to room temperature, 2 (0.228 g, 0.46 mmol) and
tetrabutylammonium bromide (TBAB) (0.095 g, 0.30 mmol) were added to the mixture.
After heating at 75 ◦C for another 12 h, the reaction mixture was slowly cooled to room
temperature, a white solid was deposited and was collected by filtration to yield 0.32 g of
white solid compound 4 with a yield of 85%. 1H NMR (d6-DMSO): δ 6.33 (s, 2H) ppm. 13C
NMR (d6-DMSO): δ 110.21, 99.44, 91.12, 88.60, 87.78, 70.81 ppm. IR (KBr pellet) υ 1445.20,
1332.52, 1299.27, 1264.36, 1230.06, 1116.57, 965.67, 759.75, 623.02, 602.98, 494.37cm−1. EA
(C8H2N3I7, 1028.36): Calcd (%), C, 9.34; H, 0.20; I, 86.38; N, 4.09; Found (%), C, 9.44; H, 0.30;
I, 86.58; N, 4.19. HRMS (ESIMS): calcd for C8H3N3I7

+ [M+H] + 1029.3634, found 1029.3638
(Figures S7, S8 and S11).

4. Conclusions

In conclusion, two new asymmetric fully iodinated compounds (3 and 4) were de-
signed and synthesized. Their iodine contents were maintained at a high level with
the elimination of the acidic N-H and their thermal stability was improved compared
to their precursors TIM and TIPL (3: iodine content = 84.27%, Td: 285 ◦C) (4: iodine
content = 86.38%, Td: 260 ◦C). Their structures and properties were fully characterized (via
NMR, IR, HRMS, and EA), and the structure of 3 was further determined by single-crystal
X-ray diffraction. The electrostatic potential (ESP) calculations show the existence of strong
intermolecular bonds (e.g., halogen bonds), which help to achieve better thermal stability.
Additionally, the compositions of 3 or 4 with AP were designed, and their properties were
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evaluated. Two formulations possessing zero oxygen balance with high iodine content (F1:
iodine content % = 47.33%; F2: iodine content % = 48.61%) were prepared and their decom-
position behaviors were tested and analyzed. More complete combustion and fewer solid
residues were observed, thus demonstrating their great promise as biocidal composites.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/xxx/s1: X-ray crystallographic data, copies of 1H-NMR and 13C-NMR spectra, IR
and DSC Figure of compound 3 and 4, DFT Calculations and Design, calculation and characterization
of composite materials, references [48–55] are cited in there.
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