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Abstract: Breast cancer is one of the most diagnosed cancers worldwide, with an incidence of 47.8%.
Its treatment includes surgery, radiotherapy, chemotherapy, and antibodies giving a mortality of
13.6%. Breast tumor development is driven by a variety of signaling pathways with high heterogeneity
of surface receptors, which makes treatment difficult. Epigallocatechin-3-gallate (EGCG) is a natural
polyphenol isolated as the main component in green tea; it has shown multiple beneficial effects in
breast cancer, controlling proliferation, invasion, apoptosis, inflammation, and demethylation of DNA.
These properties were proved in vitro and in vivo together with synergistic effects in combination
with traditional chemotherapy, increasing the effectiveness of the treatment. This review focuses on
the effects of EGCG on the functional capabilities acquired by breast tumor cells during its multistep
development, the molecular and signal pathways involved, the synergistic effects in combination
with current drugs, and how nanomaterials can improve its bioavailability on breast cancer treatment.

Keywords: epigallocatechin-3-gallate; breast cancer; synergistic chemotherapy; metabolism; drug
delivery

1. Introduction

Breast cancer is one of the most frequent malignancies diagnosed in women around
the world, and at the same time, it is the leading cause of cancer death in adult women [1]. It
is a widely heterogeneous disease, especially in its advanced stages [2]. It can be classified
into phenotypes depending on the cellular expression of three receptors: the estrogen
receptor (ER), the progesterone receptor (PR), and receptor 2 of the epidermal human
growth factor (HER2 or ERBB2). It is defined as triple-negative breast cancer (TNBC),
a phenotype characterized by the absence of the three receptors [3]; in the clinic, this
phenotype makes up between 15 and 20% of all breast cancers diagnosed today. These
types of cancers have an aggressive course, presenting a greater capacity to metastasize and
thus worsen the prognosis [4]. TBNC patients cannot benefit from targeted anti-receptor or
hormone replacement therapies, leaving only systemic and highly cytotoxic non-targeted
treatments as an option [5]. Chemotherapy for breast cancers is based on the anthracycline–
taxane association, with a median overall survival of 36 months [6]. Furthermore, TNBCs
are remarkably heterogeneous at the transcriptional level, making their treatment and
prognosis even more difficult [7]. In this way, TNBC therapy includes chemotherapy,
radiotherapy, and surgery, being common to observe a high resistance to drugs in the tumor
mass, the appearance of strong side effects, a high tendency to relapse, and a high mortality
rate in these patients [3].
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Natural compounds have gained interest in recent times as adjuvants in new ther-
apeutic strategies to treat a variety of cancers and provide new alternatives to improve
the treatment of patients who cannot use targeted and less aggressive therapies [5]. One
of these natural products is green tea, a derivative of the leaves of the Camellia sinensis
plant; it is one of the most consumed beverages worldwide, and its use has spread over
thousands of years in various oriental cultures, such as China and India [8]. The flavonoids
present in its leaves, mainly catechins, represent 20 to 30% of its dry weight [9]. The main
catechins are epigallocatechin-3-gallate (EGCG), epigallocatechin (EGC), epicatechin (EC),
and epicatechin gallate (ECG) [10], as shown in Figure 1.
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The catechins show diverse anti-inflammatory, anticarcinogenic, metal chelating,
radical scavenging, and other biological activities [11,12]. Epidemiological studies have
described a certain trend between the cultural consumption of green tea and the low
prevalence of breast cancer in some populations [13]. Epigallocatechin-3-gallate (EGCG)
is the most abundant polyphenol in green tea, and it has been shown in vitro and in vivo
to act by modulating various signaling pathways through which it can exert a protective
anticarcinogenic effect. In addition, EGCG, in combination with natural or synthetic drugs,
improved the response to overcome the highly deleterious effects of non-targeted therapies.

2. Protective Mechanisms of EGCG in Breast Cancer

The clinical approach to breast cancer is complex due to the breadth and scope of its di-
versity, encompassing genetics, cell and tissue biology, pathology, and response to therapy.
EGCG has shown multiple effects on the major signaling pathways governing carcinogene-
sis and cancer progression, including MAP kinase (MAPK), phosphatidylinositol-3 kinase
(PI3K), nuclear factor κB (NFkB), and reducing the increased levels of phosphorylation
of ERK1/2 and Jak/STAT3 [14]. In addition, it acts by modulating the receptors typically
expressed in breast cancer, such as ER and ErbB [15–17].

2.1. Suppressive Effects of EGCG on Proliferative Signals

The signaling of the ER, PR, and HER2 receptors are overexpressed in the different cell
phenotypes of breast cancer; in this sense, EGCG showed positive effects, decreasing their
activities. For example, in MCF-7 and MDA-MB-231 cell lines, EGCG showed a similar
cytotoxic effect independent of the activation of ER and PR receptors [18]. In the T-47D cell
line (which represents the luminal A hormone-dependent subtype of breast cancer), the
incubation of EGCG and estradiol (E2) decreased the estrogen receptor alpha (Erα), which
promotes cell division in the presence of estrogen (17β-estradiol). Therefore, EGCG can
be considered a phytoestrogen due to its structural similarity to E2, a characteristic that
allows it to generate estrogenic or anti-estrogenic effects after binding to Erα receptors [18],
inhibiting the growth of several ER-negative breast cancer stem cells, such as SUM-149,
SUM-190, and MDA-MB-231, in which ER-α receptor variants are expressed such as ER-α36,
causing a reduction in the expression of such receptors. EGCG inhibits the proliferation of
triple-negative cells, MDA-MB-231 and MDA-MB-436, by the inhibition of ER-α36 [19].

EGCG inhibits the expression of epidermal growth factor receptors (EGFR or ErbB)
such as ErbB1 and ErbB2, which are overexpressed in breast cancer [19], especially in
epidermoid carcinoma (A-431) and SK-BR3. Moreover, it causes a reduction in cell viability
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by mitochondrial collapse, increased production of reactive oxygen species (ROS), and
changes in nuclear morphology [20]. The ErbB receptor family comprises four paralogous
receptor tyrosine kinases, EGFR (ErbB1/HER1), ErbB2 (HER2), ErbB3 (HER3), and ErbB4
(HER4), which are activated by a variety of growth factors, including the epidermal growth
factor (EGF), betacellulin (BTC), transforming growth factor alpha (TGF-α), and neuregulin
1 (NRG1). ErbB receptors share a common structure that is characterized by extracellular
ligand binding and intracellular kinase domains, which are separated by a single-pass
transmembrane domain [21].

ErbB receptors organize into heterodimers after their conformation is induced by
ligands, thus promoting transmembrane signaling, which is overexpressed in cancer
cells [22]. This dysregulation stimulates proliferation via the PI3K/Akt pathways and
the Ras/Raf/mitogen-activated protein kinase (MAPK) pathway, which stimulates the
activation of proliferation and survival gene transcription factors. EGCG has demonstrated
decreasing effects on the expression of these receptors due to changes in the organization
of the lipidic rafts in the plasma membrane, interfering with their binding to EGF, or due to
an increase in consumption through internalized endosomes [23,24]. ECGC makes TNBC
cells sensitive to estrogen via activation of ER-α and CCN5/WISP-2 expression, inducing
apoptosis and thus reducing proliferative effects in MCF-7 (ER-α positive), MDA-MB-231,
and HCC-70 (TNBC) line cells [25]. Moreover, EGCG inhibits the expression of the proges-
terone receptor isoforms (PR-A/B proteins), suggesting an effect on cell viability by both
ER and PR receptors [26].

2.2. EGCG Inhibits Evasion of Apoptosis in Cancer

EGCG promotes the inhibition of the PI3K/AKT pathways in T47D cells by gene and
protein expression [27], accompanied by a promotion of pro-apoptotic genes such as p53,
p21, cas3, cas9, Bax, and PTEN and a reduction of anti-apoptotic survival genes, such as
PI3K, AKT, and Bcl-2, increasing the protein expression ratio Bax/Bcl-2. The pro-apoptotic
effects of EGCG are also related to a decrease in the gene expression of hTERT, the catalytic
subunit of the telomerase enzyme, which stimulates the induction of cell senescence [27].
hTERT overexpression can predict the survival of cancer and is associated with TNM stage,
lymphatic metastasis, and a poor prognosis [28].

EGCG is also capable of reducing the expression of STAT3-NFkB by inhibiting the
selective phosphorylation of STAT3 and its subsequent translocation to the nucleus, thus
preventing its interaction with the NFkB factor and negatively regulating the expression of
CD44 [29]. The STAT3 factor has been found to be aberrantly expressed in cancer stem cells
(CSC) of breast tumors, being important in formation, self-renewal, and differentiation [27],
promoting oncogenes such as c-MYC, S-phase associated protein kinase 2 (SKP2), and
cyclin D1, as well as anti-apoptotic proteins such as Bcl-2, Bcl-xL, Mcl-1, and survivin [30].
In this way, the signaling inhibition of NFkB by STAT3 means that NFkB cannot stimulate
anti-apoptotic genes and suppress pro-apoptotic ones, as usually happens during cancer
progression [29].

2.3. EGCG Controls the Replicative Potential of Cancer

EGCG modulates the β-catenin pathway, which is dependent on Wnt signals and is
usually overexpressed in cancer cells, which promotes the dephosphorylation of β-catenin,
its accumulation, and subsequent translocation to the cell nucleus, where it acts as a tran-
scription factor for cell fate, differentiation, proliferation, and stem cell pluripotency. These
signals are critical in normal breast development, where EGCG has been shown to inhibit
the canonical pathway of this signaling in MDA-MB-231 and MCF-7 cell lines [31–33] by a
partial deactivation or dephosphorylation of the Akt proteins, essential for cell metabolism,
growth, and survival [33]. Additionally, it has been demonstrated to modulate the CCND1
gene (cyclin D1 gene), an important factor for cell cycle progression and G1/S phase
transition with antiproliferative effects [33,34].
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2.4. EGCG Inhibits Tissue Invasion and Metastasis

EGCG reduces Golgi Membrane Protein 1 (GOLM1) expression in MDA-MB-231 cells,
which is overexpressed in many solid tumors, through the HGF/HGFR/AKT/GSK-3/β-
catenin/c-Myc signaling pathway. GOLM1 is a protein that increases tumor growth and
metastasis, promoting the migration effects of cancer cells [35]. The anti-invasive effect
elicited by EGCG was demonstrated by the inhibition of matrix metalloproteinase 2 and
9 (MMP-2 and MMP-9) activities in multidrug-resistant (MDR) human breast adenocar-
cinoma cells (CF7/DOX) [36]. MMP-2 and MMP-9 are part of a key group of proteolytic
enzymes in the degradation of the extracellular matrix in invasive processes, together
with the proteins cathepsins and plasminogen, and constitute one of the key factors in the
metastatic potential and the invasive capacity of new organs by tumor cells [37].

Additionally, EGCG-induced dephosphorylation of kinase proteins in the Focal Ad-
hesion Kick (FAK) pathway, which encodes protein tyrosine kinases that are normally
concentrated in focal adhesions formed between growing cells in the presence of extracellu-
lar matrix components, suggests that EGCG inhibits the cell adhesion capacity in cancer cell
propagation [34]. Figure 2 shows the multiple activities of EGCG on breast cancer signaling.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 13 
 

 

shown to inhibit the canonical pathway of this signaling in MDA-MB-231 and MCF-7 cell 
lines [31–33] by a partial deactivation or dephosphorylation of the Akt proteins, essential 
for cell metabolism, growth, and survival [33]. Additionally, it has been demonstrated to 
modulate the CCND1 gene (cyclin D1 gene), an important factor for cell cycle progression 
and G1/S phase transition with antiproliferative effects [33,34]. 

2.4. EGCG Inhibits Tissue Invasion and Metastasis 
EGCG reduces Golgi Membrane Protein 1 (GOLM1) expression in MDA-MB-231 

cells, which is overexpressed in many solid tumors, through the HGF/HGFR/AKT/GSK-
3/β-catenin/c-Myc signaling pathway. GOLM1 is a protein that increases tumor growth 
and metastasis, promoting the migration effects of cancer cells [35]. The anti-invasive ef-
fect elicited by EGCG was demonstrated by the inhibition of matrix metalloproteinase 2 
and 9 (MMP-2 and MMP-9) activities in multidrug-resistant (MDR) human breast adeno-
carcinoma cells (CF7/DOX) [36]. MMP-2 and MMP-9 are part of a key group of proteolytic 
enzymes in the degradation of the extracellular matrix in invasive processes, together with 
the proteins cathepsins and plasminogen, and constitute one of the key factors in the met-
astatic potential and the invasive capacity of new organs by tumor cells [37]. 

Additionally, EGCG-induced dephosphorylation of kinase proteins in the Focal Ad-
hesion Kick (FAK) pathway, which encodes protein tyrosine kinases that are normally 
concentrated in focal adhesions formed between growing cells in the presence of extracel-
lular matrix components, suggests that EGCG inhibits the cell adhesion capacity in cancer 
cell propagation [34]. Figure 2 shows the multiple activities of EGCG on breast cancer 
signaling. 

 
Figure 2. Multiple effects of EGCG in breast cancer. EGCG inhibits phosphorylation and activation 
of signaling pathways such as β-catenin, PI3K/AKT, and STAT3, preventing the translocation of its 
effectors to the nucleus. The main effect of this is the promotion of apoptosis and the inhibition of 
anti-apoptotic genes. In addition, this causes a decrease in the gene expression of the catalytic 

Figure 2. Multiple effects of EGCG in breast cancer. EGCG inhibits phosphorylation and activation
of signaling pathways such as β-catenin, PI3K/AKT, and STAT3, preventing the translocation of
its effectors to the nucleus. The main effect of this is the promotion of apoptosis and the inhibition
of anti-apoptotic genes. In addition, this causes a decrease in the gene expression of the catalytic
subunit of the telomerase enzyme hTERT. EGCG can act as a competitive inhibitor of hormones such
as estradiol at key receptors for tumor growth, decrease its surface expression, alter its dispositions
on the surface due to changes in lipid Rafts, or increase endosomal activity in the cell.

2.5. Effects of EGCG on the Immune System

Myeloid-derived suppressor cells (MDSCs) are responsible for the typical immuno-
suppression of breast cancer cells, which is inhibited by EGCG in 4T1 cells [38]. MDSC-
mediated immunosuppression is widely described in human and mouse tumors and is
characterized by the consequent activation of immune suppression factors such as Arg-1
(arginase 1), iNOS (inducible nitric oxide synthase), NO (nitric oxide), and ROS (reactive
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oxygen species) [39,40]. In humans, MDSCs are classified into monocytic-MDSCs (CD11b+
CD14+ HLA-DR−/low CD15−) and granulocytic-MDSCs (CD11b+ CD14−HLA-DR-/low
CD15+). In breast cancer patients, MDSCs are functionally and phenotypically similar
to bone marrow-derived MDSCs, suggesting their origin in the precursors of bone mar-
row [41].

EGCG suppressed the cell viability, migration, and invasion of 4T1 cells and also
induced apoptosis at concentrations above 50 µg/mL. At lower concentrations (5 µg/mL),
EGCG arrested MDSCs at G0/G1phases and promoted apoptosis in 4T1. The inhibition
of MDSCs by EGCG was evidenced for downregulation of the canonical regulation axis
Arg-1/iNOS/Nox2/NF-κB/STAT3, reducing Nox2, p47-phox, and gp91-phox NADPH
oxidase subunit expression. Moreover, NF-κB was downregulated together with cytokine
expressions IL-6, IL-10, TGF-β, and GM-CSF [38]. In mice plasma, EGCG concentration
rises to 0.5 µg/mL, increasing CD4+ and CD8+ in peripheral blood, spleen, and tumor
tissues, and reducing MDSCs. Therefore, tumors in mice are more susceptible to immune
response at the initiation, growth, and metastasis stages, providing a better perspective of
therapy [38].

2.6. Epigenetic Regulation of Cancer

EGCG has been shown to exert an epigenetic protective mechanism in various types
of cancer, such as colorectal, endometrial, and breast cancer. The tumor suppressor gene
SCUBE2 is hypermethylated in breast cancer, and EGCG can block its methylation by
reducing DNA methyltransferase (DNMT) activity, increasing the protein expression of
E-cadherin, and decreasing vimentin [42]. Inhibition of DNMT’s activity leads to the
sensitization of cancer cells to therapies by disabling or reversing methylation in certain
tumor suppressor genes [43]. In this way, EGCG contributes to suppressing the processes of
cell proliferation, migration, and invasion by allowing the regulation of genes involved in
epithelial–mesenchymal transition (EMT) by SCUBE2. The mechanism of action of EGCG
on DNMT is in the MTAsa domain of the enzyme, competing with its intrinsic inhibitor
S-adenosyl-L-homocysteine (SAH). Moreover, EGCG reduces IFI16 expression and ARNm
of DNMT in cancer cell lines [44]. A similar process of demethylation was demonstrated
in the RASSF1A tumor suppressor gene in BT-549 human breast ductal carcinoma cells,
which is usually hypermethylated. EGCG causes cell cycle arrest by preventing cyclin
accumulation D1 [45].

Combinations of EGCG with other active demethylating compounds of botanical
origins, such as sulforaphane (SFN), show an epigenetic protective effect, correcting the
epigenetic aberrations that condition the non-expression of ERα in negative cell lines for
these receptors, triggering a substantial improvement in targeted hormonal therapies, and
sensitizing tumor cells to treatments based on estrogen antagonists such as tamoxifen [46].
At the post-transcriptional level, EGCG regulates gene expression mediated by short non-
coding RNA sequences such as miR-25 [47]. This sequence constitutes a key regulator
in cancer progression and tumor development that is overexpressed in breast cancer. In
MCF-7 cells, EGCG reduces cell proliferation by inducing apoptosis after miR-25 silencing,
affecting invasiveness [47].

Moreover, EGCG decreases rRNA transcription and cell proliferation in MCF-7 cells
by lysine-demethylase 2A (KDM2A) activation due to AMPK activation and ROS produc-
tion [48].

2.7. EGCG on Cancer Metabolism

EGCG interfered with glycolytic processes, decreasing the expression of key enzymes
involved in the regulation of glucose metabolism and lactate production, such as phos-
phofructokinase (PFK), lactate dehydrogenase (LDH), and hexokinase (HK), as well as the
glucose transporter GLUT1, producing lower glucose consumption, lactate production,
and ATP generated by metabolism [49]. EGCG also inhibited the expression of hypoxia-
inducible factor 1α (HIF1α), which is overexpressed in tumors [50]. Moreover, EGCG
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inhibits protein metabolism, reducing proline dehydrogenase (PRODH) overexpressed in
TNBC HS578T cells, 6.6-fold more than normal cells, preventing epithelial–mesenchymal
transition and metastasis in breast cancer cells, in a patient-derived xenograft (PDX) mouse
model [51]. EGCG reduces cell viability by reducing the activity of the protein tyrosine
phosphatase family (PTPs) as PTP1B [52], which is overexpressed in tumors, including
breast cancer [53]. Moreover, EGCG interferes with leptin-induced cell proliferation, which
acts as a hormone secreted by white adipocytes and other tissues such as the mammary
epithelium and the placenta and regulates various bodily functions such as the mainte-
nance of homeostasis, food intake, immunity, and metabolism [54]. In breast cancer, leptin
receptors are overexpressed on the cell surface of the mammary epithelium, conditioning
a greater progression of the tumor dependent on this hormone [55]. EGCG inhibit the
induction of adipogenic biomarkers such as lipoprotein lipase, adiponectin, leptin, fatty
acid synthase, and fatty acid binding protein 4, affecting adipose-derived mesenchymal
stem cell differentiation into adipocytes and paracrine regulation of the TNBC invasive phe-
notype, which is correlated with increased STAT3 phosphorylation status [56]. Additionally,
EGCG inhibits the signals that trigger the cancer-associated adipocyte (CAA)-like pheno-
type by human adipose-derived mesenchymal stem/stromal cells (ADMSC), in studies
where ADMSC were exposed to human TNBC-derived MDA-MB-231 (pro-inflammatory
microenvironment), reducing expression of cytokines such as CCL2, CCL5, IL-1β, and
IL-6 [57].

3. Synergistic Effect of EGCG in the Treatment of Breast Cancer

Breast cancer monotherapies are not completely effective for the treatment of advanced
neoplasms, but the combination of traditional chemotherapeutic agents together with
EGCG has shown sensitization of tumor cells, improving treatment response. Here, we
summarize the last combination treatments using EGCG in Table 1.

Table 1. Synergic effects of EGCG in breast cancer models.

Study Treatment Models Outcomes References

in vitro studies

Cell viability by cell
proliferation assay

4-hydroxytamoxifen (1µM) +
5–25µM EGCG.

7 days

MCF-7, 47D,
MDA-MB-231 and HS578T

Decrease cell viability.
Synergistic activity of EGCG in

MDA-MB-231 cells at 25µM.
[58]

Cell growth, apoptosis,
and epigenetic regulation
of transcriptional activity

of DNA

Clofarabine/ EGCG 10 µM.
4 days MCF7 and MDA-MB-231

Decrease cell growth with low
toxicity. Increase in apoptosis

and reactivation of DNA
methylation-silenced tumor

suppressor genes such as RARB.

[59]

Effects of Tapentadol on
viability and migration

Tapentadol 1–80 µg/mL +
EGCG 1–160 µM MDA-MB-231

Reduction of proliferation by
impairing cell-cycle progression.

Increase in apoptosis.
[60]

Inhibition insulin receptor
substrate (IRS)/MAPK

24 h of sunitinib and then 12 h
with pulsed EGCG 0–50 µM

MCF-7, H460, and H1975,
with PIK3CA mutations

Downregulation of insulin
receptor substrate (IRS),

suppressed mitogenic effects,
and inhibition of

IRS/MAPK/p-S6K1 signaling.

[61]

Reactivation of ERa by
EGCG and histone

deacetylase inhibitor

Trichostatin A (TSA) (100 ng/mL
for 12 h) + 10 µM EGCG MDA-MB-231

Sensibilization of ERα-negative
breast cancer cells to the

activator 17β-estradiol (E2) and
antagonist tamoxifen.

[62]

Effects of p53 gene
silencing in conjunction

with EGCG.
p53 siRNA 40 nmol + EGCG 24 h Hs578T

Activation of pro-apoptotic and
inhibition of anti-apoptotic
genes, autophagy, and cell

network formation.

[63]

Effects of EGCG and IIF in
the EGFR inhibition

IIF 15 or 30 µM + 25 µg/mL
EGCG by 24 h MCF-7 and MDA-MB-231

Inhibition of EGFR
phosphorylation, invasion, and

metastasis.
[64]

Synergism of SAHA and
EGCG in TNBC cells

Suberoylanilide hydroxamic acid
(SAHA) 25 mM + EGCG

100 mM, every 24 h/3 days

MDA-MB-157,
MDA-MB-231, and

HCC1806

Increase apoptosis by decreasing
cIAP2 and increasing

pro-apoptotic caspase 7.
Inhibition of cell migration.

[65]
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Table 1. Cont.

Study Treatment Models Outcomes References

Synergism of 5-aza 2’dC
with EGCG

5-aza 2′dC 5 µM+ EGCG 50 µM.
7 days

MCF-7, MDA-MB 231 and
MCF-10A

Synergic effects in cell growth
inhibition by epigenetic

mechanisms.
[66]

Evaluation of epigenetic
induction of matrix
metalloproteinase-3

green tea polyphenols 10µg/mL
+ EGCG 20µM 24 h MCF-7 and MDA-MB-231

Activation of TIMP-3 and
reduction of zeste homolog 2

(EZH2) and class I histone
deacetylases (HDACs).

[67]

in vivo studies
FLuc2 fusion with

N-terminal 100-aa of Nrf2
and activation of

Nrf2-ARE signaling

Oral cisplatin 5 mg/kg + EGCG
100 mg/kg. 11 days

MDA-MB231 tumor
xenografts

Synergistic activity in vivo by
Tumor size reduction in TNBC

tumor xenografts.
[68]

Effects of EGCG on oral
bioavailability of

Tamoxifen

Tamoxifen (IV, 2 mg/kg and PO,
10 mg/kg), followed by EGCG

(0.5, 3 and 10 mg/kg).
Male Sprague Dawley rats

Increase of bioavailability
1.48–1.77-fold of Tamoxifen in

the presence of EGCG.
[69]

Evaluate angiogenesis and
VEGF levels

EGCG single doses 4 h after
sunitinib treatment

MCF-7 and H460
xenograft tumors

Downregulation of IRS-1 levels
and suppressed mitogenic

effects. Marked suppression of
the IRS/MAPK/p-S6K1

signaling cascade.

[61]

4. Absorption and Metabolism of EGCG

The bioavailability of EGCG was studied by Nakagawa and Miyazawa in 1997, deter-
mining that EGCG is absorbed in the intestinal mucosa. After 1 h of supply of a single dose
of EGCG (500 mg/kg, rat), the concentration rose to 12.3 nmol/mL in plasma, 48.4 nmol/g
in the liver, 0.5 nmol/g in the brain, 565 nmol/g in the small intestinal mucosa, and
68.6 nmol/g in the colon mucosa. The concentration of EGCG in tissue corresponds to
0.0003–0.45% of the ingested compound [70], evidencing poor bioavailability. In humans,
the concentration in plasma was 857 ng·h/mL after an intake of 95 mg of EGCG and this
concentration increased when it was co-administrated with caffeine 40 mg, reaching a
maximum of 1370 ng·h/mL [70]. The absorption of EGCG started after 8 h, reaching a
maximum concentration after 24 h of intake, suggesting that its absorption undergoes
gut microbiota metabolism [71]. Bacteria of the gut rat microbiota include Enterobacter
aerogenes, Raoultella planticola, Klebsiella pneumoniae susp. pneumoniae, and Bifidobacterium
longum subsp. Infantis promote the hydrolysis of EGCG to EGC and gallic acid, and from
these compounds, a series of metabolites are produced, which are determined in cecal,
feces, and urine [72], Figure 3.
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From the hydrolysis of EGCG, EGC and gallic acid are produced. Further reductive
cleavage of EGC produces compound 3; then, dehydroxylation produces compound 4,
followed by the degradation of the phloroglucinol ring to produce the main compound 5.
When EGCG was administered orally, compounds 4, 5, 6, 7, and 8 were found in thefeces.
When it was administered directly to the cecum, compounds 3, 4, 5, and 6 were produced.
After the degradation of EGCG by gut bacteria, the main compound isolated in urine was
9 [71].

5. Strategies for EGCG Delivery

Despite the broad spectrum of action and innocuousness of EGCG, this is a sensitive
molecule to oxidation or hydrolysis, depending on pH, temperature, and concentration,
which can occur in culture media, the stomach, or the intestine [73]. Moreover, poor ab-
sorption and high degradation by gut microbiota reduce the possibilities for clinical use
of this compound. These drawbacks are being overcome with the use of drug delivery
technologies that load the compound in nanoethosomes, vesicle systems, nanopores, emul-
sions, etc. These materials show enhanced physicochemical and bioactivity properties, and
the incorporation of tumor-specific markers allows increased delivery to tumors. These
formulations have been proven effective against many diseases. Table 2 summarizes EGCG
formulations and nanomaterials used in breast cancer studies.

Table 2. EGCG nanomaterials as drug delivery for breast cancer treatment.

Formulation Study Results References

In vitro studies

Dimeric-EGCG oxidized
and polymerized.

Competitive inhibition of
Amphiregulin (AREG) in

MDA-MB-231 cells.

Proliferation and migration were
significantly inhibited by
dimeric-EGCG at 10 µM.

[74]

Peracetate-protected (−)-EGCG
(Pro-EGCG).

Anticancerogenic effects in
MDA-MB-231 tumors.

Enhanced tumor and proteasome
inhibition, apoptosis induction, and

accumulation.
[75]

Gold nanoparticles (AuNPs) with
ratios EGCG/gold 1:2 to 10:1. Study in MDA-MB-231 cells.

Particles of 39 nm in diameter
enhanced irradiation-induced

cell death.
[76]

Colloidal mesoporous silica (CMS)
and breast tumor-homing
cell-penetrating peptide
(PEGA-pVEC peptide).

Comparison of anticancerogenic
properties of EGCG into CMS and

CMS@peptide.

CMS@peptide enhanced the efficacy
of EGCG on breast tumors by targeted

accumulation and release.
[77]

Specific aptamers to HER2 and ATP
organized in a hierarchical manner

loaded with EGCG and
protamine sulfate.

SK-BR-3; MDA-MB-231.
Improved inhibitory tumor growth
and minimum side effects to normal

organs and tissues.
[78]

Biodegradable gel: EGCG + siRNA +
protamine.

MDA-MB-231 and xenograft
MDA-MB-231 tumor-bearing mice.

The formulation enhanced
cytotoxicity to cancer cells 15-fold,

with little toxicity to normal tissues.
[79]

Nanostructured lipid carriers
Arginyl-glycyl-aspartic acid + EGCG;

EGCG-loaded NLC-RGD.

Cytotoxic and apoptotic effects and
uptake into MDA-MB-231 cells

were evaluated.

Nanoparticles with a size of 85 nm
enhanced the apoptotic activity of
EGCG with higher accumulation

in tumors.

[80]

Mesoporous silica gold cluster
nanodrug loaded with dual drugs,

ZD6474 and EGCG.

Adjuvant treatment to Tamoxifen in
MCF-7 and T-47D cells.

The nanoformulation enhanced the
toxicity of drugs against
chemoresistant cancers.

[81]

2 EGCG nanoparticles FA-NPS-PEG
and FA-PEG-NPS.

Modulation of PI3K-Akt pathway and
regulatory proteins in MCF-7 cells.

EGCG-FA-NPS-PEG, with a size of
185.0 nm and an encapsulation

efficiency of 90.36%, enhanced the
cytotoxic activity with IC50 of

65.9µg/mL.

[82]

FA-NPS-PEG and FA-PEG-NPS
nanoparticles.

CNN5 gene activation in MCF-7 (ER-α
positive) and MDA-MB-231 (TNBC).

EGCG makes TNBC cells sensitive to
estrogen via activating ER-α, reducing

the viability and enhancing
tumor formation.

[25]
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Table 2. Cont.

Formulation Study Results References

In vivo studies

EGCG-nanoethosomes, loaded with
docetaxel (DT).

Transdermal delivery using mouse
skin and treatment of skin

cancer growth.

Mice treated with
DT-EGCG-nanoethosomes exhibited a

significant tumor size reduction by
31.5% after 14 d.

[83]

Natural nanovehicles (exosome-like)
from tea flowers (TFENs), particle

sizes 131 nm.

Evaluation of tumor growth
and metastasis.

Inhibition of growth and
tumor metastasis. [84]

Encapsulation of EGCG in
ultradeformable colloidal vesicular

systems or penetration
enhancer-containing vesicles (PEVs).

Study of photodegradation, stability,
and anticancer properties.

EGCG-loaded PEVs increase the
cytotoxic activity of epidermoid

carcinoma cells (A431) and reduce
tumor sizes.

[85]

PC@DOX-PA/EGCG nanoparticles:
Phosphatidylcholine, doxorubicin,

and procyanidin with HER2, ER, and
PR ligands on the surface.

Antitumor evaluation activity in
BT-474, MCF-7, EMT-6, and

MDA-MB-231.

Nanoparticles can target breast cancer
cells and inhibit tumoral growth. [86]

Folate peptide nanoparticles loaded
with EGCG (FP-EGCG-NPs).

Antitumor activity in MDA-MB-231
and MCF-7 cells.

FP-EGCG-NPs enhanced the
antitumor activity. [87]

EGCG in solid lipid nanoparticles
conjugated to gastrin-releasing

peptide receptors (GRPR).
Tumoral studies on C57/BL6 mice.

Enhanced cytotoxicity to cancer cells,
reduction in tumor volume, and

greater animal survivability.
[88]

6. Conclusions

EGCG was shown to inhibit breast cancer tumors and enhance the effects of anticancer
drugs in vitro and in vivo. This transversality in its effects could be taken advantage of,
especially in times when studies for the establishment of personalized therapy and the se-
lection of alternative therapeutic candidates are increasingly prevalent. The bioavailability
of EGCG is improved by nanomaterials, which can include specific cellular signals that
increase the drug’s delivery to tumors. Moreover, clinical trials showed that high doses
of EGCG, or green tea extract, are safe and modulate beneficial health factors. There is no
doubt that EGCG constitutes a complementary and versatile adjuvant candidate for the
treatment of breast cancer.
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