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Abstract: Benzoxazole and benzothiazole have a broad spectrum of agricultural biological activities,
such as antibacterial, antiviral, and herbicidal activities, which are important fused heterocyclic
scaffold structures in agrochemical discovery. In recent years, great progress has been made in
the research of benzoxazoles and benzothiazoles, especially in the development of herbicides and
insecticides. With the widespread use of benzoxazoles and benzothiazoles, there may be more new
products containing benzoxazoles and benzothiazoles in the future. We systematically reviewed the
application of benzoxazoles and benzothiazoles in discovering new agrochemicals in the past two
decades and summarized the antibacterial, fungicidal, antiviral, herbicidal, and insecticidal activities
of the active compounds. We also discussed the structural–activity relationship and mechanism of
the active compounds. This work aims to provide inspiration and ideas for the discovery of new
agrochemicals based on benzoxazole and benzothiazole.

Keywords: benzoxazole; benzothiazole; agrochemical; SAR; mechanism

1. Introduction

In global agricultural production, plant diseases, insects, and weed damage are the
main causes of crop yield loss [1,2]. Fungi [3,4], bacteria [5–7], plant viruses [8,9], pests
[10,11], weeds [12], nematodes [13–16], and mites [17] cause huge economic losses to the
world’s agriculture every year. At present, the use of agrochemicals is still one of the
most effective means to control plant diseases, insects, and grass damage, especially in
the management of pest resistance and resistant weeds [18,19]. More importantly, when
pests (such as armyworms [20], locusts [21], and walkers [22]) break out in large areas,
the use of highly efficient chemical pesticides is the most effective strategy for rapid pest
control [23]. However, long-term use of traditional agrochemicals will not only pollute the
environment but also increase the resistance of pathogens [24], resulting in more difficult
management of plant diseases, insects, and weeds [7,25,26]. Therefore, the development of
new agrochemicals with unique action mechanisms to replace traditional pesticides is an
urgent problem to be solved in the management of plant diseases, pests, and grass diseases.

Benzoxazole is a combination of a benzene ring and an oxazole ring; benzothiazole
is the bioisostere of benzoxazole. They are widely used in drug research and develop-
ment as the core scaffold structure [27–32] and play an important role in drug discovery.
Twenty years ago, the research on benzothiazole and benzoxazole was widely focused
on the field of medicine [33–36]; on the contrary, there was little research in the field of
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agrochemicals. However, 10 years ago, there was a large amount of research on benzoth-
iazole and benzoxazole in new agrochemicals. In terms of commercial agrochemicals,
benzoxazole and benzothiazole agrochemicals play an important role. For example, the
herbicides metamifop (Figure 1) and fenoxaprop-p-ethyl are acetyl-coenzyme A carboxy-
lase inhibitors, which inhibit the growth of grasses mainly by inhibiting the synthesis of
plant fatty acids, eventually leading to the death of plants [37–40]. Mefenacet, a systemic
herbicide, is an inhibitor of cell generation and division, which can prevent cell division
and elongation in weed meristem and has a good control effect on barnyard grass [41].
The fungicide benthiavalicarbisopropyl has an inhibitory effect on the sporangia formation
and germination of Phytophthora at low mass concentrations. The mechanism of action
is still unclear, but it does not affect the oxidation and synthesis of nucleic acid and pro-
tein [42,43]. The antiviral agent Dufulin has been widely used against tomato virus disease,
cucumber virus disease, tobacco virus disease, and southern rice black-streaked dwarf
virus disease [44–46]. Oxazosulfyl, the first benzoxazole insecticide with a broad spectrum
of insecticidal activity, is currently mainly used to control rice pests, but its mechanism of
action is still unclear [47,48].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 2 of 20 
 

 

the field of medicine [33–36]; on the contrary, there was little research in the field of agro-
chemicals. However, 10 years ago, there was a large amount of research on benzothiazole 
and benzoxazole in new agrochemicals. In terms of commercial agrochemicals, benzoxa-
zole and benzothiazole agrochemicals play an important role. For example, the herbicides 
metamifop (Figure 1) and fenoxaprop-p-ethyl are acetyl-coenzyme A carboxylase inhibi-
tors, which inhibit the growth of grasses mainly by inhibiting the synthesis of plant fatty 
acids, eventually leading to the death of plants [37–40]. Mefenacet, a systemic herbicide, 
is an inhibitor of cell generation and division, which can prevent cell division and elonga-
tion in weed meristem and has a good control effect on barnyard grass [41]. The fungicide 
benthiavalicarbisopropyl has an inhibitory effect on the sporangia formation and germi-
nation of Phytophthora at low mass concentrations. The mechanism of action is still un-
clear, but it does not affect the oxidation and synthesis of nucleic acid and protein [42,43]. 
The antiviral agent Dufulin has been widely used against tomato virus disease, cucumber 
virus disease, tobacco virus disease, and southern rice black-streaked dwarf virus disease 
[44–46]. Oxazosulfyl, the first benzoxazole insecticide with a broad spectrum of insecti-
cidal activity, is currently mainly used to control rice pests, but its mechanism of action is 
still unclear [47,48]. 

Benzoxazole and benzothiazole have stable structures and are easily modified, which 
play an important role in the discovery of new agrochemicals. Research on the discovery 
of new agrochemicals based on benzoxazole and benzothiazole scaffolds may be strength-
ened in the future. There is no comprehensive review of benzoxazole and benzothiazole 
derivatives in the discovery of novel agrochemicals. Herein, we summarize the benzoxa-
zole and benzothiazole derivatives in the application of new types of agricultural chemi-
cals, perform analysis of the benzoxazole and benzothiazole compounds in terms of anti-
bacterial, antifungal, antiviral, weeding, and insecticidal activity, and discuss the struc-
ture–activity relationship (SAR) and mechanism of action. It is hoped that this review pro-
vides new clues and inspiration for the discovery of new benzoxazole and benzothiazole 
agrochemicals. 

N

S H
N

F O
N
H O

O

Benthiavalicarbisopropyl

N

S
NH

Dufulin

P
OEt

O

EtO

F

N

O O

O
O

O

Cl

Fenthiaprop-P-ethyl

Cl

O O
F

N N
O

O

Metamifop

F3C

O
O

O S
S N O

O N

S
O O

N
N

Mefenacet

Oxazosulfyl

 
Figure 1. Chemical structure of some pesticides containing benzoxazole or benzothiazole scaffolds. 
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long-term use of chemical antimicrobials has led to the evolution of resistance in bacteria 
[54]. This puts forward higher requirements for the development of antimicrobial agents 
and the management of plant bacterial diseases. 
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zae pv.oryzicola (Xoc) and Xanthomonas citri subsp. Citri (Xac) were 47.6 mg/L (Table 1) and 
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Benzoxazole and benzothiazole have stable structures and are easily modified, which
play an important role in the discovery of new agrochemicals. Research on the discovery of
new agrochemicals based on benzoxazole and benzothiazole scaffolds may be strengthened
in the future. There is no comprehensive review of benzoxazole and benzothiazole deriva-
tives in the discovery of novel agrochemicals. Herein, we summarize the benzoxazole
and benzothiazole derivatives in the application of new types of agricultural chemicals,
perform analysis of the benzoxazole and benzothiazole compounds in terms of antibacterial,
antifungal, antiviral, weeding, and insecticidal activity, and discuss the structure–activity
relationship (SAR) and mechanism of action. It is hoped that this review provides new clues
and inspiration for the discovery of new benzoxazole and benzothiazole agrochemicals.

2. Antibacterial Activity

Diseases caused by plant bacteria have seriously restricted the safe production of
crops and caused huge output and economic losses to world agriculture every year [49,50].
However, sustained and effective management of these plant bacterial diseases is extremely
difficult and often requires integrated management strategies [51–53]. The long-term use
of chemical antimicrobials has led to the evolution of resistance in bacteria [54]. This
puts forward higher requirements for the development of antimicrobial agents and the
management of plant bacterial diseases.

Some benzoxazole derivatives or benzothiazole derivatives have good antibacterial
activity (Figure 2). For example, the EC50 values of compound 1 against Xanthomonas oryzae
pv.oryzicola (Xoc) and Xanthomonas citri subsp. Citri (Xac) were 47.6 mg/L (Table 1) and
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36.8 mg/L, respectively [55]. In addition, compound 1 showed good antibacterial activity
by up-regulating the expression of Succinate dehydrogenase (SDH) during oxidative phos-
phorylation, thereby inhibiting bacterial reproduction. At a concentration of 100 mg/L, the
inhibition rate of compound 2 against Xanthomonas oryzae pv.oryzae (Xoo) was 52.4%. Based
on compound 2, the methoxy group was replaced with the nitro group, and the methyl
group at position-2 of the benzene ring was replaced with the trifluoromethyl group at
position-4 of the benzene ring. The inhibition rate of compound 3 on Ralstonia solanacearum
(Rs) was 71.6% [56]. In addition, the introduction of the pyridine e group increased the
broad spectrum of antibacterial compounds. For example, the antibacterial activities of
compound 4 against Xoo, Xac, and Rs were 52.40%, 50.97%, and 36.49%, respectively. If the
pyridyl group was replaced by the electron-withdrawing group, the antibacterial activity of
the compound was enhanced. For example, the EC50 value of compound 5 against Xoo was
38.97 mg/L, while the EC50 value of compound 6 against Xac was 13.42 mg/L [57]. The
EC50 value of compound 7 against Xoo was 11.4 mg/L. In addition, compound 7 can not
only change cell morphology, but also reduce the pathogenicity of Xoo to rice by inhibiting
the formation of cell biofilms, thereby affecting cell division [58]. The EC50 values of com-
pounds 8 and 9 against Xoo were 76.1 and 86.1 mg/L. However, the antibacterial activity
of compound 10 (EC50 = 20.0 mg/L) was significantly increased when a fluorine atom
was introduced into the para position of the benzene ring. In addition, the introduction
of para-methyl or ortho-chlorine atoms made the compounds exhibit good antibacterial
activity against Xac. For example, compounds 11 and 12 had EC50 values of 35.7 and
28.5 mg/L for Xac. Interestingly, compound 11 can cause fold and damage to cell surface
morphology, and the higher the concentration of the compound, the greater the degree of
damage on the cell surface [59].
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Table 1. Benzoxazole or benzothiazole antibacterial derivatives with antifungal activity.

Compound Bacteria Concentration Antibacterial Activity SAR/Physiology and Biochemistry

1 Xoc
Xac

47.6 a

36.8 a
The expression of SDH during oxidative

phosphorylation is up-regulated.

2 Xoo 100 mg/L 52.4%

3 Rs 100 mg/L 71.6% The introduction of the nitro group and
trifluoromethyl group plays a key role.
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Table 1. Cont.

Compound Bacteria Concentration Antibacterial Activity SAR/Physiology and Biochemistry

4
Xoo
Xac
Rs

100 mg/L
52.40%
50.97%
36.49%,

The introduction of electron-withdrawing groups
enhances the antibacterial activity of the compounds.

7 Xoo 11.4 a Cell morphology is altered and biofilm formation
is inhibited.

10 Xoo 20.0 a The introduction of the fluorine atom plays a
key role.

11 Xac 35.7 a The cell surface morphology is folded and damaged.

12 Xac 28.5 a

a median effective concentration (EC50, mg/L).

3. Antifungal Activity

There are a wide variety of fungal diseases in plants, and their distribution is widespread
[60,61]. Fungal diseases not only affect the yield and quality of crops, but also some
fungi can secrete toxins and metabolites that are harmful to humans when they infect
crops [62,63]. At present, the use of chemical agents is still one of the main methods of
fungal disease activity management. In recent years, the research on benzoxazole and
benzothiazole fungicidal compounds has made great progress.

Some benzoxazoles or benzothiazoles have shown excellent fungicidal activity. For
example, compound 13 (Figure 3) had an EC50 value of 0.3 mg/L (Table 2) for Alternaria
brassicae, which was superior to the commercial agent carbendazim (EC50 = 47.0 mg/L) [64].
At a concentration of 90 mg/L, the protective effect and treatment activities of compounds
14 and 15 against Botrytis cinerea (B. cinerea) were greater than 88% [65]. The EC50 value of
compound 16 for B. cinerea was 2.40 mg/L, and the introduction of fluorine or chlorine
atoms to the phenyl was conducive to the improvement of fungicidal activity of the
compound. For example, compounds 17 and 18 for B. cinerea had EC50 values of 1.81 and
1.69 mg/L. In addition, compound 16 may show fungicidal activity by binding to the active
site of the sec14p target of fungi [66].
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The IC50 value of compound 19 (Figure 4) for B. cinerea was 1.4 µM (Table 3), and the
addition of methylene between benzothiazole and aryl increased the fungicidal activity
of the compound [67]. At a concentration of 50 mg/L, the inhibitory rates of compound
20 against Rhizoctonia solani (R. solani), B. cinerea, Dothiorella gregaria (D. gregaria), and Col-
letotrichum gossypii (C. gossypii) were 92%, 97%, 89%, and 78%. Moreover, the introduction
of chlorine atoms and trifluoromethyl compounds was not beneficial to the fungicidal
activity of the compounds. For example, the inhibitory rates of compound 21 against
R. solani, B. cinerea, D. gregaria, and C. gossypii were 40%, 67%, 35%, and 37% [68]. The
EC90 values of compound 22 on Sphaerotheca fuliginea (S. fuliginea) and Pseudoperoniospora
cubensis (P. cubensis) were 6.17 and 46.32 mg/L, respectively [69]. The inhibition rates of
compound 23 on S. fuliginea and P. cubensis were 67% [70] because the introduction of
large steric groups reduced the fungicidal activity of the compound. Compounds 24, 26,
and 28 showed inhibition rates of 69%, 55%, and 65% against Phytophthora infestans (P.
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infestans) at concentrations of 100 ppm. The fungicidal activities of compounds 24, 26, and
28 were reduced when chlorine atoms on the position-2 of the benzene ring were replaced
by position-4 fluorine atoms of the benzene ring. For example, compounds 25, 27, and 29
have inhibition rates against P. infestans of 58%, 53%, and 58% [71].

Table 2. Benzoxazole derivatives with antifungal activity.

Compound Fungus Concentration Antifungal Activity SAR/Molecular Docking

13 Alternaria brassicae 0.3 a

14 Botrytis cinerea 90 mg/L >88%

16 Botrytis cinerea 2.40 a
Compound 16 may show fungicidal
activity by binding to the active site

of the sec14p target of fungi

18 Botrytis cinerea 1.69 a
The introduction of

electron-absorbing groups is
beneficial for antifungal activity.

a median effective concentration (EC50, mg/L).
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Figure 4. Chemical structures and modified fragments analysis of benzothiazole antifungal active
compounds 19–29.

The position-2 of benzothiazoles replaced by thioether is a good fungicidal scaffold
structure, which has the value of further optimization and derivation. Currently, the
framework is mainly combined with benzene, furanone, and thiadiazole. In the future, it
may be considered to introduce thiazole, oxazole, and pyridine on sulfur atoms to optimize
the structure.

Amide bonds can form hydrogen bonds with target proteins, and compounds ob-
tained by an organic combination of benzothiazole and amide often show good fungicidal
activity [72]. At the concentration of 1000 mg/L, compound 30 (Figure 5) showed an
inhibition rate of 88.9% (Table 4) against B. cinereal—the 4-nitrophenyl group was ben-
eficial to improve the fungicidal activity of the compound. Interestingly, compound 30
showed better fungicidal activity in vivo than in vitro, suggesting that compound 30 may
enhance plant disease resistance [73]. At a concentration of 50 mg/L, the inhibition rates
of compound 31 on B. cinerea and Gibberella zeae (G. zeae) were 80% and 75%, respectively,
suggesting that the introduction of permethric acid had no significant contribution to the
fungicidal activity of the compound [74]. The EC50 values of Compound 32 against Ustilago
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tritici, Puccinia striiformis, Puccinia triticina, Blumeria graminis, Dickeya oryzae, and Ustilag
ohordei are were all less than 0.8 mmol/L [75]. The inhibition rates of compounds 33 and
34 against Helminthosporium maydis were 78.6% and 80.6%. The fungicidal activity of the
compound was not significantly improved by the introduction of electron-donating or
electron-absorbing groups at position-6 of the benzothiazole ring. This suggests that the
fungicidal activity of the compound in this structure is independent of the electron density
at position-6 of the benzothiazole ring. In the future, spatial effects, hydrogen bonding, and
water transport may be considered [76]. When thiazoles in the structure of compounds
33 and 34 were replaced with oxazoles, the fungicidal activity and broad spectrum of the
compounds increased. For example, compound 35 had inhibition rates of 93.8%, 94.1%,
93.4%, 94.6%, and 94.5% against R. solani, B. cinereal, G. zeae, Helminthosporium maydis, and
Sclerotinia sclerotiorum (S. sclerotiorum) [77]. Compound 36 showed a certain inhibitory effect
on Fusarium oxysporum (F. oxysporum) (MIC 12.5 mg/mL) [78].

Table 3. Benzothiazole derivatives with antifungal activity.

Compound Fungus Concentration Antifungal Activity SAR

19 Botrytis cinerea 1.4 a

The addition of methylene
between benzothiazole and
aryl increased the fungicidal

activity of the compound

20

Rhizoctonia solani,
Botrytis cinereal,

Dothiorella gregaria,
Colletotrichum gossypii

50 mg/L

92%
97%
89%
78%

22
Sphaerotheca fuliginea,

Pseudoperoniospora
cubensis

6.17 b

46.32 b

23
Sphaerotheca fuliginea,

Pseudoperoniospora
cubensis

50 mg/L 67%
67%

The introduction of large
steric groups reduces the
fungicidal activity of the

compound.

25
27
29

Phytophthora infestans 100 ppm
58%
53%
58%

The fungicidal activity
improves when chlorine

atoms on position-2 of the
benzene ring are replaced by

position-4 fluorine atoms.
a half maximal inhibitory concentration (IC50, µmol/L). b concentration for 90% of maximal effect (EC90, mg/L).

At the concentration of 100 mg/L, compound 37 (Figure 6) had inhibition rates of
38% (Table 5) to Alternaria alternata and 39% to Aspergillus niger, respectively. In addition,
compound 37 may show fungicidal activity by inhibiting spore germination [79]. Under the
condition of concentration of 250 mg/L, compound 38 G. zeae inhibition rate was 53.5% [80].
At the concentration of 100 mg/L, the inhibition rate of compound 39 against Sclerotinia
sclerotiorum was 87.5%. However, the substitution of the alkyl group with the aromatic
ring is not conducive to the fungicidal activity of the compound, for example, compound
40 showed 43.8% inhibition of S. sclerotiorum [81]. Under the condition of 50 mg/L, the
inhibition rate of compound 41 to R. solani was 70.43% [82]. The inhibition rate of compound
42 against F. oxysporum was 60.53% [83]. At the concentration of 10 mg/L, the average
inhibitory zone diameter of compound 43 against Aspergillus oryzae (A. oryzae) was 0.81 mm.
However, the replacement of chlorine atoms with nitro groups had no significant effect on
the fungicidal activity of compounds; for example, the average diameter of the inhibition
zone of compound 44 against A. oryzae was 0.81 mm [84]. At the concentration of 50 mg/L,
the inhibitory activities of compounds 45 and 46 against Rape sclerotinia rot were 80.08%
and 81.61%, respectively [85]. The ED50 values of compounds 47 and 48 for R. solani are
0.96 µM and 1.48 µM, respectively, which may be due to amines having stronger alkalinity
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than imines. In addition, compound 48 binds to the CYP51 site of fungi, hindering the
synthesis of fungal cell membranes and, thus, inhibiting the normal growth of fungi [86].
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Table 4. Benzothiazole derivatives with antifungal activity.

Compound Fungus Concentration Antifungal Activity SAR

30 Botrytis cinereal 1000 mg/L 88.9%
The introduction of the

nitrophenyl group increases
antifungal activity.

31 Botrytis cinereal,
Gibberella zeae 50 mg/L 80%

75%

The introduction of permethric
acid had no significant

contribution to the fungicidal
activity of the compound

32

Ustilago tritici,
Puccinia striiformis,
Puccinia triticina,

Blumeria graminis,
Dickeya oryzae

Ustilag ohordeiare

<0.8 a

35

Rhizoctonia solani,
Botrytis cinereal,
Gibberella zeae,

Helminthosporium
maydis,

Sclerotinia
sclerotiorum

50 mg/L

93.8%,
94.1%,
93.4%,
94.6%,
94.5%

The introduction of oxazoles plays
a key role

36 Fusarium oxysporum 12.5 b

a median effective concentration (EC50, mmol/L). b minimum inhibitory concentration (MIC, mg/mL).

Table 5. Benzothiazole derivatives with antifungal activity.

Compound Fungus Concentration Antifungal Activity

37 Alternaria alternate,
Aspergillus niger 100 mg/L 38%

39%
38 Gibberella zeae 250 mg/L 53.5%
39 Sclerotinia sclerotiorum 100 mg/L 87.5%
41 Rhizoctonia solani 50 mg/L 70.43%
42 Fusarium oxysporum 50 mg/L 60.53%
43 Aspergillus oryzae 10 mg/L 0.81 a

46 Rape sclerotinia rot 50 mg/L 81.61%
47 Rhizoctonia solani 0.96 b

a The inhibitory zone diameter(mm). b median effective concentration (EC50, µM).

4. Antiviral Activity

Effective management of plant viral diseases has been one of the hotspots in the field
of plant protection [87–89]. Plants do not have a complete immune metabolism system,
and, once the virus invades the plant, it will reproduce indefinitely in the plant until the
plant dies [90,91]. Therefore, plant viral diseases are more difficult to manage than bacterial
diseases, fungal diseases, pests, and weeds [92–94]. Many studies have been conducted
on benzothiazoles against plant virus diseases; some have good antiviral activities. For
example, at the concentration of 500 mg/L, the treatment activities of compounds 49
and 50 (Figure 7) against tobacco mosaic virus (TMV) were 52.23% and 54.41% (Table 6),
respectively [95]. The electron-donating group in the benzothiazole ring may be an im-
portant factor for the antiviral activity of compounds 49 and 50. The protective activity of
compound 51 against TMV was 39.27%. In addition, the introduction of chlorine atoms
increased the antiviral activity of the compound; for example, the protective activities
of compounds 52 and 53 against TMV were 55.96% and 54.21% [96]. The inhibition rate
of compound 54 against TMV was 28.2%, while its racemic activity against TMV was
35.4% [97]. Compounds 55 and 56 had treatment activities against TMV of 37.9% and
35.8%. When the alkyl part of the amino phosphonate of these compounds was ethyl,
the compounds showed better antiviral activity. For example, the treatment activity of
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compound 57 against TMV was 48.1% [98]. The treatment activity of compound 58 against
TMV was 48.2%. Replacing the fluorine atom of compound 59 with a methoxy group had
no significant effect on the antiviral activity of the compound. For example, the treatment
activity of compound 59 against TMV was 47.2% [99]. The treatment, protection, and
passivation of compound 60 against TMV were 33.2%, 65.1%, and 45.7%, while, for com-
pound 61 against TMV, they were 74.3%, 78.7%, and 94.3%. Molecular docking found that
benzothiazole rings are important for the antiviral activity of these compounds, and the
hydrazone’s structure can affect the compounds’ antiviral activity [100]. The combination
of benzothiazoles with diesters or amino phosphonate had good antiviral activity, which
showed the advantage of the skeleton structure in antiviral activity. Currently, benzoth-
iazole, thiazole, benzothiophene, and benzofuran structures are mainly introduced into
benzothiazole scaffolds. In the future, the introduction of thiazole, oxazole, and morpholine
rings may be considered to find molecules with higher antiviral activity.

Table 6. Benzothiazole derivatives with antiviral activity.

Compound Virus Concentration Antiviral Activity SAR

50 TMV 500 mg/L 54.41% a The electron-donating group in the
benzothiazole ring may play a key role

52 TMV 500 mg/L 55.96% b The introduction of the chlorine atom
plays a key role

54 TMV 500 mg/L 28.2%
57 TMV 500 mg/L 48.1% a

58 TMV 500 mg/L 48.2% a

61 TMV 500 mg/L
74.3% a

78.7% b

94.3% c

The hydrazone’s structure can affect
the compounds’ antiviral activity.

a treatment activity, b protective activity, c passivation activity.

At a concentration of 500 mg/L, the treatment activity of compound 62 (Figure 8)
against TMV was 52.9% (Table 7), and the replacement of straight-chain alkanes with
branched-chain alkanes resulted in a decrease in the antiviral activity of the compound; for
example, compound 63 had a treatment activity against TMV of 46.6% [101]. The substitu-
tion of alkyl of compound 64 (30.9%) with benzene ring was beneficial to the improvement
of the anti-TMV activity of compound 64 (30.9%). For example, compounds 65, 66, and
67 had anti-TMV activities of 32.1%, 38.1%, and 44.0%, respectively, at a concentration
of 0.05% [102]. Under the condition of concentration of 50 mg/L, the inhibition rate of
compound 68 against Cucumber mosaic virus (CMV) was 46.3%, while the growth of the
alkyl chain had little effect on the antiviral activity of the compound; for example, the
inhibition rate of compound 69 against CMV was 45.1% [103]. At the concentration of
500 mg/L, the inhibition rate of compound 70 on TMV was 44.5%, while the substitution
position of the methyl group in the benzothiazole ring had no significant effect on the an-
tiviral activity of the compound. For example, the inhibition rate of compound 71 on TMV
was 45.1% [104]. The treatment activity of compound 72 against TMV was 39.3%. When
the oxazole ring was replaced by a thiazole ring, the antiviral activity of the compound
increased. For example, the treatment activity of compound 73 against TMV was 52% [105].
The protective and passivation activities of compound 74 against TMV were 78.3% and
79.5%, and the protective and passivation activities of compound 75 against TMV were
83.3%. The replacement of chlorine atoms with nitro atoms did not significantly change the
antiviral activity of the compound [55].
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Table 7. Benzothiazole derivatives with antiviral activity.

Compound Virus Concentration Antiviral Activity SAR

62 TMV 500 mg/L 52.9% a Straight-chain alkane is beneficial to the antiviral
activity of the compound

67 TMV 500 mg/L 44.0%
The introduction of the benzene ring is beneficial
to the improvement of the anti-TMV activity of

the compound

68 CMV 50 mg/L 46.3% The growth of the alkyl chain had little effect on
the antiviral activity of the compound

71 TMV 500 mg/L 45.1%

73 TMV 500 mg/L 52% The introduction of the thiazole ring is beneficial
to the antiviral activity of the compound

75 TMV 500 mg/L 83.3% b,c

a treatment activity, b protective activity, c passivation activity.

5. Herbicidal Activity

Weeds compete with crops for nutrients, sunlight, and water, harming the normal
growth and yield of crops. Furthermore, some weeds contain toxins in their seeds or
pollen that can harm human health [106,107]. The use of chemical herbicides is the most
effective and cost-effective way to manage weeds [108,109]. Currently, 263 species of weeds
worldwide have shown resistance to 23 herbicides [110,111]. Therefore, the discovery of
new herbicides is an urgent need for weed management [112,113].

Although the herbicidal activities of benzoxazole and benzothiazole derivatives have
been less reported, some compounds have shown excellent herbicidal activities. For
example, compounds 76 and 77 (Figure 9) both achieved 90% (Table 8) herbicidal activity
against the monocotyledon weeds Digitaria sanguinalis and Setaria viridis at a concentration
of 75 g/ha [114]. In addition, compounds 76 and 77 showed good safety on the stems and
leaves of rice. At a concentration of 100 µg/L, compound 78 had 93% and 85% herbicidal
activities against the roots and stems of Chenopodium album (C. album), respectively. In
addition, compound 78 may show herbicidal activity by inhibiting the growth of the taproot
and stem of the C. album [68]. Under the condition of 37.5 g/hm2, compound 79 showed
100% inhibition rate against Setaria viridis, Ditaria sanguinalis, and Abutilon theophrasti.
The introduction of the alkoxy group was beneficial to increase the herbicidal activity of
the compound [115]. The inhibition rate of compound 80 to Amaranthus retroflexus (A.
retroflexus) was 100% at 1400 g/ha, and the introduction of the nitro group improved
the herbicidal activity of the compound [116]. Compounds 81, 82, and 83 showed 99%
herbicidal activities against A. retroflexus at a concentration of 10 mg/L, and the introduction
of fluorine may have increased the herbicidal activity of the compounds [117]. Under the
condition of 37.5 g/hm2, the inhibition rate of compound 84 against Abutilon theophrasti,
Cyperus iria, Rumex acetasa, and Eclipta prostrate was greater than 80%, which has the
prospect of further development [118].

Table 8. Benzoxazole and benzothiazole derivatives with herbicidal activity.

Compound Weeds Concentration Herbicidal Activity SAR/Physiology and
Biochemistry

76 Digitaria sanguinalis,
Setaria viridis 75 g/ha 90% The compound shows good safety

on the stems and leaves of rice

78

the roots of
Chenopodium album,

the stems of
Chenopodium album

100 µg/L 93%
85%

The compound inhibits the growth
of the taproot and stem of the

Chenopodium album
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Table 8. Cont.

Compound Weeds Concentration Herbicidal Activity SAR/Physiology and
Biochemistry

79
Setaria viridis,

Ditaria sanguinalis,
Amaranthus retroflexus

37.5 g/hm2 100%
The introduction of the alkoxy

group was beneficial to increase
the herbicidal activity.

81 Amaranthus retroflexus 10 mg/L 99%
The introduction of fluorine may

have increased the herbicidal
activity of the compounds

84

Abutilon theophrasti,
Cyperus iria,

Rumex acetasa,
Eclipta prostrate

37.5 g/hm2 >80%
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Figure 9. Chemical structures analysis of benzoxazole and benzothiazole herbicidal active compounds
76–84.

6. Insecticidal Activity

The wide variety of pests is an important factor in crop yield reduction and some pests
are characterized by the outbreak, such as Pyrausta nubilalis [119], Helicoverpa armigera [120],
Oriental armyworm [121,122], and Locust [123–125]. Traditional insecticides have played
an irreplaceable role in pest control, and the long-term use of traditional insecticides not
only leads to the rapid increase in pest resistance but also pollutes the environment and
threatens human health [126–128]. The discovery of insecticides has always been a hot topic
in pesticide research [129]. However, there are relatively few reports on the insecticidal
activity of benzoxazole and benzothiazole, which may be strengthened in the future. The
Maximum Likelihood Programmer (MLP) calculation showed that the combination of
benzothiazole and pyridine could increase the antifeedant activity of the compounds. For
example, LC50 of compounds 85–88 (Figure 10) against Spodoptera litura were 0.38, 0.24,
0.10, and 0.07, respectively [130,131]. The insecticidal activity of compounds 86, 87, and
88 was significantly higher than that of compound 85, which may be due to the different
electronegativity of groups introduced at position-6 of benzothiazole. Perhaps this is
a hint that we can try to introduce strong electron-absorbing groups such as nitro and
trifluoromethyl to benzothiazole in the future to find new insecticides.
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Figure 10. Chemical structures and modified fragments analysis of benzothiazole insecticidal active
compounds 85–88.

At a concentration of 1 mg/L, the insecticidal activity of compound 89 (Figure 11)
against Spodoptera exigua was 100% (Table 9); perhaps the strong electron-absorbing group
trifluoromethyl played an important role in the insecticidal activity of compound 89 [132].
The insecticidal activity of compound 90 against Mythimna separata Walker was 62.1%, which
was better than that of the lead compound magnolol [133]. Under the concentration of
5 g/L, the mean killing time of compound 91 to cockroaches was 147 min, which was
better than that of commercial Parathion (280 min) [134]. The LC50 of compound 92 for
Tetranychus urticae was 0.07 mg/L [135]. The insecticidal activity of compound 93 against
Aphis was 54% at a concentration of 200 mg/mL [136]. The ED50 value of compound 94
for Achaea janata (A. janata) was 19.3 µg/cm2. The insecticidal activity of the compounds
was significantly improved when fluorine atoms on the benzene ring were replaced with
methoxide. For example, compounds 95 and 96 had ED50 values of 7.0 and 5.2 µg/cm2

for A. janata, respectively. Meanwhile, the insecticidal activities of compounds 95 and 96
against Spodoptera litura were greater than 95% at a concentration of 0.2 µg/insect [137].
The LC50 value of compound 97 against Bollworm was 4.90 mg/L [138]. The insecticidal
activity of compound 98 against the Diamondback moth was 88% at a concentration of 1
mg/L. In addition, at high concentrations, compound 99 showed good insecticidal activity
by activating the release of calcium ions from the central neurons of insects [139].
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Table 9. Benzoxazole and benzothiazole derivatives with insecticidal activity.

Compound Pests Concentration Insecticidal Activity SAR

88 Spodoptera litura 0.07 a The introduction of the ethoxy
group may play a key role

89 Spodoptera exigua 1 mg/L 100% The strong electron-absorbing
group may play a key role

90 Mythimna separata
Walker 1 mg/L 62.1%

91 cockroaches 5 g/L 147 b

92 Tetranychus urticae 0.07 c

93 Aphis 200 mg/mL 54%

96 Achaea janata 5.2 d
Fluorine atom on the benzene
ring improves the insecticidal

activity of the compound
97 Bollworm 4.90 c

98 Diamondback moth 1 mg/L 88%
a the calculation of LC50/LD50 using the Maximum Likelihood Programmer (MLP). b the mean killing time (min).
c lethal concentration 50 (LC50, mg/L). d a median effective concentration (EC50, µg/cm2).

7. Conclusions

Benzothiazoles and benzoxazoles not only have a bicyclic structure, but also have
seven modifiable sites, illustrating the important value of benzothiazoles and benzoxazoles
in the discovery of pesticides. It is worthy to carry out more exploration and research
based on benzothiazoles or benzoxazoles. In recent years, benzoxazole and benzothiazole
derivatives have been increasingly studied as fungicides, antimicrobials, herbicides, an-
tiviral agents, and insecticides. However, the research on the mechanism of action and the
discovery of new targets of benzoxazole and benzothiazole derivatives compounds is still
weak and needs to be further strengthened in the future, which is a key factor restricting
the discovery of new green pesticides. We systematically reviewed the application of ben-
zoxazole and benzothiazole derivatives compounds in the discovery of new agrochemicals,
summarized the antibacterial, fungicidal, and antiviral agents, as well as herbicidal and
insecticidal activities, of the compounds, and discussed the structural–activity relation-
ship and mechanism of action of the active compounds, aiming to provide new clues and
inspiration for the discovery of new pesticides.
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Abbreviations

SAR Structural–activity relationship
Xoc Xanthomonas oryzae pv. oryzicola
Xac Xanthomonas citri subsp. Citri
Xoo Xanthomonas oryzae pv. oryzae
SDH Succinate dehydrogenase
Rs Ralstonia solanacearum
B. cinerea Botrytis cinereal
R. solani Rhizoctonia solani
D. gregaria Dothiorella gregaria
C. gossypii Colletotrichum gossypii
S. fuliginea Sphaerotheca fuliginea
P. cubensis Pseudoperoniospora cubensis
P. infestans Phytophthora infestans
G. zeae Gibberella zeae
S. sclerotiorum Sclerotonia sclerotiorum
F. oxysporum Fusarium oxysporum
A. oryzae Aspergillus oryzae
TMV tobacco mosaic virus
CMV Cucumber mosaic virus
C. album Chenopodium album
A. retroflexus Amaranthus retroflexus
A. janata Achaea janata
MLP Maximum Likelihood Programmer
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