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Abstract: Protein aggregation is one of the hallmarks of aging and aging-related diseases, especially
for the neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS), and others. In these diseases, many
pathogenic proteins, such as amyloid-β, tau, α-Syn, Htt, and FUS, form aggregates that disrupt the
normal physiological function of cells and lead to associated neuronal lesions. Protein aggregates in
NDs are widely recognized as one of the important targets for the treatment of these diseases. Natural
products, with their diverse biological activities and rich medical history, represent a great treasure
trove for the development of therapeutic strategies to combat disease. A number of in vitro and
in vivo studies have shown that natural products, by virtue of their complex molecular scaffolds that
specifically bind to pathogenic proteins and their aggregates, can inhibit the formation of aggregates,
disrupt the structure of aggregates and destabilize them, thereby alleviating conditions associated
with NDs. Here, we systematically reviewed studies using natural products to improve disease-
related symptoms by reducing or inhibiting the formation of five pathogenic protein aggregates
associated with NDs. This information should provide valuable insights into new directions and
ideas for the treatment of neurodegenerative diseases.

Keywords: natural products; neurodegenerative diseases; protein aggregation; Aβ; tau; α-Syn;
Htt; FUS

1. Introduction

Neurodegenerative diseases (NDs) are a heterogeneous group of disorders character-
ized by abnormal protein aggregation leading to the structural and functional degeneration
of the central and peripheral nervous systems [1]. These diseases cause a large number of
deaths and enormous medical costs worldwide, placing a heavy burden on patients, their
families and society. According to the Global Alzheimer’s Disease Report, there are already
more than 55 million people with Alzheimer’s disease (AD) worldwide, and this number is
expected to rise to 78 million by 2030 and 152 million by 2050 [2]. Parkinson’s disease (PD)
is the second most common and fastest growing ND in the world, with a global prevalence
of more than 6 million people and a 2.5-fold increase from the previous generation of
patients, and is expected to double again to more than 12 million by 2040 [3]. There is
growing evidence that men are twice as likely as women to develop Parkinson’s disease,
but women have higher mortality rates and a more rapid disease progression, placing an
enormous burden on the population [4]. Huntington’s disease (HD) cases are distributed
worldwide, with a prevalence of 4–10 per 100,000 in Western countries and approximately
5 per million in Asian populations [5,6]. The incidence of amyotrophic lateral sclerosis
varies from country to country and region to region, from about (2–3/100,000) in Europe
to about (0.7–0.8/100,000) in Asia, with huge annual treatment costs [7]. The common
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symptoms of these diseases are memory and cognitive impairment, as well as difficulties
with speech and movement, and they tend to be more common in older people [8].

In these diseases, one or more different pathologically aggregation-prone polypep-
tides misfold and are packaged into large insoluble inclusion bodies. For example, the
two hallmark pathological the features of AD are extracellular amyloid plaques composed
of Aβ peptides and intracellular neurofibrillary tangles composed of hyperphosphorylated
microtubule-associated protein tau [9,10]. PD is a movement disorder characterized by
the accumulation of Lewy bodies in neurons, which are mainly composed of α-synuclein
protein aggregates [11,12]. Due to CAG repeat expansion in the huntingtin (HTT) gene, the
mutant Htt protein accumulates in neurons and forms deposits that produce cytotoxicity,
leading to the development of HD [13]. And one of the reasons why ALS occurs is because
the abnormally aggregated FUS protein state is more solidified, impairing its normal physi-
ological function [14]. These diseases not only hinder people’s normal physical activities
and increase their psychological stress, but also place a huge burden on society. However,
there are no symptomatic drugs for these diseases. Therefore, finding ways to make the
diseases more treatable has become a priority.

Natural products are a class of compounds isolated from plants or fungi that are bio-
logically active and have a rich history of medicinal use [15]. In recent years, the biological
activity, nutritional value, and potential health and therapeutic benefits of natural products
have been intensively explored and studied [16,17]. Due to their neuroprotective effects,
a variety of compounds from different sources have been proposed to have therapeutic
efficacy in treating neurodegenerative diseases, and not only in alleviating their superficial
symptoms [18–20]. Specifically, natural products can inhibit the formation of pathogenic
protein aggregates and attenuate the neurotoxicity of pathogenic protein aggregates [16].
For example, natural products respond to autophagic pathways to reduce neurological
damage such as oxidative stress from pathogenic protein aggregates [21–23]. In addition,
natural products cleave β-amyloid structures to reduce aggregates formed by pathogenic
proteins [24,25]. Similarly, natural products reduce levels of key enzyme activity that forms
aggregates to inhibit oligomer formation [21,26,27]. Natural products offer new avenues for
research into inhibiting the formation of disease-causing protein aggregates and thereby al-
leviating disease symptoms. Many scientists have carried out a lot of work in this direction,
but there has not been a systematic review. Therefore, this review provides a systematic
summary of natural products that affect pathogenic protein aggregates.

2. Study of Natural Products on Neurodegenerative Diseases

Throughout human history, natural products have been attractive alternatives for the
prevention and treatment of disease, and have contributed to the development of modern
medicines [28]. Natural products and their complex molecular frameworks provide a range
of unknown chemical species for medicinal chemists discovering chemical probes and
drugs [29]. Natural products have long provided a valuable source for exploring drugs to
treat disease [29]. In recent years some natural products, such as honey, ginseng extract,
resveratrol (RES), curcumin, epigallocatechin gallate (EGCG), etc., have attracted much at-
tention for the treatment of neurodegenerative diseases due to their anti-inflammatory and
antioxidant properties. Honey has been reported to reduce oxidative stress in the brain and
improve morphological damage in the hippocampus and medial prefrontal cortex, and mor-
phological damage in the prefrontal cortex [30]. In the 1-methyl-4-phenylpyridiniumion
(MPP+)-induced apoptosis in rat pheochromocytoma (PC12) cells, Korean red ginseng
inhibits apoptosis and prevents the reduction in cell survival by decreasing caspase-3 and
caspase-9 mRNA expression [31]. Resveratrol significantly inhibited Aβ-induced prolifera-
tion and activation of BV-2 cells, as well as the release of their pro-inflammatory cytokines,
IL-6 and TNF-a, in a dose-dependent manner (10–50 nM). It also attenuates neuroinflam-
mation by inhibiting the TXNIP/TRX/NLRP3 signaling pathway [32]. Many studies have
shown that Resveratrol not only reduces neuroinflammation, but also reduces oxidative-
stress-induced neurological damage through AMP-activated protein kinase (AMPK) and
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SIRT1 [33–36]. EGCG can promote the ROS reaction by chelating its phenolic groups with
other metal ions, leading to a decrease in the amount of the free form of the metal [37].
In addition, the antioxidant capacity of EGCG is also based on increasing the activity of
glutathione peroxidase and superoxide dismutase [38].

The current summary of studies on natural product protection of the nervous system
against neurodegenerative diseases focuses on the role of natural products in antioxidant,
neuroinflammatory, mitochondrial dysfunction, and apoptosis events. Sairazi et al. [16]
summarized that some natural products reduce the pathological features of neurodegener-
ative diseases through antioxidant and anti-inflammatory mechanisms of action. Andrade
et al. [39] described the efficacy of natural products in the clinical treatment of neurode-
generative diseases. According to the summary of previous experiments, it is known that
to investigate the effect of natural compounds on Aβ, tau protein, and brain volume loss,
a total of 119 volunteers were given 500 mg of oral resveratrol for 52 weeks, but there was
no significant reduction in the levels of biomarkers of neurodegenerative diseases such as
Alzheimer’s [40]. A great deal of work has been carried out on the effect of compounds
on NDs. For example, curcumin is rich in antioxidant, anti-aging, anti-inflammatory, and
anti-diabetic bioactivities, among others [41–43]. In previous studies, the oral adminis-
tration of curcumin attenuated memory deficits in AD mice and alleviated inflamma-
tion by inhibiting the HMGB1-RAGE/TLR4-NF-κB signaling pathway in amyloid precur-
sor protein/presenilin 1 (APP/PS1) transgenic mice AD model [44]. Curcumin reduces
β-amyloid-induced neurological damage by up-regulating type 2 superoxide dismutase
(SOD2) expression in HT22 cells [45]. However, there are few systematic summaries of
natural products that directly target pathogenic protein aggregates in neurodegenerative
diseases. Therefore, we summarize natural products that directly target aggregates, as
shown in Table 1. Natural products inhibit the formation of pathogenic protein aggregates
or disassemble their structure, and attenuate the neurotoxicity caused by aggregates.

Table 1. Natural products target pathogenic protein aggregates in neurodegenerative diseases.

Compound Chemical Structure Formula Source Target * Effect on Aggregates Reference

Curcumin
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Table 1. Cont.

Compound Chemical Structure Formula Source Target * Effect on Aggregates Reference
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3. Natural Products Reduce Amyloid-β Aggregates and Toxicity
3.1. The Process of Amyloid-β Protein Formation

Amyloid-β (Aβ) aggregation is one of the key pathologies in AD [87]. The neurotoxic-
ity caused by Aβ deposition produces various destructive stimuli in the central nervous
system, triggering a series of pathologies such as synaptic degeneration, tau hyperphos-
phorylation, oxidative stress, neuroinflammation, neuronal degeneration, and neuronal
deficits. The precursor protein of Aβ (APP) is a protein of 38–43 amino acid residues that
can be cleaved by three types of secretases: α-secretase (ADAM10), β-secretase (BACE1),
and γ-secretase (PS1) [88]. Under normal conditions, APP is cleaved by α-secretase (extra-
cellular structure) into a fragment consisting of 83 amino acids (C83) and an extracellular
structural domain (sAPPα). sAppα is further cleaved by γ-secretase. The cleavage site
of α-secretase prevents the production of Aβ, which facilitates neuronal protection and
cellular value creation. In pathological cases, APP is cleaved by β-secretase (extracellular
structure) to form a C-terminal membrane-forming fragment (C99) and an extracellular
structural domain (sAPPβ), and sAPPβ is further cleaved by γ-secretase to form Aβ [88].
There are two main forms of Aβ in APP: one with 40 amino acids (Aβ40), which is more
fibrillogenic, and one with 42 amino acids (Aβ42) [89]. Aβ exists in an aqueous solution as
a mixture of α-helix and β-sheet, and the β-sheet leads to Aβ aggregation, thus triggering
Aβ neurotoxicity. Therefore, inhibition of the β-sheet plays an important role in inhibiting
Aβ aggregation. A number of studies have been conducted to find methods that can inhibit
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Aβ aggregation based on pathological findings caused by its aggregation [90,91]. Small
molecule natural products have been found to be effective in inhibiting the aggregation of
Aβ oligomers, protofibrils, and fibrosis, thus significantly reducing the harmful toxicity
caused by Aβ deposition. As shown in Figure 1, different structural features of different
natural products result in different mechanisms of action which inhibit Aβ aggregation.
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Formatted: Font: 9 ptFigure 1. Natural products targeting the Aβ formation phase: inhibiting amyloid production. Caffeic
acid (CA), gastrodin, quercetin, and salvianolic acid B inhibit the formation of Aβ aggregates by
attenuating glycogen synthase kinase (GSK3β) enzyme activity and reducing BACE1 (β-secretase)
activity. Curcumin and resveratrol (RES) reduce the level of BACE1 expression, thereby decreasing
oligomer formation. Epigallocatechin-3-gallocatechin (EGCG) directly binds to oligomers and re-
models the structure of oligomers, thereby reducing Aβ-induced neurotoxicity. EGCG specifically
binds directly to oligomers and remodels their structure, disrupting their structure and attenuating
Aβ-induced neurotoxicity.

3.2. Specific Description of Natural Products Targeting Amyloid-β Action

Curcumin. The unique molecular structure of curcumin plays a pivotal role in its
pharmacological effects [92]. As observed via atomic force microscopy (AFM) and transmis-
sion electron microscopy (TEM), curcumin can specifically bind directly to the N-terminal
of an Aβ monomer (residues 5–20), which is covered within Aβ oligomers at 1–2 nm
to strongly inhibit the formation of Aβ deposits [46]. Curcumin deformed the β-sheet
structure through hydrophobic interactions and hydrogen bonding in the molecular struc-
ture. In addition, π-stacking between curcumin and the aromatic residues of Aβ led to the
reduction of the β-sheet structure. Curcumin reduced the β-sheet content in Aβ without
affecting the monomer contact, as studied by the all-atom explicit solvent molecular dy-
namics simulation method [47]. Curcumin attenuated Aβ-membrane interactions in Aβ-40
(1–40 µM), induced injury in SH-SY5Y cells in a dose-dependent manner (0–5 µM), amelio-
rated Aβ-induced neurotoxicity, and reduced the rate and extent of Aβ insertion into the
anionic lipid monomolecular layer [48]. In the Drosophila model of AD, curcumin promoted
the conversion of amyloidogenic fibers by reducing the pre-fiber/oligomeric species of
antibodies, thereby reducing neurotoxicity in Drosophila [49]. In a scopolamine-induced
AD mice model, curcumin reduced the formation of Aβ aggregates by downregulating
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glycogen synthase kinase (GSK3β) enzyme activity, an enzyme known to regulate BACE1
activity [93]. In SH-SY5Y cells, curcumin inhibits the transcriptional and translational levels
of BACE1 enzymes by selectively activating estrogen receptor β (ERβ), which directly
affects the nuclear factor kappa B (NFκB) signaling pathway [94]. However, curcumin is
insoluble in water, and more and more studies are being conducted on the development
of curcumin analogues or derivatives in order to better exploit the role of Curcumin in
anti-AD [50]. Analogs of curcumin not only inhibit the formation of Aβ aggregates as
well as curcumin, but are also more than 160 times more water soluble than curcumin.
A curcumin analog (CLC-R17) has significantly reduced Aβ deposition in a mouse model
of AD. In an animal cell model of AD, CLC-R17 effectively reduced the levels of Aβ in
conditioned media and decreased the levels of oligomeric amyloid in cells. CLC-R17
attenuated the maturation of amyloid protein precursors in the secretory pathway, upregu-
lated PS1 enzyme activity, decreased BACE1 enzyme activity, and attenuated Aβ-induced
neurotoxicity [95]. Molecular dynamics simulations indicates that curcumin derivatives
can partially dissociate the outermost peptide of Aβ(1–42) protofibrils by disrupting the
β-sheet structure [96]. Curcumin can also be combined with nanomaterials to form novel
multifunctional nanomaterials that can significantly reduce the β-amyloid plaque burden
in APP/PS1 transgenic mice, reduce oxidative stress damage from Aβ deposition, and
successfully rescue memory deficits in mice [97–99].

Resveratrol (RES). In SAMP8 mice, an animal model of aging and AD, RES has
protected against APP processing into Aβ amyloid by reducing BACE1 and APP gene
expression [54]. RES plays an important role in promoting the cleavage of non-amyloid
proteins from amyloid precursor proteins [55]. Through thioflavin (ThT) and matrix-
assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry, RES
cleaved Aβ(1–42) peptides into shorter fragments, Aβ(1–42) oligomeric protofibrillated
and fibrillated structures which cannot be observed via AFM, and reduced the height
of Aβ(1–42) aggregates (0.675–3.275 nm) [56]. In the SH-SY5Y cell line induced by the
Aβ(1–42) peptide (10 µM), RES (1 µM) reduced Aβ(1–42)-induced toxicity (from 100% to
78%) and restored cell viability [56]. RES enhances the clearance of amyloid peptides and
reduces neuronal damage. For example, RES improved cognition and amyloid plaque
formation by reducing Aβ deposition and significantly reducing BACE1 enzyme levels in
Tg6799 mice, a transgenic mouse model with five familial AD mutations [57].

Ferulic acid (FA). FA is mostly present in the cell wall as a trans-isomer and esterified
with a variety of specific polysaccharides, giving the cell wall a stable and rigid struc-
ture [100]. In a previous in vitro study, FA (50 µM) was found to inhibit the formation
and elongation of β-amyloid (fAβ (1–40) and fAβ (1–42)) in a dose-dependent manner,
observed at 37 ◦C and a pH of 7.5 using fluorescence spectroscopy ThT and electron mi-
croscopy (IC50 of 5.5 µM) [60]. Among the Aβ peptide structures, α-helix and parallel
β-turn are the major structures of individual Aβ peptides, followed by antiparallel β-turns.
It is known from 1 µs molecular dynamics (MD) simulation experiments in the presence of
FA, the tendency of α-helices increases, parallel β-turns decreases, and antiparallel β-turns
almost disappears, which proves that FA increases the tendency of Aβ helices, decreases the
tendency of non-helical Aβ peptides, and prevents the formation of dense body nuclei [61].
In the Caenorhabditis elegans model, FA significantly suppressed Aβ-induced paralysis and
pathological symptoms of hypersensitivity to exogenous serotonin by activating the HLH-
30 transcription factor to nuclear localization, reducing lipid levels upstream of autophagy,
while increasing the expression of the autophagy reporter gene LGG-1. It also reduced
Aβ monomers, oligomers, and deposits by 50–70% in a dose-dependent manner (100 µM),
effectively reducing Aβ-induced neurotoxicity [100]. Recent studies have shown that
endothelin-1 (ET1)-mediated action on the ET1 receptor (ETRA) triggers the constriction
of brain capillaries, which may exacerbate Aβ deposition. In APP/PS1 transgenic mice,
FA inhibited ETRA to counteract ET1-mediated constriction of brain capillaries, resulting
in reduced hippocampal capillary density and diameter, attenuated Aβ aggregation, and
spatial memory deficits [101].
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Caffeic acid (CA). In the Aβ(25–35)-induced AD mouse model, CA attenuated Aβ-
induced oxidative stress and neurotoxicity by reducing lipid peroxidation and nitric oxide
(NO) production in the brain [102]. In Aβ(25–35)-induced PC12 cells, CA reduced GSK3β
enzyme activity and intracellular calcium flux in a dose-dependent manner (4, 20 and
100 µg/mL), and protected against Aβ-induced neurotoxicity. CA, specifically bound to
the amyloid C-terminal peptide, exhibited potent inhibitory activity against Aβ(1–42) fi-
brogenesis, scavenged Aβ(1–42)-induced oxidative stress, and inhibited Aβ(1–42)-induced
neurotoxicity at a semi-inhibitory concentration of 4 µM in SH-5Y5Y cells [62]. In addition,
CA (300 µM) prolonged the mean lifespan of Caenorhabditis elegans by 15.57% and protected
against Aβ neurotoxicity by activating the transcription factor DAF-16 and its downstream
targets SOD-3 and GST-4 [103]. In the course of the research, to promote the chemical stabil-
ity of CA, transferrin (Tf)-loaded nanoparticles (NPs) were delivered across the blood–brain
barrier (BBB) by coupling Tf to the surface of liposomes, taking advantage of the overex-
pression of Tf receptors in brain endothelial cells. Caffeic-acid-loaded Tf-functionalized
liposomes prevented the aggregation of Aβ and the formation of protofibrils, and broke
down the mature protofibrils, allowing for the efficient utilization of CA [104].

Quercetin. In vitro and silico structural studies showed that Quercetin inhibited
BACE1 enzyme activity through hydrogen bond formation, with the hydroxyl group at
the C3 position playing an important role [105,106]. By measuring the fluorescence of the
single tyrosine intrinsic fluorophore (Tyr) of Aβ, quercetin was found to bind in a dose-
dependent manner (50 µM) to β-amyloid oligomers at an early stage of aggregation, leading
to the formation of modified oligomers that hinder the formation of neurotoxic β-sheet
structures [63]. Furthermore, in hippocampal neurons with Aβ (5 µM)-induced injury,
quercetin (10 µM) reduced oxidative stress injury, decreased ROS production, restored
normal mitochondrial morphology, and prevented a decrease in mitochondrial membrane
potential (50%) [64]. In vivo, quercetin extended the lifespan of AD Drosophila, rescued
impaired climbing ability, and suppressed Aβ-induced neurotoxicity by restoring the ex-
pression levels of the cell cycle protein cyclin B [107]. Quercetin also protected human brain
microvascular endothelial cells from toxicity of fibrillar Aβ1–40 (fAβ1–40) (20 µmol/L) in
a dose-dependent manner (0.3–30 µmol/L), increased cell viability, reduced intracellular
ROS production to protect cells, and significantly restored the expression levels of enzymes
involved in the brain microvascular barrier generation (γ-GT and ALP) [108].

Epigallocatechin-3-gallocatechin (EGCG). EGCG inhibits amyloid aggregation mainly
through three general mechanisms: the first is to directly bind to oligomers to disrupt their
structure [66]. The second is to remodel oligomers and change their structure [67–69]. The
third is to chelate with metal ions to inhibit their toxicity [70–72]. EGCG recognizes un-
folded peptides and directly binds to the backbone of all proteins, stimulating the formation
of non-toxic, non-pathway oligomers and reducing the toxicity of Aβ42 by approximately
40% [66]. EGCG reconstructed the Aβ structure following the Hill–Scatchard model, and
the Aβ(1–40) self-association can occur cooperatively, generating Aβ(1–40) oligomers with
multiple independent binding sites for EGCG, with a Kd ∼10-fold lower than that of the
Aβ(1–40) monomers [68]. The solvent exposure of Aβ(1–40) oligomers was reduced upon
binding to EGCG, while the β region involved in the direct monomer–fibril contact was
remodeled in the absence of EGCG. EGCG has the ability to remodel large mature Aβ

aggregates into small, amorphous aggregates that are not toxic to cells [69]. Metal ions such
as Cu(II), Zn(II), and Fe(II) promote the fibrillation of the Aβ protein [71], while EGCG
effectively disrupts the metal-induced Aβ aggregate formation pathway and reduces metal-
induced Aβ aggregate neurotoxicity [72]. Using multiple all-atom molecular dynamics
simulations, EGCG disrupted Aβ aggregation by the cell membrane on Aβ42 protofibrils
in the presence of mixed POPC/POPG (7:3) lipid bilayers. EGCG tended to bind to the
cell membrane and this binding altered the binding pattern between Aβ42 protofibrils and
lipid bilayers, resulting in thinner and fewer membranes. EGCG played an important role
in protecting cell membranes and attenuating Aβ toxicity [109].
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Gastrodin. Gastrodin inhibited the aggregation of Aβ42 and promoted Aβ clearance,
prevented Aβ42-induced neurotoxicity in SH-SY5Y cells, reduced the levels of Aβ plaques
and hyperphosphorylated tau, and attenuated glial cell activation and pro-inflammation.
Gastrodin inhibited the Aβ aggregation by decreasing the expression levels of Aβ transport
enzymes (sAPPα, BACE1, RAGE), and prevented the activity of GSK3β, thereby reducing
its neurotoxicity [76]. Gastrodin improved cognitive impairment in mice by increasing
the levels of superoxide dismutase (33%) and glutathione peroxidase (39%), and reduc-
ing the levels of malondialdehyde (33%), the end product of lipid peroxidation in the
brains of APP/PS1 transgenic mice [76]. In NPCs (neural progenitor cells), gastrodin
(50 µg/mL) not only attenuated Aβ-induced neurotoxicity by reversing the Aβ(1–42)-
induced increase in phosphorylation of MEK-1/2, extracellular-signal-regulated kinase
(ERK) and c-JunN-terminal kinase (JNK), but also inhibited Aβ-induced neurotoxicity by
reducing the production of pro-inflammatory factors TNF-α, IL-1β, IL-6, and NO (a potent
inflammatory mediator) [110,111]. Furthermore, in Aβ(1–42)-injected C57BL/6 mice, gas-
trodin improved hippocampal neurogenesis by increasing the number of SOX-2 and double
corticotropin (DCX)-positive cells (neural progenitor cells and differentiated neurons) in
the DG (dentate gyrus) region. In vivo, Gastrodin inhibited Aβ deposition and improved
memory deficits in mice by attenuating the activation of microglia and astrocytes in Tg2576
mice (a mice model of AD) [112]. In vitro, Gastrodin significantly altered the SOD and CAT
activity levels and upregulated nuclear factor E2-related factor 2 (Nrf2) gene expression
and extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation to ameliorate
Aβ(1–42)-induced neurotoxicity in primary cultured rat hippocampal neurons [113].

Salvianolic acid A and salvianolic acid B. Salvianolic acid A stabilized the β-sheet
structure and inhibited Aβ42 aggregation in a dose-dependent manner, with an optimal
effect at 40 µM and a semi-inhibitory concentration of 1–4 µM, and also broke down
Aβ42 aggregation for protofibrillary aging in a dose-dependent manner, with an optimal
concentration of 50 µM. In the SH-5Y5Y cell line, salvianolic acid A reduced oxidative
stress damage in a dose-dependent manner (6.25–100 µM) and increased cell viability in
Aβ-induced cytotoxicity [114]. In vitro, in the SH-SY5Y cell line overexpressing the human
APP Swedish mutant (APPsw) model, salvianolic acid B increased the expression level of
ADAM10 and decreased the expression level of BACE1 by increasing the activity of SOD
and GSH-Px, and inhibiting the activity of GSK3β in a dose-dependent manner (0–100 µM),
thereby reducing the expression levels of Aβ40 and Aβ42 and inhibiting the formation
of Aβ aggregates [74]. Through thioflavin T fluorimetry (ThT) and an Aβ aggregating
immunoassay (ELISA), salvianolic acid B was found to inhibit Aβ40 fibril aggregation
(IC50: 1.54–5.37 mM) and destabilize preformed Aβ40 fibrils (IC50: 5.00–5.19 mM) in a dose-
dependent (1–100 µM) and time-dependent (3–7 d) manner [115]. Salvianolic acid B not
only protected cell viability by reversing the expression of BPRP protein (brain–pancreatic
relative protein A expression) and reducing ROS and intracellular calcium production in
Aβ(25–35)-induced PC12 cells, but also reduced Aβ aggregation by reducing Aβ fibrillation,
thereby improving cell viability [116]. Moreover, in vivo, salvianolic acid B significantly
attenuated glutathione (GSH) and lipid oxidation in neurons, and inhibited mitochondrial
superoxide overproduction in Aβ-attacked neurons. At the same time, salvianolic acid B
exhibited a strong protective function on mitochondrial bioenergetics and counteracted
Aβ toxicity by preserving mitochondrial membrane potential and ATP production, as
well as rescuing the enzymatic activities of cytochrome C oxidase and F1Fo ATP synthase
in primary cultured mice neurons [117]. In addition, salvianolic acid B can inhibit Aβ

formation by reducing the expression of BACE1 and increasing the expression of ADAM10
in Porphyromonas-gingivalis-infected mice [75,118].

In addition to these, there are other natural products that may play a role in inhibiting
the formation of Aβ aggregates. HX106N is a botanical blend extract of Dimocarpus longan,
Liriope platyphylla, Salvia miltiorrhiza, and Gastrodia elata. HX106N blocked Aβ aggregation
at early pathological stages in a dose-dependent manner by binding to Aβ monomers
and preventing their conversion to oligomers and fibrils. The blockade of mature β-sheet
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structures by salvianolic acid A, B, E, and rosmarinic acid in HX106N highlighted the
inhibitory activity on Aβ aggregation [119]. In vivo, iso-orientin (6-C-glycosylflavone)
treatment of amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice improved
the viability of microglia in the mouse brain and reduced the expression levels of pro-
inflammatory factors TNF-α, IL-6, and IL-1β, as well as cyclooxygenase-2 (COX-2), a key
enzyme in microglial activation. At higher concentrations, iso-orientin reduced GSK3β
expression levels, Aβ42 levels, and Aβ deposition, and improved the learning ability and
memory in APP/PS1 transgenic mice. In vitro, iso-orientin (50 µM) reduced GSK3β activity
and attenuated Aβ42 (5 µM)-induced neurotoxicity via the NF-KB pathway in SH-SY5Y
cells [77,120]. In an in vitro co-culture model of mature neurons and neuronal cells, api-
genin (4,5,7-trihydroxyflavone) (1 µM) rescued the morphology of neuronal cells exposed to
Aβ oligomers (500 nM) for 4 h and modulated Aβ toxicity through anti-inflammation [121].
In vivo, apigenin restored mitochondrial dysfunction by significantly interfering with cy-
tochrome c release and caspase 9 activation, with protective effects on working memory
and neurology [122]. In a transgenic Drosophila AD model, apigenin reduced the forma-
tion of Aβ aggregates in a dose- (25, 50, 75 and 100 µM) and time-dependent manner
(30 d). The formation of Aβ42 aggregates was significantly reduced 1.35-, 1.52-, 1.91-, and
2.39-fold, respectively, compared to the experimental group not treated with apigenin.
Meanwhile, apigenin delayed the impaired climbing ability of Drosophila AD 1.34-, 1.61-,
2.23-, and 2.67-fold, respectively, compared to the control group [123]. In vitro studies of lu-
ciferase deficiency analysis revealed that cosmosiin (1, 5, 10 µM) (apigenin 7-O-β-glucoside),
a derivative of apigenin, enhanced the first 144 nucleotides of the 5’UTR translation, thereby
increasing the expression of ADAM10 and significantly reducing the levels of Aβ(1–40)
and Aβ(1–42) in SH-SY5Y or HEK293 human cell lines [124]. In N2a/SweAPP cell lines,
macelignan, a natural compound extracted from Myristica fragrans, dose-dependently (0, 5,
10, 15, and 20 µM) reduced BACE1 enzyme translation levels and APP protein expression
through the PERK/eIF2α pathway to attenuate Aβ deposition [125]. Rosmarinic acid is
a polyphenolic compound isolated from the rosemary plant of the Labiatae family, with
a variety of physiological properties such as antioxidant, anti-inflammatory, antibacterial,
antidepressant, and wound healing properties [126]. In a recent study, rosmarinic acid
(0.25 mg/kg/day) significantly improved cognitive impairment and Aβ(25–35)-induced
oxidative damage in mice after a 14-day administration [127]. Rosmarinic acid signifi-
cantly improved spatial and recognition memory deficits induced by Aβ(1–42) in mice,
and normalized neuronal density and the expression of neurogenic, synaptic markers [128].
In vitro and vivo experiments demonstrated that rosmarinic acid inhibits the formation of
Aβ aggregates, disrupts the deposition of Aβ oligomers, and directly binds to Aβ tangles
(EC50 = 20.3 µM). The aromatic ring and hydroxyl functional group of rosmarinic acid were
shown to be important structural features for direct binding to Aβ amyloid, and a series of
rosmarinic acid derivatives were developed on this basis [78–80].

4. Natural Products Reduce Tau Aggregation by Affecting Aggregate Formation,
Disaggregation, and Key Enzyme Activity

Tau is a phosphoprotein with a natively unfolded conformation that functions to
stabilize microtubules in axons. Microtubules form the cytoskeleton of the cell and are
essential for maintaining the structural integrity of the cell and transporting nutrients from
the soma down the axon to the synaptic terminal [129–132]. In the adult human central
nervous system, tau proteins exist as six heterodimers containing 0, 1, or 2 amino-terminal
inserts and 3 or 4 microtubule-binding repeat (3R or 4R) domains. Those repeats, contain-
ing 31 or 32 amino acid residues, form domains that stabilize microtubules and promote
microtubule assembly [133,134]. The ability of tau to bind to microtubules is also regulated
by the post-translational modification of proteins, including phosphorylation, glycosy-
lation, glycation, ubiquitination, sumoylation, and nitration [131,135]. Tau has multiple
kinase phosphorylation sites and its functions are partly regulated by its phosphorylation
status [136,137]. In all neurodegenerative diseases associated with the tau protein, this
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protein is present in a hyperphosphorylated form, which is responsible for its aggregation
and leads to neuronal dysfunction and death. The aggregation of tau is a multi-step process;
the initial step is the formation of the β-sheets of tau, i.e., MTBR regions of tau stacked
on top of each other [138]. Then, it forms dimers and trimers, followed by small soluble
oligomers. These small soluble oligomers form twisted tau filaments called PHFs, which
subsequently form neurofibrillary tangles (NFTs) [139]. Tau-associated diseases are known
as tauopathies and include Alzheimer’s disease (AD), progressive supranuclear palsy (PSP),
Pick’s disease, frontotemporal dementia (FTD), corticobasal degeneration, and variants of
Parkinson’s disease (PD) and Lewy body dementia (LBD), for which NFTs are a common
histopathological marker [135,140,141]. In addition, tau oligomers exhibit toxic effects
in tauopathies prior to the formation of NFTs and are capable of potentiating neuronal
damage, leading to neurodegeneration and traumatic brain injury [142]. Current drug
strategies targeting the tau protein can be summarized as an inhibition of tau aggregation,
inhibition of tau phosphorylation, reduction in tau levels and tau immunization [143]. Here,
we review some of the compounds that have been shown to affect tau proteins.

In mouse cortical neuronal cells expressing induced wild-type tau and in primary
cortical neurons, Fistein significantly reduced phosphorylated tau levels, which was highly
dependent on TFEB and Nrf2 activation and occurred via selective autophagy by its cargo
receptors [144]. Tau K18 is a widely used model for full-length tau proteins, as they exhibit
very similar physiological and pathological functions [145]. In vitro, Fisetin has been
shown to limit the extent of tau K18-protofibril formation by inhibiting tau K18 aggregation
(Figure 2), resulting in shorter and thinner tau protofibrils. In HEK293/tau441, treatment
with Fisetin reduced tau oligomers and significantly decreased the ratio of insoluble-to-
soluble tau protein [82]. And treatment with Fisetin (20 mg/kg, i.p., 2 weeks) significantly
reduced p-tau levels at Ser413 induced by Aβ(1–42) injection (i.c.v.) in the hippocampus of
mice [146].
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mation processes. During the multistep process of tau aggregation, fisetin and EGCG reduce the
phosphorylation level of tau. Curcumin, crocin, gastrodin, quercetin, and resveratrol can inhibit
GSK3β activity and thus tau hyperphosphorylation. In addition, resveratrol and quercetin can inhibit
tau phosphorylation by activating PP2A and inhibiting CDK5 activity, respectively. During the for-
mation of tau oligomers, curcumin can inhibit its oligomerization. Fisetin and resveratrol can inhibit
the accumulation of oligomers into PHFs, and curcumin can inhibit the further formation of NFTs
from PHFs.

Crocin has been shown to inhibit neuronal death [147,148], protect rats from brain
ischemia/reperfusion injury, and enhance long-term potentiation, learning, recognition
and memory [83,149,150]. In vitro, crocin inhibited the conversion of tau protein into more
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aggregated conformations during the fibrillation process by binding to its intermediate
structures and inhibited 50% of tau aggregates at a dose of 100 µg/mL [151]. In rats,
co-treatment with 25 mg/kg crocin significantly reversed the level of acrolein-induced
phosphorylation of tau in the cerebral cortex by attenuating the active forms of ERK
and JNK kinases [152]. GSK-3β is the most important protein kinase that regulates tau
phosphorylation, when it is overactivated, tau is hyperphosphorylated. In PC12-htau cells,
tau is hyperphosphorylated at Thr231 and Ser199/Ser202 compared to PC12 cells. In PC12-
htau it has been shown that trans-Crocin 4 decreases the amount and phosphorylation of
tau at the pThr231 and pSer199/Ser202 epitopes, and inhibits the active forms of GSK3β
and ERK1/2 kinases [153].

Resveratrol (RES) has pharmacological properties with antioxidant, anti-inflammatory,
hepatoprotective, anti-diabetic, and anti-tumor effects [154,155]. It is believed to have ther-
apeutic potential in the treatment of neurodegenerative diseases. For example, treatment
with RES reduced tau phosphorylation in the hippocampus of diabetic mice fed a high-fat
diet, resulting in improved memory impairment [156]. An in vitro ThT fluorescence assay
showed that RES inhibited tau aggregation, resulting in the formation of smaller aggregates
rather than long fibers. Moreover, it prevented extracellular tau oligomers from binding to
N2a cells, reduced tau propagation, and decreased the levels of phosphorylated tau and tau
oligomers in the brains of PS19 mice [58]. In addition to GSK-3β, calmodulin-dependent
protein kinase II (CaMKII) and phosphoserine/phosphothreonine protein phosphatase-2A
(PP2A) are also important enzymes involved in the regulation of tau protein hyperphos-
phorylation [157–161]. RES inhibited formaldehyde-induced increasing phosphorylation of
GSK-3β and CaMKII protein levels to prevent tau protein hyperphosphorylation, thereby
protecting N2a cells from formaldehyde-induced damage [162]. PP2A dephosphorylates
tau, preventing its microtubule dissociation and PHF formation. MID1 is a negative
regulator of PP2A and mediates the ubiquitin-specific degradation of PP2A. The loss
of its function results in increased PP2A protein levels and activity [163]. Both in vitro
and in vivo, RES treatment destabilized the ubiquitin ligase MID1 and its mRNA, which
directly interfered with the MID1–α4–PP2A degradation complex by decreasing MID1
protein expression, leading to an increase in microtubule-associated PP2A activity and
the time- and dose- dependent dephosphorylation of tau [164]. Similarly, in the brain of
CdCl2-treated rats, trans-resveratrol inhibited tau phosphorylation by activating PP2A and
inhibiting GSK3β activity. In particular, the inhibition of GSK3β activity was mediated
by AMPK-induced activation of the PI3K/Akt signaling pathway [165]. In addition, RES
inhibited alum-induced tau hyperphosphorylation at the Ser396 site in rat hippocampal
slices by decreasing ERK1/2 activation and increasing GSK-3β Ser9 phosphorylation [166].
In optic nerve head astrocytes (ONHAs) undergoing oxidative stress, pretreatment with
resveratrol not only increased cell viability, but also reduced the levels of activated caspases
and dephosphorylation of the tau protein at Ser422, thereby reducing caspase-mediated
tau cleavage and neurogenic fiber tangle (NFT) formation [167].

As mentioned above, quercetin, curcumin, and EGCG exerted potent neuroprotective
effects in inhibiting Aβ formation and attenuating Aβ toxicity. In addition to this, they also
show protective effects in terms of lowering tau phosphorylation levels and reducing the
levels of aggregated tau. Quercetin-3-O-glucuronide (Q3G), a major quercetin metabolite in
human plasma, has been reported to have potential neuroprotective effects [168]. Pretreat-
ment with 10 µM quercetin or Q3G inhibited okadaic acid (OA)-induced phosphorylation of
the tau protein in SH-SY5Y. An oral administration of quercetin also effectively attenuated
overexpression of the tau protein phosphorylation in the hippocampus of mice during HFD
feeding. Further experiments demonstrated that this was due to the activation of AMPK
and inhibition of GSK3β activation by enhancing phosphorylation at the Ser 9 residue [169].
Cell cycle protein-dependent kinase 5 (CDK5) is one of the kinases that affect tau phos-
phorylation, and overactivated CDK5 activity leads to an abnormal phosphorylation of
tau [170]. Quercetin inhibited CDK5 activity, blocked the Ca2+–calpain–p25–CDK5 signal-
ing pathway, and inhibited tau phosphorylation at four sites (Ser396, Ser199, Thr205, and
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Thr231), thus exhibiting significant neuroprotective effects on OA-induced Ht22 cells [171].
In vitro, quercetin was shown through ThT fluorometry to inhibit tau fibrillization and
disassemble pre-formed aggregates of the tau protein [65]. Curcumin has long been shown
to inhibit GSK-3β activity and prevent tau hyperphosphorylation, thereby protecting SH-
SY5Y from Aβ-induced mitochondrial dysfunction [172,173]. In vitro, curcumin has been
shown to inhibit the formation of tau β-sheets, inhibit tau fibrillation, and degrade formed
tau filaments, thereby reducing the level of aggregated tau, with 20 µM curcumin lead-
ing to 75 ± 10% disaggregation of tau aggregates [51]. As for EGCG, in vitro, it blocked
K18∆K280 aggregation and inhibited the formation of potentially proteotoxic oligomeric
tau species [174]. In primary neurons, phospho-tau (p-S396/404, p-S262, and p-T231) and
total tau levels decreased after 24 h of 50 µM EGCG treatment, but mRNA levels of tau
were not affected. This suggests that the reduction in tau was due to clearance rather than
transcriptional repression [175]. Other studies have also shown that EGCG binds tau in its
phosphorylation region with an affinity of the same order of magnitude as kinases (0.5 mM),
preventing it from contacting the protein and thus playing a key role in preventing tau
aggregation [73].

In addition to the compounds listed above, there are also many potential therapeutic
agents in tauopathies. Gastrodin reduced tau phosphorylation levels of Ser396, Ser199, and
Thr231, and inhibited GSK3β kinase activity levels in the brains of APP/PS1 transgenic
mice [76]. Morin, a natural bioflavonoid, reduces tau hyperphosphorylation by inhibiting
GSK3β activity and the CDK5 signaling pathway in mice [176,177]. The monoterpene
1,8-cineole (CIN), present in many plant essential oils, attenuated the abnormal phospho-
rylation levels of the tau protein at the thr205, thr181, and ser396 sites induced by AGEs
in vitro and in vivo [178]. Macelignan, a sort of lignan derived from Myristica fragrans
mace, reduced tau phosphorylation in tau-overexpressing cells and primary neurons of
3× AD-transgene mice. It also promoted PP2A activity in tau-overexpressing cells [126]. In
addition, plant-derived nobiletin, beta boswellic acid, huperzine A, and caffeine exhibited
the inhibition of tau hyperphosphorylation in different mouse models, respectively [179–182].
Isobavachalcone is the main component extracted from Psoralea corylifolia. In vitro,
isobavachalcone can inhibit heparin-induced tau K18 aggregation and break down ma-
ture fibrils into shorter and smaller fibrils or short fragments. Furthermore, in N2a cells,
it reduced the proportion of apoptosis caused by phosphatidylserine-induced tau K18
oligomer, from 40% to 10%. It also reduced the level of tau phosphorylation by regulating
the levels of GSK3β and PP2A [183]. Limonoids (nimbin and salannin), isolated from neem
fruit, were able to inhibit hTau40w aggregation and instead form thin, short, fragile tau
fragments [184].

5. Natural Products Inhibit, Degrade, and Remodel α-Syn Fibrils to Reduce
Accumulation and Toxicity

Alpha-synuclein (α-Syn) is an intrinsically disordered protein [185] that is abundant
in the central nervous system [186] and transforms into cross-β-sheets rich amyloid by
self-assembly under physiological conditions via partially folded intermediates and sol-
uble oligomers [187]. Some aggregated species of α-Syn formed along the fibrillation are
highly toxic and capable of interfering with the functions of different organelles such as
mitochondria, endoplasmic reticulum, and plasma membrane [188–190]. Furthermore,
it may increase oxidative stress, causing severe damages in dopaminergic cells [191,192].
Therefore, molecules that inhibit α-synuclein fibrillization and stabilize it in a non-toxic
state can serve as therapeutic molecules that both prevent the accumulation of aggregated
α-syn and maintain normal physiological concentrations of α-syn [193].

Studies have identified small molecules, nanoparticles, peptides, and polymers that
have the ability to inhibit α-synuclein fibril formation or destabilize preformed α-syn fibrils
(Figure 3). Curcumin has been mentioned above for its significant inhibitory effect on
the formation of aggregates of Aβ and tau [194–197]. Curcumin has also been shown to
inhibit the aggregation of α-syn in vitro and attenuate the toxicity of α-syn oligomers in
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cells [52,53]. In addition, curcumin prevented lipopolysaccharide-induced increases in
α-syn gene expression in rats [198]. Due to the instability of curcumin in solution, stable
curcumin analogues have raised some concerns. Curcumin pyrazole and its derivative
(N-(3-nitrophenylpyrazole) curcumin inhibited the aggregation, protofibrosis, and toxicity
of α-syn. Through biochemical, biophysical, and cell-based assays, both have been found
to exhibit significant efficacy not only in arresting fibrillization and destroying pre-formed
fibrils, but also in preventing formation of the A11 conformation in proteins, which can have
toxic effects [199]. EGCG is another natural product that has received particular attention for
targeting α-syn fibrillization due to its high availability and low toxicity [200,201]. In vitro,
EGCG effectively inhibited α-syn fibrillogenesis by binding to naturally unstructured
α-syn monomers and preventing their conversion into stable, β-sheet-rich structures.
Instead, it promoted the formation of a novel non-structural, non-toxic α-synuclein [66].
In the rat immortalized oligodendrocyte cell line, OLN-93, EGCG immobilized the C-
terminal region, moderately reduced the degree of oligomer binding to the membrane,
and inhibited the ability of pre-formed oligomers to permeabilize vesicles and induce
cytotoxicity [202]. ‘Active’ oligomers (AOs), characterized as a meta-stable and β-sheet-
free species, exhibit rapid self-assembly into the radiating amyloid fibrils (RAFs) on the
liposome surface, leading to drastic disruption of the membrane structures [203]. EGCG
suppressed the membrane-disrupting radiating amyloid fibril formation on the surface of
liposomal membranes, thus protecting the cells that can be readily affected by Aos [204].
According to the results of a molecular dynamics simulation, EGCG can disrupt the β-sheet
structure and reduce the β-sheet content to remodel α-syn fibrils [205,206].
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the fibrosis of α-syn, curcumin and EGCG can inhibit its conversion from a monomer to an oligomer,
and ginsenoside Rb1 and gallic acid can degrade the formed fibrils. Resveratrol can induce the
autophagic degradation of α-syn.

There is evidence that alterations in the autophagy lysosomal pathway of α-synuclein
degradation may be preferentially involved in neuronal death and contribute to the patho-
genesis of PD [207,208]. RES-activated SIRT1, deacetylated microtubule-associated protein
1 light chain 3 (LC3), and caused the autophagic degradation of α-syn in dopaminergic
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neurons [84]. Studies have shown that ginsenoside Rb1 effectively inhibited α-syn fib-
rillation, with an inhibition rate of approximately 90% at 25 µM and incubation for two
days. Additionally, Rb1 exhibited a strong ability to decompose preformed fibrils and
inhibit the seeded polymerization of α-syn [85]. In vitro thioflavin T fluorescence assays
and transmission electron microscopy imaging results showed that GA can inhibit the for-
mation of amyloid fibrils by α-syn and disaggregate preformed α-syn amyloid fibrils. For
soluble non-toxic oligomers without β-sheet content, GA can bind to them to stabilize their
structure [84,86]. Triptolide (T10) is a monomeric compound isolated from Tripterygium
wilfordii Hook f (TWHF). It has anti-inflammatory and anti-tumor activities, as well as
neuroprotective effects [209,210]. In neuronal cells, T10 decreased the expression level of
α-syn and acted as an autophagy inducer to promote the degradation of α-syn without
disturbing lysosomal function [211].

In addition to the above, other compounds have been found to have effects on α-
syn aggregation in vitro. For example, the components of saffron, crocin-1, crocin-2, and
crocetin, inhibited α-syn aggregation, and dissociated α-syn fibrils [149]. The compounds
in Rose damascena can inhibit α-syn fibrillation and oligomer toxicity [212]. In addition,
the combined action of the compounds offers a new possibility. Protocatechuic acid (PCA)
and hydroxytyrosol (HT) were able to reduce α-syn toxicity. When PCA (100 µM) and HT
(100 µM) were used in combination, they showed a higher inhibition of α-syn protofibril
formation and destabilization of α-syn fibrils, of 88% and 62%, respectively [213].

6. EGCG and Ellagic Acid Dose-Dependently Inhibit Htt Protein Aggregates and
Increase Cell Viability

Huntingtin protein (Htt protein) is a key functional protein in the pathogenesis of
Huntington’s disease (HD) [214,215]. Under normal physiological conditions, the Htt pro-
tein can interact with many proteins to perform biological functions in cells such as protein
transport, vesicular trafficking, postsynaptic signaling, transcriptional regulation, and the
inhibition of apoptosis [216]. In pathological conditions, the HTT gene, exon 1 CAG repeats
are increased and the polyglutamine (polyQ) is extended and expanded, resulting in HTT
mutation (mHTT) [217]. The degree of Htt fibrosis is directly related to the length of polyQ,
which exceeds 35 polyQ as a critical value [218,219]. The expanded and extended polyQ
forms oligomers, protofibrils, and fibrillated amyloid due to the folding of β-sheet struc-
tures, thus causing increased free radicals, mitochondrial dysfunction, and inflammatory
factor production, leading to disease onset [216,220]. As shown in Figure 4, there are some
traditional therapeutic approaches based on natural products that have been shown to
have broad therapeutic benefits for mHTT-induced aggregates in both in vitro and in vivo
models [220–222].

In an in vitro protein purification assay, EGCG was able to inhibit 51 glutamine-
producing aggregates in a dose-dependent manner at a semi-inhibitory concentration of
1 µM after 16 h of incubation [223]. EGCG inhibited the formation of 53 glutamine-induced
small oligomers in vitro by stimulating the formation of larger-diameter (120–200 nm)
macromolecules. When the concentration of EGCG was five times the molarity of the aggre-
gation reaction, EGCG could bind to non-structural polyQ sequences and interfere with the
formation of polyQ aggregates [223]. EGCG not only reduced damage to aggregates and
reduced the number of aggregates in the yeast (GFP-HDQ72) model, but it also reduced
photoreceptor degeneration and motor damage in the HDQ93 Drosophila model [223,224].
In the study of lipid membrane interactions, it was shown that the ability of EGCG to
regulate aggregates was enhanced by the presence of lipid vesicles [225]. Ellagic acid
(2,3,7,8-tetrahydroxybenzopyrano (5,4,3-cde) benzophyran-5–10-dione, EA) is a polypheno-
lic antioxidant found in pomegranates, raspberries, strawberries, cranberries, and walnuts.
In vitro, ellagic acid (160 µM) was observed via transmission electron microscopy to not
only inhibit the formation of HD53Q amyloid, but also increase the viability of 3 µM
HD53Q-induced neurotoxic cells by 40.3% when 9 µM ellagic acid was added [81]. In vivo,
high doses of ellagic acid significantly reduced mHTT aggregates in the striatum and
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cortex of R6/2 mice shown through EM48-immunostaining (about 50–70% reduction) [81].
Harmine is an alkaloid plant antioxidant that solubilized 103Q-htt aggregates in yeast
in vivo in a dose-dependent manner (25 µg/mL) and restored cell viability by reducing the
damage caused by oxidative stress [226].
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7. EGCG Directly Targets the Structural Domain of the FUS Protein to Inhibit
Aggregate Formation

FUS is a sarcoma fusion protein that has been identified as a cause or risk factor for
the neurodegenerative diseases amyotrophic lateral sclerosis (ALS), idiopathic tremor, and
the rare frontotemporal lobar degeneration (FTLD) [227]. FUS is a DNA/RNA-binding
protein that is mainly localized in the nucleus and has a total of 526 amino acids. Under
normal physiological function, FUS is capable of undergo liquid–liquid phase separation,
a process in which a supersaturated solution spontaneously forms two physical phases of
different densities that can stably coexist [228]. FUS has been shown to be involved in the
DNA repair process as a function of instantaneous liquid–liquid phase separation [229].
However, FUS is highly susceptible to self-aggregation, and in vitro or in pathological
models, FUS results in different states such as amyloid-hydrogel-like or aggregated solid
forms due to self-aggregation or abnormal liquid phase mass changes [230]. As shown in
Figure 5, the structural domain of FUS is roughly divided into seven parts: an N-terminal
serine-rich LC disordered domain (NTD), followed by tyrosine, glycine, and glutamine
(QGSY) residues, followed by three arginine–glycine–glycine repeats (RGG) and an RNA
recognition motif (RRM), and finally a zinc finger domain (ZnF) and a proline–tyrosine
nuclear localization sequence (PY-NLS) [231]. Different structures of FUS play different
roles, and the occurrence of a liquid–liquid phase separation in FUS is regulated by several
structural domains, especially the LC region, which dominates the liquid–liquid phase
separation and anomalous phase transition of FUS. Recent studies have shown that EGCG
directly binds to the RG/RGG structural domain of FUS to promote FUS droplet formation,
and arginine methylation enhances this effect [232]. In an in vitro model of purified
FUS (RGG-3PY), EGCG exhibited high affinity to RGG-3PY at both high micromolar
and millimolar levels. The methylation of arginine was detected via NMR spectroscopy
to enhance the binding of EGCG to the FUS protein, thereby inhibiting the abnormal
phase transition of FUS protein from membraneless organelles to toxic aggregates and
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protofibrils [232]. There are few natural products that can directly affect the structure and
formation process of FUS protein aggregates and restore their normal phase transition
function, and this will be a key issue in future research. The study of natural products that
inhibit the self-aggregation of FUS proteins will also provide a new idea and theoretical
basis for the treatment of major diseases such as ALS and FTLD.
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8. Conclusions and Perspectives

Neurodegenerative diseases, which lead to progressive neuronal cell damage and the
loss of neuronal connections, ultimately resulting in impaired mobility, memory loss, and
cognitive impairment, have become a common challenge for humanity. Protein aggregation
due to misfolding and oligomerization is one of the common hallmarks of many neurode-
generative diseases, and many scientists have conducted extensive research to explore the
morphology, structure, and molecular mechanisms leading to aggregation in an attempt to
find ways to inhibit protein formation and reduce protein aggregation.

The advantages of natural products are as follows. Natural products are a starting
point for drug discovery. Natural products are usually found in plants or fruits, and the
raw materials are easily available. In addition, the molecular scaffold of natural products is
rich and diverse, which can be used to rationally design drugs using electronic computer-
aided designs.

The disadvantages of natural products are that natural products have low monomer
availability, a complex and lengthy extraction process, and high depletion. Secondly, natu-
ral products have low bioavailability, limited water solubility, unstable physicochemical
properties, rapid metabolism, and they cross the blood–brain barrier (BBB) [233–238]. How-
ever, natural products are grown in nature, and because their molecular structures are
easy to study and modify and they have low toxicity and few side effects, they are now
receiving a great deal of attention as good candidates for safe treatment at the preclinical
stage of disease. The unique molecular structural features of natural compounds play
a key role in inhibiting amyloid formation, such as curcumin, of which the hydrophobic
interaction and hydrogen bonding in the symmetrical molecular structure can deform the
β-sheet structure, and the π-stacking between the aromatic residues that bind Aβ leads to
a reduction in the β-sheet structure, thus inhibiting the formation of Aβ aggregates. CA
and FA have similar effects. EGCG binds to non-structural polyQ sequences, reducing the
number of polyQ, interfering with the formation of polyQ aggregates, and reducing the
probability of developing HD. EGCG directly binds to the RG/RGG structural domain
of FUS, promoting the formation of FUS droplets and ensuring the normal physiological
function of FUS. To inhibit the formation of protein aggregates, many studies have also
been conducted on compounds that can affect gene expression levels and thus key enzyme
activity levels, such as EGCG and resveratrol, which can affect the phosphorylation of the
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tau protein by down-regulating GSK3β expression levels, reducing oligomer formation
and protofibrillation. Curcumin, which is rich in biological activity, inhibits the deposition
of Aβ aggregates by binding to the N-terminal end of Aβ and reduces the level of BACE1
enzyme activity by modulating the ERβ and NFκB pathways, thereby attenuating the
neurological damage of Aβ aggregation. In addition to directly targeting the misfolding
and the aggregation process of various amyloid proteins, some natural products have
been shown to act downstream of protein aggregation to prevent the toxic consequences
of misfolded protein accumulation. Examples include targeting the secondary processes
induced by the accumulation of misfolded proteins, inflammation, oxidative stress, and
dysregulation of proteostasis. Although much work has been carried out to investigate the
effects of natural products on pathogenic protein aggregation, there are still shortcomings.
For example, some natural products are metabolically unstable and have low bioavailabil-
ity, which needs to be strengthened in the development of analogues and derivatives. In
addition, experimental studies on the effects of natural products on protein aggregation
are not detailed enough, and it is still worthwhile to develop and explore the mechanism
and analyze how to reduce oligomeric and fibrillated proteins. More importantly, there is
a wide variety of natural products and a huge number of them, and in future research, se-
lective and focused systematic screening of natural product libraries is of great importance.
Neurodegenerative diseases cause immense physical and psychological suffering, and the
use of natural products as a preventive intervention should be further explored in clinical
research. More research is therefore needed on how to best utilize natural products to treat
and prevent some of the current debilitating chronic diseases.
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