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Abstract: The current challenges in the food packaging field are, on one side, replacing plastic from
non-renewable sources with biopolymers and, on the other hand, generating a packaging material
with attractive properties for the consumer. Currently, the consumer is ecologically concerned; the
food packaging industry must think ahead to satisfy their needs. In this context, the utilization of
polyelectrolyte complexes (PECs) in this industry presents itself as an excellent candidate for fulfilling
these requirements. PECs possess enticing characteristics such as encapsulation, protection, and
transportation, among others. On the other hand, diverse types of biopolymers have been used in the
formation of PECs, such as alginate, cellulose, gelatin, collagen, and so on. Hence, this paper reviews
the use of PECs in food packaging where chitosan forms polyelectrolyte complexes.

Keywords: chitosan; polyelectrolyte complexes; food packaging

1. Introduction

At present, the planet is in a critical position because industries generate thousands of
tons of waste. The marine industry is no stranger to this issue since this type of manufactur-
ing generates waste which could produce diseases, adding to the bad smell caused. Due to
the pandemic caused by COVID-19, the production of food and marine products decreased
because of the lockdown, which caused precariousness in the food supply; however, this
had a slight increase in 2021 [1].

According to FAO (Food and Agriculture Organization) data, world production of
crustaceans reached around 11 million tons in 2020; the above implies that the amount of
waste generated is important [1]. Currently, the recycling of waste is a common necessity to
diminish environmental damage. In this way, the use of waste from crustaceans is used for
obtaining chitin and then chitosan. Chitin is a polysaccharide that is a major component
present in the hard outer shells of shrimp and lobsters. From the alkaline hydrolysis
of chitin, chitosan can be obtained [2]. Chitosan is a recognized linear polysaccharide
biopolymer with amine and hydroxyl groups in its chemical structure, providing unique
features that modify it chemically [3–5]. In addition, chitosan possesses antimicrobial
characteristics, which turn into a biopolymer attractive for applications in various fields,
from the pharmaceutical to the food industry [6–9].

On the other hand, over the past decade, the application of nanotechnology from
environmentally friendly materials has emerged as a new field that utilizes nanoscale
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materials to deliver drugs, genes, and imaging agents. Thus, a wide variety of studies
regarding nanoaggregates in several applications have been published [10–12].

Among the different types of nanoaggregates systems that have been elaborated can
be identified: polymeric micelles, nanoparticles, polymer conjugates, and polyelectrolyte
complexes (PECs) (Figure 1).
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These systems are mainly used as carriers or reservoirs of bioactive molecules. Among
the polymeric systems, PECs stand out, which can generate two environments in one
structure: hydrophilic and hydrophobic. PECs are generated via long-range electrostatic
interactions through charged polymers, known as polyelectrolytes (PEs). These PEs are
formed from repeating units which carry charge when dissolved in water (most polyelec-
trolytes have high solubility in water), i.e., they generate polycations or polyanions through
counterion release. Thermodynamically, it is well known that the release of the counterion
is the driving force in PECs’ generation [13]. These interactions between the PEs lead to
the formation of voids in the PECs formed; thereby, the PECs are capable of generating
encapsulating systems, which could improve the bioavailability and the distribution of
active compounds. Thus, one of the significant applications of these systems is as a carrier
for delivery systems (Figure 2).

PECs are made up of charged polymers with negative and positive charges. The
interaction between these two charged polymers generates stable structures known as
polyelectrolyte complexes, and such structures form holes capable of accommodating small
molecules [14].

Several factors must be considered in the formation process of PECs, such as the
length of the chain of PE, charge density, stability, pH, concentration, mixing ratio, molec-
ular weight, hydrophobicity, and ionic strength, which are some factors to take into ac-
count [15–18]. The stoichiometry of the PEs involved determines the solubility property of
these systems. It is well-known that non-stoichiometric mixtures of polyelectrolytes lead to
the formation of water-soluble PECs that comprise a neutral core trapping a 1:1 mixture of
oppositely charged polymeric structures encircled by a shell of excess polyelectrolyte chains.
In this context, knowledge of molecular weight is essential since the polyelectrolytes used
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must have significantly different molecular weights [19]. On the other hand, stoichiometric
combinations of polyelectrolytes lead to unstable shell-deficient PECs, which flocculate due
to the hydrophobic attraction between neutral coacervates [20]. In this context, solubility is
managed by the stoichiometry of the PEs involved, which determines the final application
of the PECs.
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At the technological level, PECs are widely used because of their unique characteristics,
such as water solubility and formation of voids which allow the building of systems for
encapsulation, stabilization, and release of different substrates such as drugs, enzymes,
antioxidants, and cells, among others. In this sense, PECs have been extensively utilized in,
for example, encapsulating colorants under unfavorable conditions [21]; the development of
biosensors [22]; intensification and stabilization of anthocyanins [23]; controlled release and
preservation of vitamin D3 [24]; and transport of multivalently charged compounds [25].
In particular, they have been used as delivery systems in diverse applications including
pharmaceutical and biomedical [26,27] and as a remover of metals in aqueous waste [28–31].

This review provides a contemporary look at chitosan-based polyelectrolyte complexes
focused on using PECs in food packaging and shares several promising outcomes.

2. Polyelectrolyte Complexes Using Biopolymers

The use of biopolymers in several fields of knowledge has already been diversified
over several years due to the relevance of generating biodegradable systems with the aim
of causing the minimum impact on the environment. Therefore, the use of biopolymers
in the generation of polyelectrolyte complexes is not a novelty, and various works have
been published using biopolymers in this type of system [32–34]. In this sense, chitosan
has been widely studied as part of polyelectrolyte complexes because its positive charge
can be used as a polycation. In the case of polyanions from biopolymers for application in
PEC systems, alginate, pectin, hyaluronic acid, gum arabic, and gellan gum are some of the
ones that have been used for this purpose [35–42].



Int. J. Mol. Sci. 2023, 24, 11535 4 of 21

The application of nanotechnology in different areas is well known. One of those
applications is related to transporting substances such as drugs, genes, and imaging agents.
Thus, a wide variety of studies regarding nanoaggregates in several applications have
been published [10,12,43,44]. Currently, the use of different types of nanoaggregates is
being developed. As previously noted, PEC systems are a type of nanostructure highly
attractive due to their capacity for carrying active non-soluble compounds in aqueous
medium compounds.

Sadeghzadeh et al. [45] developed nanocarriers coated with chitosan and folic acid to
deliver umbelliprenin. This substance is used for its highlighted cytotoxicity and, in this
work, was used for studying potential anti-cancer effects. The results show an excellent
bonding percentage between chitosan and folic acid, while the retention and delivery of
the umbelliprenin demonstrated a positive result, as seen in Figure 3.
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Following these carriers, Almeida et al. [46] investigated nanostructured carriers
using chitosan and chloroaluminum phthalocyanine as a photosensitizer. The goal was
to functionalize the surface of nanocarriers by using chitosan to enhance the biological
activity of the transporter. The outcomes were promising in the carrier’s area.

Aqueous pollution is a topic of great interest. Several possible solutions have been
studied through the years. In this vein, nanotechnology has been used as a powerful
tool. For instance, Freire et al. [47] studied their adsorption capacity for dye removal from
an aqueous dispersion. The results showed that the nanocomposites possess an extensive
surface area. The dye-adsorption capacity displayed by nanocomposites was demonstrated
against anionic dyes.

Hernández-López et al. [48] developed a nanostructured edible coating using chi-
tosan with α-pinene, intending to generate a material capable of preserving bell peppers’
postharvest quality and to study the coating’s resistance against the fungus Alternaria
alternata. The evidence suggested that the nanostructures did not alter the flavonoids
and the antioxidant capacity of bell peppers. In general, the results obtained showed that
the nanostructured edible coating presented good results to be potentially applied to bell
peppers (Figure 4).

Nanostructures created with graphene, multiwalled carbon, and chitosan were created
via self-assembly to obtain an electrochemical sensor for sensitive detection of bisphenol
A in milk samples. The systems thus created showed distinctive characteristics in electro-
catalytic activity and conductivity. The combined effect of graphene, multiwalled carbon,
and chitosan was responsible for this new electrochemical sensor showing good stability,
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repeatability, and reproducibility. The results showed that this sensor has the potential
to be used for BPA identification in dairy samples with excellent accuracy and precision
parameters [49].
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In a different work, Tian et al. [50] developed a PEC system using pectin and chitosan to
obtain a carrier for a delivery system; Figure 5 shows an SEM image of this formulation. The
results showed that the system displays excellent properties such as mechanical strength,
stability, and biodegradability.
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Nanogels based on polyelectrolyte complexes have been developed by Le et al. (2022).
This material is a thermoresponsive one. The researchers combined functionalized hyaluronic
acid with diethyl aminoethyl dextran or poly-L-lysine from the above. Depending on the
mixture, different hydrophobicity grades were obtained in the PECs. Figure 6 shows
a scheme of the PEC thus developed. The encapsulation of curcumin as a drug model
was used. The research indicated that the systems displayed high thermoresponsiveness,
stability, and encapsulation. With these qualities, the system improved the solubility of
curcumin in an aqueous medium.

Table 1 shows some applications using PECs based on biopolymers as encapsulat-
ing systems.
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Table 1. Some polyelectrolyte complex systems based on biopolymers and their applications as
encapsulant agents. (A brief survey from 2018 to 2023 years).

Polyelectrolyte Complex System/Encapsulated Molecule Application Ref.

Pea-protein succinylated-Chitosan/curcumin Delivery of curcumin in a gastrointestinal system [52]

Chitosan-alginate/assai pulp oil Active food packaging [53]

Casein-sodium alginate/vanillin Delivery systems in various areas, such as food
packaging, textiles, cosmetics [54]

Carboxymethylagarose-chitosan/diclofenac sodium Wound dressing for transdermal drug delivery,
tissue engineering [55]

Glycosaminoglycans-chitosan/mesenchymal stem cells Applications in bioprinting, modular tissue
engineering, or regenerative medicine [56]

Chitosan-fucoidan/platelet-rich plasma Use in diabetic wound care [57]

As highlighted above, the utilization of biopolymers in polyelectrolyte complexes
(PECs) presents a promising pathway for producing environmentally friendly materials.
Among these biopolymers, chitosan stands out due to its numerous advantages over others.
First and foremost, chitosan exhibits remarkable abundance and sustainability as it can be
sourced from waste materials such as crustacean shells, as well as from renewable resources
such as fungi. Additionally, chitosan demonstrates high biocompatibility and biodegrad-
ability, making it well-suited to a wide range of biomedical applications. Its low toxicity
ensures minimal adverse effects, further enhancing its appeal in various fields, including
biomedicine. The versatility of chitosan is evident from its ability to undergo structural
modifications, facilitating the development of tailored PECs with specific functionalities.
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When its primary amine groups are chemically modified, chitosan can accommodate the
incorporation of desired elements such as drugs and targeting ligands. This adaptability
positions chitosan as a versatile platform for the creation of multifunctional PECs.

Furthermore, chitosan possesses inherent antimicrobial properties, making it an attrac-
tive material for applications requiring antimicrobial protection. This feature adds to its
overall appeal in areas where safeguarding against microbial contamination is crucial.

In short, chitosan stands out from other biopolymers in the realm of polyelectrolyte com-
plex formation, primarily due to its abundance, sustainability, biocompatibility, biodegrad-
ability, structural versatility, and antimicrobial characteristics. Its exceptional attributes
make chitosan an excellent candidate for integration into PEC systems.

3. Active Food Packaging

Today’s consumer is more demanding regarding the quality of packaged food, leading
to the food packaging industry’s generation of packaging with more characteristics such
as “smart” antimicrobial packaging for food preservation. In this sense, a large number of
works have reported on the subject. Incorporating different types of structures into a matrix
has various purposes, named some: increasing the resistance, porosity, and flexibility of
the material [58–62]. The enhancement of the shelf life of the food is of great importance
to the consumer. In this way, diverse structures have been introduced with antimicrobial
properties, such as nanoparticles, natural products, and essential oils [63–67].

The remarkable characteristics of nanoparticles, such as size, and antimicrobial prop-
erties, for example, are desirable for the food packaging industry. Kowsalya et al. [68]
developed Ag nanoparticles and poly(vinyl alcohol) to form nanofibers to be used in films
for food packaging. The system exhibited a high antimicrobial capacity against several
bacteria when applied as fruit packaging. With these results, the potential shelf life of the
product could be increased, as can be observed in Figure 7.

Halloysites are tubular clay nanoparticles widely studied to form part of different
systems. Thanks to the tubular shape of halloysites, they can be used as an encapsulating
agent. Alkan Tas et al. [69] developed a film of polyethylene coating with these tubular
nanoparticles and incorporated carvacrol, which has antimicrobial characteristics, intending
to improve the final material regarding the quality and security of the food. The outcomes
of this investigation revealed that the halloysites incorporated in the film allowed the
release of carvacrol over time. These results could enhance the quality of food and increase
its shelf life.

The incorporation of more than one active compound has been studied as well. In
this work by Motelica et al. [70], ZnO nanoparticles were incorporated into alginate films
(Figure 8a). The authors incorporated citronella essential oil into the above formulation to
observe whether the combination of these compounds generated a synergic effect. This
study aimed to obtain an active biofilm with improved characteristics. The results showed
improved water barrier properties; meanwhile, antibacterial activity against B. cereus
showed promising results. The active films were tested on soft cheese, demonstrating that
the shelf life was extended by over 14 days. Figure 8b,c shows the films that were obtained
and films tested on soft cheese, respectively.

Food packaging based on biodegradable materials is a subject of interest to decrease
the waste from non-biodegradable materials. In their study, Abarca et al. [71] incorporated
nisin and EDTA into a gelatin matrix to obtain a biodegradable film with antimicrobial
properties. The results displayed an important antimicrobial effect against Escherichia coli.
In another study of chitosan-gelatin and pectin-chitosan, films and coatings were made.
The authors incorporated lemongrass essential oil, Zn, or ZnO as active compounds into
the films. The thermal results showed high stability. Regarding mechanical properties, the
films made from chitosan-gelatin showed good characteristics for practical applications.
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Moreover, the antibacterial effect was tested, and the results showed a synergic effect
between the active compounds incorporated into the films. The novelty of this study is that
they tested the coating on boxes containing raspberries. The best microbiological behavior
was found in boxes coated in chitosan-gelatin emulsion with ZnO. The shelf life of the fruit
was prolonged by all formulations studied from four to eight days [64].

Zn nanoparticles loaded with carvacrol were developed to be incorporated into films
made with fish scale-derived gelatin and sodium alginate (Figure 9a). The mechanical
properties of the film were improved, showing a good ability to stretch without break-
ing. Additionally, the solubility of the film in water decreased; meanwhile, the thermal
stability improved as well. Regarding the antibacterial activity of the films, the findings
indicated that a good response was noted against E. coli and S. aureus, and the carvacrol
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release from the films in different food simulants showed excellent results, as can be ob-
served in Figure 9b. The researchers believe this film might be used as food packaging for
strawberries to maintain postharvest quality [72].
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Various kinds of active films have been developed across the years to improve specific
poor characteristics of biofilms, such as elasticity, barrier properties, and toughness. Over
time, many substances have been created with these goals. To this end, Ullah et al. [73]
used zein protein together with polycaprolactone in electrospun nanofiber sheets into
which halloysite nanotubes (HNT) were incorporated. In addition, they incorporated β-
caryophyllene, which is a bicyclic sesquiterpene with high anti-inflammatory, antibacterial,
and antioxidant properties, among others. Figure 10 shows SEM images of the nanofibers
studied. This work showed that the mechanical and thermal characteristics of nanofiber
sheets were enhanced by adding halloysite. The material was tested on strawberries in
storage conditions, and the results were encouraging since the encroachment of moisture
was observed to be delayed. These results show that the material generated can fortify
the film.

Collagen is a highlighted material in food packaging. Tang et al. [74] developed
collagen films modified with quinones obtained via the oxidation of phenolic acids to
improve collagen performance. The results showed that collagen was successfully modified.
The films with collagen modification showed improved properties, such as increased
resistance to enzyme degradation; the mechanical and thermal properties were improved
as well. The antioxidant capacity of the modified material was highlighted. Meanwhile,
the antimicrobial capacity against E. coli and S. aureus showed promising findings in
modified films.

Ali et al. [75] developed films based on gum arabic crosslinked with butyl acrylate and
hydroxyethyl methacrylate. These researchers aimed to obtain self-sticking films loaded
with cinnamon essential oil to be potentially used as active packaging in the vapor phase.
The encapsulation and release results of cinnamon oil showed a good performance. The
antimicrobial activity assessment showed relevant results against E. coli inoculated in
string cheese.
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Food Packaging Using Polyelectrolyte Complexes Systems Chitosan Based

The current pace of life has led the industry to improve its products. The food packag-
ing industry is no stranger to that. The current consumer demands that food has a long
shelf life, and the industry has adjusted to this requirement. In this sense, films based on
PECs offer multiple opportunities to obtain a material with remarkable properties.

Food packaging generates a large amount of waste because a large part consists of
non-biodegradable materials, causing significant environmental damage. Great efforts are
being made to diminish this kind of remains. Using biodegradable polymers as potential
replacements in food packaging materials is one alternative for this severe situation. In
this matter, chitosan, PLA (polylactic acid), and PHB (polyhydroxybutyrate) are the most
biodegradable polymers studied. Among them, chitosan has been widely investigated in
the most diverse areas because of some of its prominent properties, such as low toxicity,
biocompatibility, cost-effective production, and high availability; it makes an excellent
alternative to form part of multiple materials [76–83].

In this sense, the studies on using chitosan in the food packaging industry have been
widely covered. The antimicrobial properties of chitosan have been a great advantage
when choosing what material to use because of the possibility of extending the shelf life of
packaged food, as was reviewed in the previous section.
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The attractive properties of PECs in encapsulation make them highly desired sub-
stances since they have unique properties. Because of that, PEC films in food packaging
have been studied as well. Kurek et al. [84] developed a film based on PEC with chitosan
and pectin as PEs. Into the PECs, they put blackcurrant powder (from blackcurrant waste)
as a pH indicator and for its antioxidant properties. This study showed that blackcurrant
was successfully incorporated into PECs, and changes in color were linked to different pH
values, from acid to alkaline, showing high effectivity to be used as smart food packaging.

The use of PECs in food packaging points to creating smart materials. To this end,
Şen et al. [85] and Torres Vargas et al. [86] studied a film based on PECs using alginate
and yucca starch with the incorporation of extracts of natural origin (anthocyanin and
betanin from the exocarp of black eggplants and the mesocarp of beets) as an indicator.
The goal was to generate a smart material. The outcomes indicated that the films prepared
effectively have a sensor property because of the addition of natural extracts. Good general
properties of films based on PECs were obtained for this group—good thermal, surface,
and antioxidant properties.

Cinnamon essential oil emulsions were stabilized by gum arabic modified with octenyl
succinic anhydride. Gum arabic is an anionic polyelectrolyte, while chitosan is a cationic
polyelectrolyte. Thus, in this work, the authors prepared chitosan-based polyelectrolyte
films. The active substance, cinnamon essential oil, was highly retained in the films—
this enhanced antimicrobial activity against E. coli and S. aureus [87]. Figure 11 shows the
growth-inhibiting activity of the different concentrations used.
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The water vapor barrier is an essential characteristic in films for food packaging appli-
cations. Unfortunately, biopolymers have poor barrier properties, which can be improved
through chemical modification or combination with other compounds.

Looking to improve these properties, Chi and Catchmark [88] developed films with poly-
electrolyte complex systems using crystalline nanocellulose, chitosan, and carboxymethyl
cellulose. The films were successfully developed. The goal of combining these three bio-
materials is mainly to enhance the characteristics of the films, such as mechanical and
barrier properties.

Jamróz et al. [89] successfully developed films using chitosan and furcelleran. Fur-
celleran is an anionic polysaccharide sourced from the red algae Furcellaria lumbricalis.
Figure 12a shows possible interactions between chitosan and furcelleran. The films ob-
tained from the generation of PECs exhibited good thermal, mechanical, and barrier prop-
erties; the graphics of the last two properties are shown in Figure 12b. The final material
could be used in food packaging applications.
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The system formed with chitosan and gellan gum, both polyelectrolytes, was studied
to obtain multilayer PEC films with the integration of thyme essential oil to obtain a ma-
terial that could be used for food packaging [90]. The mechanical properties of the films,
flexibility in particular, were enhanced thanks to the incorporation of thyme essential oil;
however, the water barrier properties were decreased. The addition of thyme essential oil as
an antimicrobial agent was observed, and the films showed high antimicrobial activity. This
study incorporated the antimicrobial agent into the multilayer films via direct emulsion
and nanoemulsion. In the latter, stronger antimicrobial activity was observed.

The use of complexes, as has already been said above, is to encapsulate active com-
pounds. To this end, Teixeira-Costa et al. [53] generated PECs with chitosan and alginate to
create microcapsules. Assai pulp oil is an encapsulated compound, and its high polyphe-
nol content is among its characteristics. The microcapsules were satisfactorily obtained,
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showing an excellent antioxidant capacity (Figure 13). The authors pointed out that this
material could be applied to films for food packaging.
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The use of cellulose for food packaging applications is vast. To this end, cationic hy-
droxyethyl cellulose was blended with sodium alginate. The researchers obtained uniform
films with antimicrobial activity. This combination may be employed as a material for food
packaging with added value since this material could increase the shelf life of food [91].

Eugenol is a phenolic derivative obtained from clove oil with broad antioxidant,
antifungal, and antibacterial properties. In a study by Riyandari et al. [92], they studied the
release of eugenol from polyelectrolyte complex films formed with chitosan and alginate.
The outcomes showed that the release of eugenol was controlled by alginate concentration.
The thermal, mechanical, water permeability and antioxidant characterization showed that
those films could be applied as antioxidant material in food packaging.

The increase in shelf life is a subject of high interest for today’s consumers. To this
end, Lai et al. [93] utilized hypromellose-graft-chitosan (hydroxypropyl methylcellulose)
and carmellose sodium (sodium carboxymethyl cellulose) to form polyelectrolyte com-
plex films. The transparent films thus generated showed good properties such as barrier,
mechanical, and antibacterial activity. Figure 14a shows the films obtained and their me-
chanical properties as a graphic. The density of the films is shown as well. However, the
most highlighted characteristic of the films was that they showed luminescent properties,
allowing the consumer to see changes in the packaging in freezers, for example. Figure 14b
shows the photos obtained for the films studied.

Keeping food fresh is a human necessity to avoid food waste, and freshness of food
is a quality critical to the consumer. In fruits and vegetables, this variable is significant.
Chiang et al. [94] developed PEC-based edible coatings with chitosan and pectin to be
applied to fruits. The tests carried out on fruits showed excellent barrier properties. These
results are auspicious, as shown in Figure 15, since they indicate that this could be a material
to be applied to fruits, increasing their shelf life.

Chitosan and alginate have been used in many studies as PEC systems. In this
case, Ty et al. [95] used this system together with cinnamon essential oil as a film for
food packaging meat pork in storage conditions. Keeping the meat in good condition for
several days is challenging for the industry, and the researcher found that the final material
presents good antioxidant and antimicrobial characteristics. The application of PEC over
meat showed a reduction in microbiota, and the shelf life of raw meat was prolonged by at
least twelve days.
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Figure 14. (a): (A) schematic diagram showing the procedure for film preparation. (B) Photos of
films with different ratios of hypromellose-graft-chitosan (HC) and carmellose sodium. The thickness
(* denotes p < 0.05) (C), density (* denotes p < 0.05) (D), and stress–strain curves (E) of different film
samples. (b): Photos of the bag generated, as well as the bag containing (iii,iv) fresh chicken meat,
(v,vi) frozen chicken meat, and (vii,viii) chicken meat thawed after being frozen, under (i,iii,v,vii)
white light and (ii,iv,vi,viii) UV light. (Reproduced with permission from Ref. [93]. Copyright
2021 Elsevier).

Using plasticizers on biodegradable films is crucial since these films have poor me-
chanical properties. Thus, deep eutectic solvents are currently a promising alternative.
They are known to be sustainable, biodegradable, thermally stable, low in volatility, and
non-flammable, among some attractive characteristics for plasticizers in food packaging
films. Teixeira-Costa et al. [96] utilized choline chloride as a deep eutectic solvent on chi-
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tosan films. PEC microcapsules of chitosan-alginate containing açaí oil, which is recognized
for its antioxidant properties, were added to these films. The homogeneous films obtained
resulted in good mechanical and antioxidant properties. Figure 16a shows the films ob-
tained, and Figure 16b shows the antioxidant activity results. The researchers observed that
incorporating açaí oil microparticles influenced properties such as flexibility, thickness, and
crystallinity. Regarding using a deep eutectic solvent on the films, they observed that the
mechanical properties experimented with produced excellent results. The results showed
that this study is an excellent alternative that could be applied to food packaging.
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and uncoated apple browning as a function of time under ambient conditions. (Reproduced with
permission from Ref. [94]. Copyright 2021 American Chemical Society).

Tragacanth gum is a polysaccharide which is water-soluble, odorless, and tasteless
and is obtained from dried sap from several species. This compound possesses good
barrier properties. Chitosan and tragacanth gum, in combination, were used to create
films oriented to the food packaging industry. The results showed that the films pre-
sented good mechanical properties. The shelf life of strawberries was increased using
chitosan/tragacanth gum PEC films compared to polyethylene films. These results show
an attractive alternative to using a PEC film to replace plastic non-biodegradable in food
packaging [97].
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4. Overview

Currently, the damage caused to the environment due to the accumulation of waste
from food packaging is huge. Hence, the current challenge of this industry is the use
of biodegradable materials to diminish environmental damage. At the same time, the
consumer is becoming more demanding, which means that the industry must rise to the
challenge. Using PEC systems as encapsulating agents in food packaging is auspicious
since these systems can protect, deliver, and release the compound of interest. Antioxi-
dants, antimicrobials, thermoresponders, and sensors are fascinating in the food packaging
industry. In this review, it has been shown based on various studies that use PECs systems
that using chitosan in films can produce a material attractive to the consumer. The use
of chitosan in these systems turns into a very interesting product; due to the fascinating
properties of chitosan, such as low cost, antimicrobial qualities, and biocompatibility, it has
become a coveted biopolymer. However, there some challenges that need to be addressed,
such as:

• Material stability and barrier performance: chitosan-based PEC must exhibit robust
barrier properties to protect food products from external factors such as moisture,
oxygen, and light. Ensuring long-term stability and maintaining the desired barrier
performance of PEC films or coatings during storage and transportation is crucial.
Addressing challenges related to film integrity, mechanical strength, and maintaining
barrier properties over time is essential.

• Compatibility with food products: chitosan-based PECs must demonstrate compat-
ibility with a wide range of food types, including those with varying pH levels, fat
content, and water activity. Compatibility encompasses factors such as preserving
taste, texture, and nutritional quality of the packaged food.
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• Scalability and manufacturing efficiency: developing scalable and cost-effective manu-
facturing processes for chitosan-based PECs is a significant challenge. Efficient produc-
tion methods are needed to meet the demands of the food packaging industry while
ensuring consistent quality and performance. Optimizing chitosan extraction, purifica-
tion, and film-forming techniques, as well as exploring novel processing technologies,
are important areas of research.

• Regulatory compliance and safety: compliance with food contact regulations and
ensuring consumer safety are critical considerations. Chitosan-based PECs must meet
regulatory requirements related to migration limits, toxicity, and overall safety.

• Shelf life and preservation: maintaining the shelf life and freshness of packaged
foods is essential for food quality and consumer satisfaction. These systems should
effectively protect food products from microbial growth and enzymatic degradation,
thereby extending product shelf life. Addressing challenges related to antimicrobial
activity, control of enzymatic degradation, and maintaining sensory attributes of
packaged foods is crucial.

Addressing these challenges will facilitate the successful integration of PECs chitosan-
based in food packaging, offering sustainable and improved packaging options.
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