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Abstract: Polymeric drug delivery systems enhance the biopharmaceutical properties of antibiotics
by increasing their bioavailability, providing programmable and controlled-release properties, and
reducing toxicity. In addition, drug delivery systems are a promising strategy to improve the
intestinal permeability of various antimicrobial agents, including colistin (CT). This study describes
the modification of conjugates based on CT and hyaluronic acid (HA) with cyanocobalamin (vitamin
B12). Vitamin B12 was chosen as a targeting ligand because it has its own absorption pathway
in the small intestine. The resulting polysaccharide conjugates contained 95 µg/mg vitamin B12
and the CT content was 335 µg/mg; they consisted of particles of two sizes, 98 and 702 nm, with
a ζ-potential of approximately −25 mV. An in vitro release test at pH 7.4 and pH 5.2 showed an
ultra-slow release of colistin of approximately 1% after 10 h. The modified B12 conjugates retained
their antimicrobial activity at the level of pure CT (minimum inhibitory concentration was 2 µg/mL).
The resulting delivery systems also reduced the nephrotoxicity of CT by 30–40% (HEK 293 cell line).
In addition, the modification of B12 improved the intestinal permeability of CT, and the apparent
permeability coefficient of HA–CT–B12 conjugates was 3.5 × 10−6 cm/s, corresponding to an in vivo
intestinal absorption of 50–100%. Thus, vitamin-B12-modified conjugates based on CT and HA may
be promising oral delivery systems with improved biopharmaceutical properties.

Keywords: colistin; hyaluronic acid; cyanocobalamin; polymeric conjugates; oral drug delivery;
intestinal permeability

1. Introduction

Modification of known drugs is a simple and cost-effective strategy for pharmaceutical
research and development, especially for antimicrobial drugs [1,2]. Bacterial resistance to
modern antibiotics is increasing rapidly, and the development of new-generation antimicro-
bial agents is a long and expensive process; moreover, most synthesized molecules fail in the
preclinical and clinical stages due to their poor biopharmaceutical properties [3]. Multidrug-
resistant bacteria, including multidrug-resistant Gram-negative ESKAPE pathogens, exhibit
resistance to three or more classes of antibiotics (e.g., carbapenems and third-generation
cephalosporins) and are a major cause of mortality [4]. One potential antimicrobial drug
that could benefit from various modifications of a known molecule is the peptide antibiotic
colistin (CT) [5–7]. The disadvantages of CT therapy are its severe side effects such as
nephrotoxicity and neurotoxicity [8–10]; moreover, CT is practically not absorbed in the
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gastrointestinal tract (GIT), which limits the possible routes of its administration. Var-
ious nanotechnology-based delivery systems could improve the oral administration of
CT [11,12].

The oral route of drug administration is more popular, and it is a relatively convenient
and safe method of drug administration; oral administration is associated with higher
patient compliance. However, absorption through the intestinal barrier is a prerequisite
for the pharmacological effect of oral drugs [13]. Important factors influencing drug
absorption and intestinal permeability are pH, enzymes, mucus, and the unstirred water
layer, as well as the gastrointestinal membrane barrier. The main mechanisms of drug
absorption across the gastrointestinal membrane are paracellular and transcellular transport.
The paracellular pathway through the aqueous pores between the epithelial cells is the
main mechanism for absorption of hydrophilic charged molecules or ions with a typical
molecular weight cut-off of 200–300 Da. In turn, transcellular transport can be realized
by simple passive diffusion (relevant for small lipophilic molecules), carrier-mediated
transport (active transport and facilitated diffusion), and endocytosis (the primary transport
mechanism for macromolecules and particles larger than 500 nm) [14].

An example of a carrier-mediated active transport system in the small intestine, the
ileum, includes the membrane transporters of cobalamin (vitamin B12). Absorption of
vitamin B12 is a complex and highly efficient process involving the interaction of three
transport proteins—haptocorrin, intrinsic factor, and transcobalamin II—and several recep-
tors. Haptocorrin, also known as transcobalamin I, protects B12 from acid hydrolysis in
gastric fluid and aids in the utilization of vitamin B12 analogues. Gastric intrinsic factor
selectively binds dietary vitamin B12 and then enters intestinal cells via receptor-mediated
endocytosis. Vitamin B12 taken up by the cells is converted to transcobalamin II and re-
leased into the systemic circulation [15,16]. As a result of its own transport system, vitamin
B12 has been widely used as a targeting ligand to improve the intestinal permeability of
drugs, including peptide molecules [17,18]. The strategy of improving the oral delivery
of peptides and proteins by modification with vitamin B12 began with the basic research
of the Russell-Jones scientific group in the 1990s, on the synthesis and oral delivery of
granulocyte-colony-stimulating factor, luteinizing-hormone-releasing hormone, and ery-
thropoietin with proven efficacy in vivo [19–21]. Currently, conjugation with vitamin B12 is
being used to develop polymeric systems for oral insulin delivery. The use of B12-modified
nanoparticles enhances uptake and intestinal permeability for efficient oral drug delivery,
and also reduces drug toxicity [22].

Verma et al. [23] used vitamin B12 as a targeting ligand to prepare layered calcium
phosphate nanoparticles for oral insulin delivery, where vitamin-B12-grafted chitosan
(MW of 65–90 kDa, degree of deacetylation of 75–85%) and sodium alginate (15–20 cP,
1% in H2O) were the polycation and polyanion, respectively. Vitamin B12 was linked
through the OH group of the ribose tail to the amino group of chitosan via a succinyl linker
using carbodiimide chemistry. The developed nanoparticles had a size of approximately
250 nm and a ζ-potential of +32 mV. It was shown that vitamin B12, as a targeting ligand,
significantly increased the bioavailability of insulin by oral administration through receptor
uptake. In vitro experiments on the Caco-2 monolayer showed the higher absorption of
nanoparticles based on vitamin-B12-modified chitosan compared to nanoparticles based on
original chitosan. Furthermore, an in vivo study in diabetic Wistar rats showed a four-fold
increase in insulin bioavailability and a sustained hypoglycemic effect within 12 h after
administration of vitamin-B12-containing nanoparticles compared to nanoparticles without
vitamin B12.

Previously, we synthesized CT conjugates with chitosan and hyaluronic acid (HA)
for the parenteral delivery of CT. The resulting conjugates, with degrees of substitution
(DS) of 3–10%, self-assembled in water into nanosized particles (from 100 to 600 nm) and
were resistant to hydrolysis (in vitro CT release at pH 7.4 and pH 5.2 was 1–5% after 24 h).
Furthermore, the degree of substitution with CT fragments of 8–10% provided antimicrobial
activity at the level of pure CT, as well as reduced cytotoxicity [7,24].
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The aim of the present study was to obtain vitamin-B12-modified conjugates of CT
with HA and to investigate their potential in terms of the oral delivery of CT. It was hy-
pothesized that functionalization with vitamin B12 would enhance intestinal permeability
and absorption of the polymeric conjugates through receptor-mediated endocytosis. The
concept of conjugating CT to polymers to improve its biopharmaceutical properties has
been used previously [25–28]. However, to the best of our knowledge, this study was the
first attempt to develop an oral form of CT that can be absorbed in the GI tract by grafting
vitamin B12 as a targeting ligand.

2. Results and Discussion
2.1. Synthesis of the Succinyl Cyanocobalamin (Suc-B12)

Analysis of the literature showed that, for the synthesis of succinyl derivatives of
cyanocobalamin, the OH group of the ribose (substitution occurs first, resulting in monosub-
stituted succinyl-B12) or the less reactive capable secondary hydroxyl group (a significant
excess of reagent results in disubstituted succinyl-B12) can be used (Figure 1a) [29]. The
reaction is typically performed in dry DMSO under anhydrous conditions in the presence of
DMAP or pyridine as electron donors [23,29–31]. This type of conjugation does not interfere
with the recognition of vitamin B12 by the transfer proteins involved in its absorption [15].
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Figure 1. Schemes for the preparation of succinylated vitamin B12 (a) and the modification of HA–CT
by Suc-B12 (b).

We used succinic anhydride in 10- and 100-fold molar excesses over vitamin B12, re-
sulting in products (Suc-B12-10 and Suc-B12-100, respectively) that differed in composition
according to the mass spectrometry data (Table 1, Figure A1). For example, we observed
both B12 (1355), and sodium (1377) and disodium (1399) forms of B12 in the mass spectrum
of the parent vitamin B12 (Figure A1a). The Suc-B12-10 sample contained both the parent
B12 (22.4%) and B12 succinyl derivatives: 74.1% monosuccinyl B12 (1477) and 3.5% disuc-
cinyl B12 (1577) (Table 1, Figure A1b). Compared to Suc-B12-10, Suc-B12-100 contained
almost no parent B12 (0.4%), but more of both monosuccinyl B12 (87.8%) and disuccinyl
B12 (11.8%) (Table 1, Figure A1c). For further modification of the HA–CT conjugate, we
used the Suc-B12-100 sample.

Table 1. Composition of Suc-B12-10 and Suc-B12-100 samples.

Molecular Ion m/z Fraction (%)

Suc-B12-10

B12 sodium 1377 22.4
Monosuccinyl B12 sodium 1477 74.1

Disuccinyl B12 sodium 1577 3.5

Suc-B12-100

B12 disodium 1399 0.4
Monosuccinyl B12 1455 87.8

Disuccinyl B12 1555 11.8

2.2. Modification of the HA–CT Conjugate with Suc-B12

For B12 modification, we used previously synthesized HA–CT conjugates (CT content
was 367 ± 1 µg/mg, the apparent hydrodynamic diameter (Dh) was 50 and 560 nm, and
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the ζ-potential was −20 mV) [7]. A study of HA–CT conjugates showed that the resulting
compound was sufficiently stable, with less than 3% CT released within 24 h at pH 7.4 [7].

To obtain modified HA–CT–B12 conjugates, we exploited the carbodiimide activation
of the carboxyl groups of Suc-B12 and their further coupling to the amino groups of the
conjugated CT (Figure 1b). We used Suc-B12 in an amount of 10 mol% (30% by mass)
relative to HA–CT, because this amount is able to provide an acceptable level of intestinal
permeability of nanoformulations according to [23]. According to spectrophotometry, the
B12 content in the HA–CT–B12 conjugate was 95 µg/mg (Table 2).

Table 2. Characterization of the HA–CT–B12 conjugate.

Parameter Value

CT content (µg/mg) 335
B12 content (µg/mg) 95 ± 4

Dh (nm) 98 ± 22
702 ± 248

ζ-potential (mV) −25.4 ± 0.3

The coupling of vitamin B12 to the HA–CT conjugate was demonstrated by Fourier
transform infrared (FTIR) spectroscopy (Figure 2). In the FTIR spectrum of the HA–CT–B12
conjugate, a characteristic band was observed at 1730 cm−1, corresponding to the C=O
vibrations of the ester bond of the succinyl linker of vitamin B12.
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CT content (μg/mg) 335 

B12 content (μg/mg) 95 ± 4 

Figure 2. FTIR spectra of the Suc-B12-100, HA, and HA–CT–B12.

According to the dynamic light scattering (DLS) data, Dh of the HA–CT–B12 conjugate
was 98 ± 22 nm, with the presence of some aggregates of 702 ± 248 nm (Table 2). This
pattern was in good agreement with our previous DLS studies, in which the fast mode of the
conjugates belonged to individual macromolecules (unimers) and the slow mode belonged
to their aggregates. The ζ-potential of the conjugates was −25.4 ± 0.3 mV, indicating their
colloidal stability (Table 2).

Scanning electron microscopy (SEM) confirmed the presence of spherical particles less
than 100 nm in size, which was in good agreement with the DLS data (Figure 3).
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Figure 3. SEM image of HA–CT–B12 conjugate.

2.3. The pH Stability Studies and In Vitro CT-Release Profile

Vitamin B12 is absorbed by active transport in the small intestine (i.e., in the ileum, with
an average pH of 7.4–7.5) [32]. At the same time, the transit of the drug through different
parts of the gastrointestinal tract with different pH levels and enzyme compositions affects
its effectiveness; for successful absorption in the small intestine, the drug must be stable
at the pH of the stomach (pH in the fasted/fed state) and reach the site of absorption as
quickly as possible (to transit from the stomach to the intestine). Residence time in the
stomach is typically from 5 min to 2 h; usually a meal prolongs the stay of the dosage form
in the stomach. To accelerate the transit of the drug from the stomach to the small intestine,
it is recommended to take it with water and on an empty stomach (in this case the drug
almost immediately reaches the small intestine). The drug remains in the small intestine for
an average of 3–4 h, independent of meals [14]. We sequentially studied the stability of the
HA–CT–B12 conjugate at pH 1, 6.8, and 7.4 and showed that the synthesized compounds
remained stable during transit through different parts of the gastrointestinal tract and were
able to reach the target site (ileum) unchanged (Table 3). In turn, the stability at the pH of
the ileum provided a good potential for the successful absorption of the conjugates into
the blood.

Table 3. HA–CT–B12 conjugate stability under simulated gastrointestinal conditions.

Conditions Time (h) CT Release (%)

0.1 М НCl (pH = 1) 2 <0.2
Phosphate buffer (pH = 6.8) 2 <0.1

PBS (pH = 7.4) 10 <0.1

In vitro release kinetics studies of the designed conjugates at the inflammatory site
pH (5.2) showed an ultra-slow release of CT via the hydrolysis of amide bonds (Figure 4),
which was in agreement with our previous studies [7,24]. In summary, approximately 1%
of CT was released in 10 h, and these slow kinetics require confirmation of the antimicrobial
activity of CT in vitamin-B12-modified conjugates.
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2.4. Antimicrobial Activity

Previously, we observed that conjugation of CT with HA at a DS of 8% did not reduce
its potency compared to pure CT [7].

A study of antimicrobial activity against Pseudomonas aeruginosa (1 × 107 CFU/mL)
showed that the HA–CT–B12 conjugate also had antimicrobial activity comparable to that
of pure CT. Both minimum inhibitory concentrations (MICs) were 2 µg/mL, indicating
that the antibiotic activity was maintained despite the modification with vitamin B12. At
the same time, a mixture of HA with vitamin B12 at an equivalent concentration had no
significant effect on visible bacterial growth (Figure 5).
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2.5. Cytotoxicity Study

We investigated the potential nephro- and neurotoxicity of the new HA–CT–B12
conjugates on kidney (HEK 293) and brain (T 98G) cell lines. Equal amounts of HA+B12
mixture and free CT were used as controls. In vitro cytotoxicity experiments showed that
the HA–CT–B12 conjugate increased cell viability by 1.3- and 1.4-fold compared to native
CT at CT concentrations of 0.5 and 1.0 mg/mL, respectively (Figure 6a). At the same time,
the concentrations of free CT tested had no toxic effect on glioblastoma cells; however, even
in this experiment, the viability of T 98G cells in the presence of the HA–CT–B12 conjugate
was approximately 10–15% higher than in the presence of native CT (Figure 6b). Thus,
HA–CT–B12 conjugates reduced the toxicity of CT against kidney (HEK 293) and brain
(T 98G) cells.
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2.6. Caco-2 Cell Permeability Assay

The Caco-2 cell line (human colon adenocarcinoma) has enterocyte characteristics.
After monolayer formation, the cells form junctional complexes and microvilli on the apical
surface. It is known that the permeability of the Cao-2 cell monolayer is highly correlated
with the processes of drug absorption in the intestine. The disadvantage of the Caco-2 cell
line is its cancer origin and phenotypic instability; however, Caco-2 cells are widely used in
pharmacological studies because they allow robust results to be obtained [29]. The apparent
permeability coefficient in vitro (Papp) for substances absorbed through the intestinal wall
by active transport had lower values compared to in vivo experiments because of the lower
degree of expression of ionic and peptide transport proteins in Caсo-2 cells. Therefore, the
main area of application of Caсo-2 cell culture is the qualitative assessment of intestinal
permeability [33].

In general, absorption in the human GIT is 50 to 100% for compounds with an in vitro
Papp greater than 1 × 10−6 cm/s. These compounds are promising for the development
of oral dosage forms [34,35]. Intestinal permeability testing in the Caco-2 cell model
showed that the B12-modified conjugates based on CT and HA had an acceptable Papp to
allow potential absorption in the gastrointestinal tract (3.5 × 10−6 cm/s). In comparison,
the Papp of free CT and free vitamin B12 in this experiment were 0.04 × 10−6 cm/s and
5.4 × 10−6 cm/s, respectively (Figure 7).
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3. Materials and Methods
3.1. Materials and Reagents

In this study, we used previously synthesized CT conjugates based on sodium hyaluronate
(HA) with a DS for CT moieties of 8 mol% (HA–CT). The CT content in the HA–CT
conjugates was 367 ± 1 µg/mg. In phosphate-buffered saline (PBS, pH 7.4), HA–CT
conjugates were present as unimers and nanoparticles with hydrodynamic diameters (Dh)
of 50 and 560 nm, respectively; the ζ-potential was −20 mV. The HA (MW of 1.8 × 105)
was obtained from Shandong Focuschem Biotech (Qufu, Shandong, China); the Dh and
ζ-potential in the PBS were 34 nm and −26 mV, respectively [7].
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CT sulfate (the contents of CT A (polymyxin E1) and CT B (polymyxin E2) in the pur-
chased product were 31.1 ± 0.4% and 68.9 ± 0.4% by liquid chromatography–mass spectrome-
try (LC–MS), respectively), cyanocobalamin (vitamin B12), 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), dimethylaminopyridine
(DMAP), succinic anhydride (SA), dimethyl sulfoxide (DMSO), PBS, disodium phosphate
(Na2HPO4), monopotassium phosphate (KH2PO4), and sodium chloride (NaCl) were
purchased from Sigma-Aldrich Co. (St. Louis, MO, USA).

DMEM (Dulbecco’s modified Eagle medium), penicillin/streptomycin, L-glutamine,
trypsin, versine, and PBS were purchased from Biolot (St. Petersburg, Russia), and fetal
bovine serum (FBS) was purchased from HyClone Laboratories (Logan, UT, USA).

3.2. Synthesis of Succinyl Cyanocobalamin (Suc-B12)

Suc-B12 was prepared according to the method described in [23] with certain modifi-
cations: B12 (0.05 g, 0.037 mM) was dissolved in 5 mL of dry DMSO, then an equimolar
amount of DMAP and a 10- or 100-fold molar excess of succinic anhydride were added.
The reaction mixtures were stirred for 24 h and the resulting products (Suc-B12-10 and
Suc-B12-100, respectively) were precipitated with acetone and dried at 40 ◦C for one day.

The products were characterized by mass spectrometry using a maXis impact Q-
TOF mass spectrometer (Bruker Daltonics GmbH, Bremen, Germany) equipped with an
electrospray ionization (ESI) source (Bruker Daltonics GmbH, Bremen, Germany) operated
in the positive ionization mode. Mass calibration was performed with sodium formate
solution (calibration mode HPC, standard deviation (SD) 0.308 ppm). Flow injection mode
was used for analysis: mass range from 50 to 1300 m/z, spectra rate 1 Hz, and line and
profile spectra stored. The acquisition parameters were as follows: Source: end plate offset
500 V, capillary 4500 V, nebulizer 0.4 bar, dry gas 4.0 L/min, and dry temperature 180 ◦C.
Collision cell: collision energy 7.0 eV, transfer time 90.0 µs, and pre-pulse storage 10.0 µs.
Mass spectra were analyzed and deconvoluted using DataAnalysis® 5.0 software (Bruker
Daltonics GmbH, Bremen, Germany).

3.3. Modification of the HA–CT Conjugates with Suc-B12

Suc-B12 (25 mg, 0.018 mM) was dissolved in 2.5 mL DMSO, then 1.5-times molar
amounts of EDC and NHS were added and stirred for 30 min for carbodiimide activation
of the COOH groups. A 10 mL aqueous solution of HA–CT (55 mg, 0.18 mM) was added
to the mixture and stirred overnight. The resulting product (HA–CT–B12) was dialyzed
against distilled water for 5 days (until the pink color of the dialysis medium disappeared),
and was then lyophilized.

The presence of vitamin B12 in the HA–CT–B12 conjugate was confirmed by FTIR
using a Vertex 70 IR Fourier spectrometer (Bruker Optics, Ettlingen, Germany) equipped
with a ZnSe-attenuated total reflectance accessory (PIKE Technologies, Fitchburg, WI, USA).
A correction was applied to the attenuated reflectance spectra to account for the depth of
penetration of the irradiation as a function of wavelength.

The conjugation efficiency was determined spectrophotometrically with a UV-1700
PharmaSpec spectrophotometer (Shimadzu, Kyoto, Japan) at 360 nm using a calibration
with B12.

The CT content (µg/mg) in the HA–CT–B12 conjugate was calculated from the CT
content in the HA–CT conjugate (367 µg/mg) determined by 1H NMR spectroscopy [7],
and the B12 content in the HA–CT–B12 conjugate (95 µg/mg) was determined by UV-VIS
spectrophotometry, as described above.

3.4. Size and Surface Morphology of the HA–CT–B12 Conjugates

The hydrodynamic radii and ζ-potential of HA–CT–B12 were measured using a
Photocor Compact-Z device (Photocor Ltd., Moscow, Russia) with a 659.7 nm He–Ne laser
at 25 mV power and a detection angle of 90◦.
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The morphology of HA–CT–B12 conjugates was analyzed by SEM using a Tescan
Mira 3 instrument (Tescan, Brno, Czech Republic). For this purpose, the nanosuspension of
HA–CT–B12 conjugates was centrifuged (15 min, 5000 rpm) to separate aggregates, and the
obtained sample was placed on double-sided carbon tape and dried in a vacuum for 48 h;
then, SEM images were obtained in the secondary electron mode at an accelerating voltage
of 20 kV and an operating electric current of 542 pA; the distance between the sample and
the detector was 6–7 mm.

3.5. The pH Stability Studies and In Vitro CT-Release Profile

To study the stability of the conjugates at the pHs of different parts of the GIT (stomach,
duodenum, and ileum), 1 mg of the sample was placed in a Vivaspin® Turbo 4 centrifugal
concentrator (MWCO 10,000), and 1 mL of 0.1 M HCl at pH 1 (gastric conditions) was
added. The sample was incubated at 37 ◦C, and after 2 h, the medium was completely
ultracentrifuged at 4500 rpm and replaced with 1 mL phosphate buffer at pH 6.8 (pH of
duodenal medium). The sample was incubated at 37 ◦C, and after 2 h, the medium was
completely ultracentrifuged at 4500 rpm and replaced with 1 mL of PBS at pH 7.4 (pH
of the ileum, the main site of vitamin B12 absorption, as well as blood pH). The sample
was incubated for 10 h. At regular intervals, the medium was completely centrifuged at
4500 rpm and replaced with 1 mL of fresh PBS [7,24].

To determine the release profile of CT under conditions simulating the inflammatory
site environment, 1 mg of the conjugate was dissolved in 1 mL of phosphate buffer at
pH 5.2 (inflammatory site pH) and was incubated at 37 ◦C. At regular intervals, 1 mL
of the medium was ultracentrifuged at 4500 rpm using a Vivaspin® Turbo 4 centrifugal
concentrator (10,000 MWCO). The CT content in the filtrates was determined by LC–MS, as
previously reported [7,24].

3.6. Antimicrobial Activity

The antimicrobial activity of HA–CT–B12 was tested using the microtiter broth dilution
method, as previously reported [7,24]. P. aeruginosa ATCC 27853 (Museum of Microbio-
logical Cultures, State Research Institute of Highly Pure Biopreparations, St. Petersburg,
Russia) was used as the experimental microorganism.

Briefly, HA–CT–B12 conjugate stock solutions were prepared by diluting samples in
Mueller–Hinton broth to a maximum 2-fold concentration equivalent to CT. Serial dilutions
of CT (64 to 0.25 µg/mL) were then plated on Luria-Bertani agar culture plates. The
antimicrobial efficacy of the HA–CT–B12 conjugates was confirmed by the absence of
P. aeruginosa growth.

P. aeruginosa suspension was serially diluted 1:100 in Müller–Hinton broth to obtain a
concentration of approximately 1 × 107 CFU/mL. Then, 125 µL of the inoculum was added
to the wells of the culture plate containing HA–CT–B12 solutions in Müller–Hinton broth.
The plate also contained positive controls—100% growth (bacteria only), sterility control
(Mueller–Hinton broth only), and HA+B12 at equivalent concentrations (blank). The plate
was incubated for 24 h at 37 ◦C and the optical density (OD) was measured at 630 nm using
an ELx808™ Absorbance Microplate Reader (BioTek Instruments, Winooski, VT, USA).
Relative bacterial growth (%) was calculated as the ratio of OD630 at each concentration of
the test samples to OD630 in the control (0 µg/mL). Each sample was tested in triplicate in
three independent replicates (n = 9).

3.7. Cytotoxicity Study

Cytotoxicity assays of the HA–CT–B12 were performed according to a previously
described method [7,24] using a human embryonic kidney cell line (HEK 293) and a human
glioblastoma cell line (T 98G). Briefly, the cell lines used were cultured at 37 ◦C in a 5% CO2
atmosphere in EMEM culture medium (Eagle’s minimal essential medium; Gibco, Billings,
MT, USA) containing 1% essential amino acids, 10% (v/v) thermally inactivated fetal bovine
serum (FBS; HyClone Laboratories, Logan, UT, USA), 1% L-glutamine, 50 U/mL penicillin,
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and 50 µg/mL streptomycin. For cytotoxicity studies, 5.0 × 103 cells/100 µL/well were
seeded in 96-well plates and cultured for 24 h; then, 100 or 50 µL EMEM solutions of the
test compounds (1 mg or 0.5 mg CT and equivalent amounts of HA–CT–B12 conjugate
or HA+B12 mixture) were added and the cells were incubated for 72 h. The medium was
then removed and 50 µL EMEM medium containing 0.1 mg/mL 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT reagent) was added, followed by incubation at
37 ◦C for 2 h. Finally, formazan crystals formed by metabolically viable cells were dissolved
in dimethyl sulfoxide, and the optical density was measured at 570 nm using a UV mini-
1240 spectrophotometer (Shimadzu, Kyoto, Japan).

3.8. Caco-2 Cell Permeability Assay

The human colon adenocarcinoma cell line Caco-2 was obtained from the Russian
Cell Culture Collection (Institute of Cytology, Russian Academy of Sciences, St. Petersburg,
Russia). Caco-2 cells were cultured in DMEM medium supplemented with 10% FBS, L-
glutamine, and penicillin/streptomycin in 75 cm2 cell culture flasks (Jet Biofil, Guangzhou,
China) at 37 ◦C in a humidified atmosphere containing 5% CO2 in a CO2 incubator. When
the cells reached 60–70% confluence, the cells were sub-cultured into new flasks (1:6 ratio).

Caco-2 cell permeability protocol: For the experiment to study permeability and
changes in the barrier properties of the intestinal epithelium, cells (0.5 mL, 100,000 cells
per well) were seeded on the apical side of the 1.0 µm pore diameter membrane (Corning
Incorporated, Corning, NY, USA) in cell culture inserts for 24-well plates. A total of
1 mL of complete DMEM medium was added to the basolateral chamber. The medium
in the apical and basolateral chambers was changed every other day. Within 7 days, the
cells formed a confluent monolayer and then polarized over the next 14 days, with tight
junctions and microvilli formation, i.e., the cells acquired the properties of enterocytes. On
day 21 of the cultivation, the medium was removed and the cell monolayer was washed
three times with PBS. The studied samples (1 mg CT, 28.5 mg vitamin B12, and 300 mg
HA–CT–B12 conjugate) were dissolved in 5 mL PBS, and 0.5 mL of the obtained solutions
were added to the apical chamber. A total of 1 mL of PBS was added to the basolateral
chamber, and 1 mL of PBS was removed from the basolateral chamber every 30 min
for 2 h. This was followed by the addition of 1 mL of fresh PBS to maintain the same
volume. The integrity of the Caco-2 monolayer was checked by leakage of 4 kDa fluorescein
isothiocyanate–dextran (FITC–dextran, Sigma Aldrich (St. Louis, MO, USA)). A freshly
prepared solution containing 5 mg/mL 4-kDa FITC–dextran dissolved in PBS was added
to the apical chamber for incubation at 37 ◦C for 2 h. Samples were collected from the
bottom chamber and fluorescence intensity was measured using a fluorescence plate reader
(excitation 492 nm; emission 520 nm). If the FITC–dextran apparent permeability (Papp)
was less than 1 × 10−6 cm/s, cells were considered acceptable for further experiments.

Each sample was assayed in three independent series (n = 3). The content of vitamin
B12 and the content of the HA–CT–B12 conjugate equivalent to vitamin B12 were deter-
mined spectrophotometrically at 360 nm using a calibration curve. In addition, it was
confirmed that the HA–CT–B12 conjugates were chemically stable under the conditions
of this experiment and did not release free vitamin B12 within 2 h (as determined by
spectrophotometric analysis).

The Papp was calculated using the following equation [33]:

Papp =
dQ
dt

∗ 1
A ∗ C0

(1)

where Papp is the apparent permeability coefficient (cm/s); dQ
dt —is the permeation rate

(µg/s); A is the monolayer area (0.3 sm2); and C0 is the concentration in the apical chamber
at the initial moment of time (µg/mL).
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4. Conclusions

Oral drug delivery is characterized by simplicity and patient convenience as well as
improved safety compared to intravascular injection. Increasing the intestinal permeability
of peptide antibiotics is a current and challenging task. This study included several key
aspects to address this challenge. First, we developed a convenient synthetic method to
modify CT- and HA-based conjugates with a specific targeting ligand (vitamin B12) to
improve intestinal permeability. Second, we demonstrated the stability of the obtained con-
jugates under gastrointestinal conditions (at pH 1, 6.8, and 7.4), as well as the preservation
of antimicrobial activity at the level of free CT (2 µg/mL), with a decrease in nephrotoxicity
(by 30–40%). Third, we demonstrated that modification with B12 actually improved the
intestinal permeability of CT; the Papp of HA–CT–B12 conjugates was 3.5 × 10−6 cm/s,
which is significantly higher than the Papp of pure CT (0.04 × 10−6). Furthermore, the
Papp value of 3.5 × 10−6 cm/s corresponds to an in vivo intestinal absorption of 50–100%.
Thus, B12 modification of CT- and HA-based conjugates may be an effective strategy for
the development of oral delivery systems with improved bioavailability and a reduced
toxicity profile of the peptide antibiotic CT.
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