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Abstract: The exact mechanism of desmoplastic stromal reaction (DSR) formation is still unclear. The
interaction between cancer cells and cancer-associated fibroblasts (CAFs) has an important role in
tumor progression, while stromal changes are a poor prognostic factor in pleural mesothelioma (PM).
We aimed to assess the impact of CAFs paracrine signaling within the tumor microenvironment
and the DSR presence on survival, in a cohort of 77 PM patients. DSR formation was evaluated
morphologically and by immunohistochemistry for Fibroblast activation protein alpha (FAP). Digital
gene expression was analyzed using a custom-designed CodeSet (NanoString). Decision-tree-based
analysis using the “conditional inference tree” (CIT) machine learning algorithm was performed on
the obtained results. A significant association between FAP gene expression levels and the appearance
of DSR was found (p = 0.025). DSR-high samples demonstrated a statistically significant prolonged
median survival time. The elevated expression of MYT1, KDR, PIK3R1, PIK3R4, and SOS1 was
associated with shortened OS, whereas the upregulation of VEGFC, FAP, and CDK4 was associated
with prolonged OS. CIT revealed a three-tier system based on FAP, NF1, and RPTOR expressions.
We could outline the prognostic value of CAFs-induced PI3K signaling pathway activation together
with FAP-dependent CDK4 mediated cell cycle progression in PM, where prognostic and predictive
biomarkers are urgently needed to introduce new therapeutic strategies.

Keywords: pleural mesothelioma; digital gene expression; cancer-associated fibroblasts; survival;
machine learning

1. Introduction

Desmoplastic stromal reaction (DSR), containing cancer-associated fibroblasts (CAFs),
is a well-known phenomenon in various carcinomas [1,2]. It is defined as a newly formed
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tumor-associated fibroblastic stroma surrounding invasive tumor cells [3]. Normal epithe-
lial cells are segregated from fibroblasts and dispersed as single cells within the stromal
tissue compartment in the adjacent connective tissue [4]. During homeostasis, quiescent
fibroblasts show minimal metabolic and transcriptional activity but play a pivotal role
in defining the differentiation status of adjacent epithelia, via the secretion of specific
signaling factors [4]. The activation of fibroblasts in a non-homoeostatic condition seems
to occur through different mechanisms: stress signaling from inflammation and (chronic)
wound healing, or through mechano-transduction [4–8]. Acute inflammation during
wound healing is a classic example of the separation loss between epithelial and stromal
cell populations. It is characterized by the transition of resting fibroblasts into activated
ones (myofibroblasts) [4,6]. The release of growth factors, such as TGF-β, EGF, PDGF, and
FGF2 by injured endothelial cells and resident macrophages, is assumed to be the main
driving force for this transformation [6]. It eventually results in fibroblasts sprouting con-
tractile fibers, while also expressing α-smooth muscle actin (α-SMA) and the ED-A domain
of fibronectin 1 (FN1) [5]. Furthermore, physical stimulation of resident fibroblasts, leading
to the chemical translation of mechanic signals by releasing the aforementioned factors,
is commonly accepted as a possible explanation for fibroblast activation [4–6]. Despite
indications in multiple studies that CAFs produce fibrotic stroma, the exact mechanism of
its formation has not been adequately clarified. DSR is present in numerous tumors and
also has a prognostic significance owing to its association with poorer prognoses [3,9,10].

A local immune response in the pleura to undecomposed, inhaled microfibers, released
from corroding asbestos, has been identified as a main driving force of tumorigenesis of the
pleural mesothelioma (PM) [11]. Thereby, both the persistent asbestos fibers and continuous
inflammatory reaction in the tissue provide mutagenic surroundings. Evasion of apoptosis
and the accumulation of pro-oncogenic mutations in the affected mesothelial cells induces
malignant transformation and the development of PM [12,13]. By using persistent modula-
tion of the local inflammatory reaction to their benefit, e.g., by releasing proinflammatory
cytokines such as TGF-β, these malignant cells can awaken the resting fibrocytes, which
switch their phenotype into activated myofibroblasts, defined as CAFs [14,15]. In addition
to the paracrine signaling between cancer cells and CAFs, which has already been shown to
play an integral part in tumor progression [16], DSRs, otherwise known as stromal changes,
were themselves identified as factors for a poor prognosis in PM patients [17].

Similar to CAF-mediated changes in fiber orientation, the density and structure are
known to impede the effectiveness of chemotherapy in some tumors [18–21]; therefore, we
aimed to assess the impact of CAF and DSR presence on survival in PM.

2. Results
2.1. Histologic and Immunohistochemical Evaluation

Altogether, DSR in hematoxylin–eosin (HE) stained slides were observed in 52 of the
77 (67.5%) analyzed patient samples. Furthermore, 35/77 (45.5%) of these were classified
as DSR-low and 17/77 (22.1%) as DSR-high. Figure 1A,B depict an example of IHC and HE
staining with DSR-low, while Figure 1B,C depict an example of DSR-high.

In the 25 tumors where DSR was absent in the HE staining, only 5 specimens were
completely negative for FAP, with the remaining 20 samples presenting only a few positive
cells scattered within the tumor area. In the 35 DSR-low samples, 9 were scored as 1, 17 as
2, and 9 as 3. On the other hand, in the DSR-high samples, 4 were scored as 1, 8 as 2, and
5 as 3.

Overall, 5 samples were defined with a score of 0 (7.7%), 21 had a score of 1 (32.3%),
25 had a score of 2 (38.4%), and 14 had a score of 3 (21.5%). The histological observations
are summarized in Table 1. In 12 samples (15.6%), at least 1 tumor core did not illustrate
representative signals and these were, therefore, excluded.
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Figure 1. DSR-high and DSR-low. (A) Immunohistochemical staining of FAP showing DSR-low and 
the respective HE staining of the sample in (B). (C) Immunohistochemical staining of FAP in a sam-
ple with DSR-high and the respective HE staining in (D). 
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Score of 3 in DSR-low samples 25.7% 9/35 
Score of 1 in DSR-high samples 23.5% 4/17 

Figure 1. DSR-high and DSR-low. (A) Immunohistochemical staining of FAP showing DSR-low and
the respective HE staining of the sample in (B). (C) Immunohistochemical staining of FAP in a sample
with DSR-high and the respective HE staining in (D).

Table 1. Summary of the histological observation in samples with FAP staining.

Histological Observation. Percentage of Samples Number of Samples

Overall DSR in HE-stained slides 67.5% 52/77

DSR-low 45.5% 35/77

DSR-high 22.1% 17/77

DSR absent in HE staining 32.5% 25/77

FAP-negative samples in DSR absent
samples 20% 5/25

Score of 1 in DSR-low samples 25.7% 9/35

Score of 2 in DSR-low samples 48.6% 17/35

Score of 3 in DSR-low samples 25.7% 9/35

Score of 1 in DSR-high samples 23.5% 4/17

Score of 2 in DSR-high samples 47.1% 8/17

Score of 3 in DSR-high samples 29.4% 5/17

Score of 0 in overall samples 7.7% 5/65

Score of 1 in overall samples 32.3% 21/65

Score of 2 in overall samples 38.4% 25/65

Score of 3 in overall samples 21.5% 14/65
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2.2. Association between DSR, FAP Immunohistochemistry, Gene Expression, and Survival

A significant association was found between higher FAP gene expression levels and
the appearance of DSR (p = 0.025). However, there was no significance between FAP
immunohistochemistry and DSR (p = 0.23). Nevertheless, a strong significant association
was found between FAP immunohistochemistry and FAP gene expression (p = 0.006).
Interestingly, two samples with a FAP score of 1 classification showed high counts of FAP
gene expression.

Neither the appearance of DSR (p = 0.873; HR: 1.04), its amount (p = 0.608; HR: 1.21),
nor the FAP IHC (p = 0.806; HR: 1.04) revealed a significant association with OS. However,
the median survival time (29.2 months; 95% CI: 17.1–44.2) of DSR-high samples was
prolonged compared to those without DSR (15.9 months; 95% CI: 13.8–27.3) or with low
DSR (15.8 months; 95% CI: 11.4–24.4), thereby reaching a significant difference (p = 0.044;
HR: 1.75; 95% CI: 1.02–3.00).

For PFS, no significant association was found for the appearance of DSR (p = 0.597), its
amount (p = 0.873), or the FAP IHC (p = 0.807). In contrast to OS, a comparison between
DSR-high and the other two groups revealed no significant differences in PFS (p = 0.424).
These results are summarized in Supplementary Table S1.

2.3. OS and Digital Gene Expression Analysis

When analyzing gene expression counts as a continuous variable, eight genes were
identified as being associated with OS. The elevated expression of MYT1, KDR, PIK3R1,
PIK3R4, and SOS1 was associated with a shortened OS, whereas the upregulation of VEGFC,
FAP, and CDK4 was associated with a prolonged OS. An overview of all calculated p-values
related to OS and gene expression can be found in Supplementary Table S2.

In addition, according to the expression of those eight genes, samples were catego-
rized into either the high- or low-expressing group. Then, the optimal cutoff for the best
separation between groups was chosen for each gene.

The MYT1 high expression group demonstrated a median OS of 13.3 months (n = 16;
95% CI: 8.9–27.3) versus 21.6 months (n = 57, 95% CI: 16.4–28.2) in the low expression group
(cutoff: 10 counts—present vs. absent; p = 0.003; HR: 0.42; 95% CI: 0.24–0.76). The two-year
OS rate in the high vs. low expression group was 18.8% and 43.9%, respectively. The KDR
(cutoff: 900 counts; p = 0.001; HR: 0.36; 95% CI: 0.19–0.68) analysis revealed a median OS
in the high expressing group of 11.4 months (n = 13; 95% CI: 6.7–n.a.) versus 18.9 months
(n = 60; 95% CI: 15.9–28.5) in the low expressing group. The two-year OS rate was 15.4%
and 43.3% in the high vs. low expressing group. For PIK3R1 (cutoff: 1150 counts; p = 0.004;
HR: 0.27; 95% CI: 0.10–0.69), the median OS in the high expressing group was 12.1 months
(n = 5; 95% CI: 6.2–n.a.), whereas in the low expressing group, it was 18.7 months (n = 68;
95% CI: 15.9–27.3). The two-year OS rate in the low-expressing group was 42.2%, whereas
none survived for that long in the high-expressing group. For PIK3R4 (cutoff: 175 counts;
p = 0.01; HR: 0.42; 95% CI: 0.21–0.85), the median OS in the high expressing group was
14.5 months (n = 10; 95% CI: 14.5–n.a.) versus 18.9 months (n = 63; 95% CI: 15.9–28.2) in
the low expressing group. It was also reflected in the two-year OS rates, which were 12.7%
and 41.3%, in the high and low expressing groups, respectively. SOS1 analysis (cutoff:
400 counts; p = 0.039; HR: 0.59; 95% CI: 0.35–0.98) presented a median OS in the high
expressing group of 15.9 months (n = 25; 95% CI: 15.2–22.4) versus 20.4 months (n = 48; 95%
CI: 14.4–30.3) in the low expressing group. Additionally, the two-year OS rate was 24.0%
and 45.8% in the high vs. low expressing group, respectively.

The high VEGFC expression group (cutoff: 60 counts; p = 0.008; HR: 1.93; 95% CI:
1.18–3.18) demonstrated a median OS of 27.3 months (n = 29; 95% CI: 15.6–37.0) versus
15.9 months (n = 44; 95% CI: 13.3–22.2) in the low expression group. Furthermore, the
two-year OS rate was 51.7% and 29.6% in the high and low expression groups, respectively.
For the FAP (cutoff: 95 counts; p = 0.012; HR: 1.93; 95% CI: 1.15–3.24), a median OS in the
high expressing group was 18.7 months (n = 46; 95% CI: 14.4–30.9) versus 16.0 months
(n = 27; 95% CI: 15.2–22.4) in the low expressing group. The two-year OS rate in the group
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with high expression was 45.6% vs. 25.9% in the low expression group. The CDK4 high
expression group had a median OS of 18.9 months (n = 60; 95% CI: 15.6–28.2) versus
13.6 months (n = 13; 95% CI: 7.2–n.a.) in the low expression group (cutoff: 105 counts;
p = 0.008; HR: 2.31; 95% CI: 1.22–4.35). These results are summarized in Supplementary
Table S1. The two-year OS rates were 43.3% and 15.4%, for the high and low expression
groups, respectively.

Kaplan–Meier curves for each defined group are presented in Supplementary Figures S1–S8.
Visualizations of the HR, 95% CI, and calculated p-values are depicted as an overview in
Figure 2.
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with analyzed genes. One can appreciate the positive correlation of VEGFC, FAP, and CDK4 with
prolonged survival.

2.4. PFS and Digital Gene Expression Analysis

Three CAF-associated genes were identified as being associated with PFS, following
the analysis of the gene expression counts as a continuous variable. The elevated expression
of PIK3C3 and CDKN1B was associated with shortened PFS time, whereas the upregulation
of NRAS was associated with prolonged PFS. An overview of all the calculated p-values
related to PFS and gene expression is presented in Supplementary Table S3.

Based on the expression of those three genes, samples were stratified into either a
high- or low-expression group. The cutoffs that resulted in the best separation between the
groups were chosen for each gene.

For PIK3C3 (cutoff: 200 counts; p < 0.001; HR: 0.24; 95% CI: 0.10–0.59), the median
PFS in the high expressing group was 7.4 months (n = 16 with 14 events; 95% CI: 4.1–8.6)
versus 9.7 months (n = 18 with 15 events; 95% CI: 9.2–23.1) in the low expressing group.
Moreover, the one-year PFS rate differed between 0% and 38.5% for the high and low
expression groups, respectively. CDKN1B in the high expression group demonstrated
a median PFS of 4.1 months (n = 6 with 4 events; 95% CI: 3.9–n.a.) versus 8.9 months
(n = 28 with 25 events; 95% CI: 8.3–10.8) in the low expression group (cutoff: 600 counts;
p = 0.02; HR: 0.25; 95% CI: 0.07–0.88). The one-year PFS rate was 0% and 23.3% in the
high vs. low expression groups, respectively. For NRAS (cutoff: 113 counts; p = 0.001; HR:
5.23; 95% CI: 1.74–15.72), the median PFS in the high expressing group was 9.3 months
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(n = 22 with 21 events; 95% CI: 8.5–14.3) versus 6.5 months (n = 12 with 8 events; 95% CI:
4.0–n.a.) in the low expressing group. The one-year PFS was 27.3% and 0% in the high and
low expression groups, respectively.

The Kaplan–Meier curves for all the defined groups can be found in Supplementary
Figures S9–S11. A visualization of the HR, 95% CI, and calculated p-values is depicted as an
overview in Figure 2.

2.5. Decision-Tree-Based Analysis of OS and PFS

Decision-tree-based analysis using the “conditional inference tree” (CIT) machine
learning algorithm for the OS revealed a three-tier system based on the FAP, NF1, and
RPTOR expression levels.

Analysis of the FAP expression and its best cutoff (calculated cutoff: 97 counts;
p = 0.005) revealed that the group with the FAP overexpression had the best OS. Fur-
thermore, in those samples where FAP expression was beneath the cutoff, the expression
of NF1 (calculated cutoff: 362 counts, p = 0.038) was used to identify the subgroup with
the shortest OS time. On the other hand, in the samples below the FAP and above the
NF1 expression cutoffs, the expression of RPTOR (calculated cutoff: 303 counts, p = 0.044)
was used to divide them into two separate subgroups. The calculated tree is presented in
Figure 3A.
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Figure 3. Presentation of decision-tree-based analysis using the “conditional inference tree” machine
learning algorithm. For overall survival, a three-tier system based on FAP, NF1, and RPTOR was
identified (A). For progression-free survival, a two-tier scoring system based on TGFBR1 and MAP2K1
was identified (B).

Regarding PFS, a two-tier scoring system based on the gene expression levels of
TGFBR1 and MAP2K1 was identified. The group overexpressing TGFBR1 (calculated cutoff:
484 counts; p = 0.022) was identified as the group with the best PFS. In samples where the
TGFBR1 expression was beneath the cutoff, the MAP2K1 (calculated cutoff: 210 counts;
p = 0.040) was used to divide the groups into subgroups with the shortest (above cutoff)
and medium (beneath cutoff) PFS times. The tree is illustrated in Figure 3B.

3. Discussion

The complex interactions in extracellular signaling in the TME and between TME and
tumor cells have begun to receive more and more attention. The clinical impact of the
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biological mechanisms of DSR, such as the production of fibrotic stroma by CAFs, has not
yet been adequately clarified in PM. Using histopathologic analyses, digital gene expression
analysis, and supervised machine learning, we have demonstrated that CAFs and their
related genes are important for predicting OS and PFS.

Growing knowledge of cancer biology shows that the therapeutic response, resistance,
and outcome depend not only on the histology, single-gene deregulation, or single hallmark
of cancer. Multigene expression analyses are a promising strategy for the given complexities.
In this context, upfront diagnostics of biomarker expressions will be required, and certain
histology-independent phenotypes might become drivers of clinical decision-making. Thus,
highly sophisticated bioinformatical and statistical methods are needed for solid data
curation and biomarker identification.

In previous research, we presented machine-learning techniques that improved the
prediction of responses to immunotherapy, thereby enabling rapid and precise clinical
decision-making [22,23]. Similar techniques have been presented previously by other
groups, using machine learning to identify IFNγ-related mRNA profiles [24] and the 18-
gene tumor inflammation signature [25] to predict responses to immunotherapy. Our
present study used CIT-based survival classifiers to model the decision-tree dependent two-
and three-tier scoring systems.

Our decision-tree analysis revealed TGFBR1 and MAP2K1 as key markers for progression-
free survival in the investigated PM patients. TGF-β has been described to modulate
PI3K/AKT signaling [26]. The phosphoinositide 3-kinases (PI3Ks) are a large family of
lipid enzymes that are able to phosphorylate the 3′-OH group in the phosphatidylinositol
on the plasma membrane [27]. These enzymes are activated downstream of the tyrosine
kinase receptors and/or G protein-coupled receptors. Through AKT, they can induce the
stimulation of the mammalian target of rapamycin (mTOR) [27]. PI3Ks play a key role
in signaling different cellular processes, such as normal metabolism, inflammation, cell
survival, motility, and cancer progression [28]. Mutations often induce a gain of function or
hyperactivity of PI3Ks in tumors [27]. Published data also indicate that cytokine-mediated
activation of PI3K–AKT signaling inhibits cisplatin-induced cell cycle arrest [29]. The
PIK3R1 gene, which encodes for p85α, is the regulatory subunit of class I PI3K [30,31].
PIK3R1 mutations have been reported in several types of cancer, including endometrioid
endometrial cancers, non-endometrioid endometrial cancers, glioblastomas, breast, ovarian,
and colon tumors [32,33]. The mutations primarily accumulate in the inter-SH2 (iSH2)
domain and involve residues that interact with the C2 domain of the catalytic subunit p110α,
which is encoded by the PIK3R4 gene [31,34]. PTEN encodes for the phosphatidylinositol-
3,4,5-trisphosphate 3-phosphatase [35] and primarily dephosphorylates phosphoinositide
substrates. It negatively regulates phosphatidylinositol-3,4,5-trisphosphate intracellular
levels and functions as a tumor suppressor by negatively regulating the AKT/PKB signaling
pathway [36]. In our study, we found that the overexpression of PIK3R1 and PIK3R4 was
associated with a reduction in OS. We assume that the promotion of AKT phosphorylation
results in the destabilization of the PTEN protein, which promotes tumor progression.

Furthermore, we have also observed an association between PIK3C3 overexpression
and shortened PFS. The PIK3C3 gene encodes for the only known class III PI3-kinase mem-
ber, named vacuolar protein sorting 34 (Vps34) [27]. Vps34 acts positively on mTOR/S6K1,
integrating glucose and amino acid inputs into the mTOR pathway. Activation of the mTOR
pathway promotes the proliferation of tumor cells [37]. Our observation concurs with the
mechanisms previously described in the literature. It also underlines the importance of
understanding the functions and interactions of the investigated genes. Notably, recent
studies reported that targeting the PI3K/mTOR pathway could act as a potentially effective
therapeutic strategy in mesothelioma [38].

Within an analysis of factors significantly affecting the OS in our patient cohort, we
have also analyzed the tumor microenvironment, more precisely, the impact of CAFs. We
found that a higher degree of desmoplasia was associated with higher FAP IHC expression
and interpreted desmoplastic changes as a result of stromal changes induced by CAFs.



Int. J. Mol. Sci. 2023, 24, 12426 8 of 13

Interestingly, FAP gene expression correlated to the strength/amount of DSR, whereas
FAP IHC did not. Moreover, both high levels of DSR and FAP gene expression showed a
significant correlation with patient survival, whereas this association was not present for
FAP IHC. In our opinion, the reason for this discrepancy lies in the FAP IHC scoring system,
when evaluating the percentage of FAP-positive stromal cells. In contrast to digital gene
expression analysis, which results in an overall count of FAP mRNA molecules, the IHC
scoring system does not take into account the actual strength of the FAP protein expression
in positive cells. In this way, the exact phenotype of the analyzed cells is not adequately
presented. Additionally, we have to consider the chronological and spatial aspects of the
CAFs lifecycle within the evolving tumor stroma. They present with a quiescent phenotype
in homeostatic fibroblasts, a highly proliferative phenotype in the proliferating phase, and
a senescent but secretory one in the final stage. The phenotype of CAFs changes in reversed
order from the tumor center to the invasive tumor front [4]. This is represented by different
expressions of activation markers such as FAP, FN1, and ACTA. Therefore, this difference
in differentiation and the overall DSR of the tumor is much better reflected by an absolute
FAP quantification of protein or gene expression level than by the number of FAP-positive
fibroblasts, independent of their staining intensity.

Interestingly, increased FAP expression, and thus, CAF presence resulted in a signifi-
cant survival advantage within our cohort. We think that this might result from another
factor correlating with higher desmoplasia, and in our cohort with a better OS and CDK4
expression. Cisplatin, the current backbone of most PM therapies, targets fast-proliferating
cells during the transfer from G1-phase into S-phase in mitosis [39,40]. Since the activity of
CDK4 is restricted to the G1–S phase transfer [41], an increased level of this kinase might
increase the efficacy of the treatment, thereby positively influencing survival rates. This is a
rather controversial finding since the current literature predominantly assigns CAFs to the
role of mediating chemotherapy resistance in PM [42]. Moreover, another factor associated
with desmoplasia and in our study with an improvement in OS was VEGFC, which is
also considered a negative prognostic marker [43]. Since our data indicate a completely
different prognostic value, further research in this field is needed to fully comprehend the
value of the molecular alterations in PM. Nevertheless, this might be a valid explanation as
to why clinical trials, including VEGF inhibition in previously untreated PM patients with
high VEGF expression, fail to meet expectations [44].

Our study has several limitations. Firstly, the limited number of analyzed genes in
the used custom panel does not cover the whole span of the complex inter-relations in
paracrine signaling in the different parts of the tumor microenvironment. Furthermore, the
hypothesis-driven selection of target genes may be more error-prone in comparison to the
supervised approach. Therefore, some of our conclusions remain putative, although the
prognostic impact of the single markers revealed in our analyses remains factual. On the
other hand, we have only analyzed gene expressions and not the actual protein/enzyme
quantities. For the cutoff calculation for the gene expression results, we used unifactorial
CIT with the respective bucket in the terminal node size fitting as our aspired statistical
power. Nevertheless, in this case, we decided to target biologically relevant groups, al-
though the sample size is quite small. Therefore, we started with a density analysis of the
count distribution for each target across all samples and tried to determine the distribution
curves separating the different biological meaningful classes (low to absent, middle, high
expression, etc.). We tried to determine cutoffs for the most likely biologically meaningful
groups in the crossing points between the different distribution curves. These specific
cutoffs may not lead to the strongest possible statistical results; however, we think they are
much more adaptable to other gene expression datasets, as the numerically specific cutoffs
to achieve the best differentiation in this cohort may not be reproducible in those cases.
Nevertheless, we are convinced that this separation of potential biological meaningfulness
can be used as a better standard, which can be compared in other studies.

Moreover, the use of bulk RNA analysis is challenging because it does not allow
the assignment of cell types. However, we think that it is the right approach for spatial
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transcriptomics, where small-scale applications are challenging to implement into routine
diagnostics. All the data in the translational approach should be adaptable for use in
common and widely applied methods, such as targeted RNA bulk analysis.

To better understand the given relations, functional validation of the results, e.g.,
in vitro experiments that manipulate the identified targets remains necessary to assess their
clinical benefit.

4. Materials and Methods
4.1. Patient Cohort

This retrospective study is based on formalin-fixed paraffin-embedded (FFPE) tumor
specimens from 77 patients diagnosed with PM. Tumors were re-classified according to
the 2015 WHO classification [45] and staged according to the 2017 TNM classification [46].
Initial diagnosis and the appearance of DSR were evaluated visually by two experienced
pathologists (JW, JS). If >10% and <50% of the tumor area was covered by stromal cells, it
was classified as DSR-low. Samples with at least 50% of the tumor area covered by stromal
cells were classified as DSR-high. All patients were treated at the West German Cancer
Centre or the West German Lung Centre (Essen, Germany) between 2006 and 2009 or at
the Helios Klinikum Emil von Behring (Berlin, Germany) between 2002 and 2009. Overall
survival (OS) was available for 73 patients, all deceased at the time of data collection, while
progression-free survival (PFS) was available for 34 patients showing 29 events. PFS was
defined from the start of the treatment until the first radiologically determined progression
(modRECIST). Overall survival was defined from the initial diagnosis until death or loss of
follow-up. This information has been added to the description of the patient cohort in the
Materials and Methods section. Therapeutic response was evaluated using the modified
Response Evaluation Criteria in Solid Tumors (modRECIST) to assess radiological response
in PM [47,48]. It was assessed for 70 tumors with 40 documented progressions.

The study included 62 patients with epithelioid, 8 with biphasic, and 7 with sarcoma-
toid PM. All specimens were collected before systemic treatment. Patients’ clinicopatholog-
ical data are summarized in Table 2.

Table 2. Patient’s clinicopathological data.

Number of Patients 77

Gender
Male 64

Female 13

Histological subtype
Epithelioid 62

Biphasic 8
Sarcomatoid 7

Age
Mean/median age at diagnosis (years) 64.6/65.2

Range (years) 37.6–82.9

OS
Deceased 76

Alive 0
Loss of Follow-Up 1

Median/mean OS (months) 17.1/22.2
95% CI 15.2–24.4

Range (months) 3.1–80.6

PFS
Partial remission (initial) 3

Stable disease (initial) 32
Progressive disease (initial) 40

Unknown response 2
Median/mean PFS (months) 8.6/10.0

95% CI 7.4–9.7
Range (months) 1.2–67.2
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4.2. Immunohistochemistry

Immunohistochemistry (IHC) was performed on tissue microarrays (TMA) containing
3 cores, with a diameter of 0.6 mm from different areas of each tumor specimen to over-
come tumor heterogeneity, and, when feasible, 1 core containing normal lung tissue and
unaffected pleura. The immunohistochemical staining for the fibroblast activating protein
(FAP) with primary monoclonal antibody (clone SP325, Abcam, Cambridge, UK, dilution
1:100) was performed using an automated staining system (Ventana Discovery XT, Munich,
Germany), according to the standard protocol. Briefly, pretreatment for antigen retrieval
was performed by heating in citrate buffer (Ultra Cell Conditioning Solution II, Ventana
Medical Systems, Basel, Switzerland) at pH 6 and 90 ◦C for 48 min followed by antibody
incubation for 60 min at 36 ◦C.

After validating on reference tissues (myofibroblasts in the normal dermis) and on
normal pleura samples as the negative control, every case was assessed semi-quantitatively.
The percentage of FAP-positive stromal cells was evaluated according to Henry et al. [49]
and classified in the following way: negative (score 0) = 0%; low (score 1) = 1–10%; moderate
(score 2) = 11–50%; high (score 3) = >50%.

4.3. RNA Isolation and Quantification

RNA was isolated from 10 µm thick FFPE whole slide sections using the Maxwell
RSC RNA FFPE Kit (Promega GmbH, Mannheim, Germany). RNA was eluted in 50 µL
of RNase-free water and then stored at −80 ◦C. RNA was immediately quantified before
gene expression analysis using a Qubit Fluorometer (Thermo Fisher Science, Waltham, MA,
USA), according to the manufacturer’s instructions, by the appertaining RNA broad range
assay kit.

4.4. Digital Gene Expression Analysis

To evaluate differences in RNA expression patterns, a custom-designed CodeSet
comprising 76 key players in the cell cycle, PI3K-, MAPK-, Wnt-, TGF-β-signaling pathways,
growth factors, and markers for CAF were used. The CodeSet contains five reference genes
(ACTB, B2M, GAPDH, RPL19, and RPLP0) previously identified as stably expressed in PM.
All targets are listed in Supplementary Table S4.

The CodeSets and reagents were designed and synthesized by NanoString Tech-
nologies (Seattle, WA, USA). Ultimately, 200 ng of each sample was processed. Post-
hybridization processing was performed using the nCounter MAX/FLEX System (NanoS-
tring), and cartridges were scanned by the Digital Analyzer (NanoString). Samples were
preprocessed by the NanoString nCounter PrepStation, using the high-sensitivity program,
and cartridges were read at maximum sensitivity (555 FOV).

4.5. NanoString Data Processing and Statistical Analysis

NanoString data processing and statistical analysis were performed using the R statis-
tical programming environment (v4.0.2). NanoString data were processed by the NanoS-
tringNorm (version 1.2.1.1) and NAPPA package (version 2.0.1).

Factorial normalization as well as biological normalization were performed with the
geometric mean for all reference genes, as described in a previous study [50].

For statistical analysis, several tests were carried out prior to exploratory data analysis:
Shapiro–Wilks test; Wilcoxon Mann–Whitney rank sum test or a two-sided Student’s t-
test; Kruskal–Wallis test or ANOVA; Fisher’s exact test; Pearson’s Chi-squared test and
Spearman’s rank correlation and Pearson’s product-moment correlation were performed,
as described elsewhere [50].

OS and PFS were assessed by generating single-factorial and combined Kaplan–Meier
curves. Cox regression (COXPH-model) was used for survival analysis, and the likelihood
ratio test, Wald test, and Score (log-rank) test were used to test for statistical significance.
Kaplan–Meier curves and forest plots with a confidence interval (CI) of 95% were consid-
ered based on present survival data, and combined survival curves were implemented.
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The statistical significance of the results was defined as p ≤ 0.05 after adjustment.

4.6. Machine Learning

Adaption of profiles was modeled by the supervised machine learning tool conditional
interference trees (CTree), as implemented in the “party” library of R [51], using leave-
one-out cross-validation. The CTree is a non-parametric class of regression trees leading
to a non-parametric class of tree-structured regression models that embed a conditional
inference procedure, applicable to all kinds of regression problems, including nominal,
ordinal, numeric, and censored as well as multivariate response variables and arbitrary
measurement scales of the covariate [51].

5. Conclusions

We outlined the prognostic value of CAFs-induced by PI3K signaling pathway activa-
tion together with FAP-dependent CDK4-mediated cell cycle progression in PM. Analyzing
the role of paracrine signaling within the tumor microenvironment is important to under-
stand the underlying mechanisms involved in tumor progression and the biology of this
severe disease. The identification of new prognostic and predictive biomarkers is urgently
needed to introduce new therapeutic strategies and improve the clinical management of
patients.
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