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Abstract: Hypertrophic Cardiomyopathy (HCM) is a common inherited disorder that can lead to
heart failure and sudden cardiac death, characterized at the histological level by focal areas of my-
ocyte disarray, hypertrophy and fibrosis, and only a few disease-targeted therapies exist. To identify
the focal and spatially restricted alterations in the transcriptional pathways and reveal novel thera-
peutic targets, we performed a spatial transcriptomic analysis of the areas of focal myocyte disarray
compared to areas of normal tissue using a commercially available platform (GeoMx, nanoString).
We analyzed surgical myectomy tissue from four patients with HCM and the control interventricular
septum tissue from two unused organ donor hearts that were free of cardiovascular disease. His-
tological sections were reviewed by an expert pathologist, and 72 focal areas with varying degrees
of myocyte disarray (normal, mild, moderate, severe) were chosen for analysis. Areas of interest
were interrogated with the Human Cancer Transcriptome Atlas designed to profile 1800 transcripts.
Differential expression analysis revealed significant changes in gene expression between HCM and
the control tissue, and functional enrichment analysis indicated that these genes were primarily in-
volved in interferon production and mitochondrial energetics. Within the HCM tissue, differentially
expressed genes between areas of normal and severe disarray were enriched for genes related to
mitochondrial energetics and the extracellular matrix in severe disarray. An analysis of the gene
expression of the ligand–receptor pair revealed that the HCM tissue exhibited downregulation of
platelet-derived growth factor (PDGF), NOTCH, junctional adhesion molecule, and CD46 signaling
while showing upregulation of fibronectin, CD99, cadherin, and amyloid precursor protein signaling.
A deconvolution analysis utilizing the matched single nuclei RNA-sequencing (snRNA-seq) data
to determine cell type composition in areas of interest revealed significant differences in fibroblast
and vascular cell composition in areas of severe disarray when compared to normal areas in HCM
samples. Cell composition in the normal areas of the control tissue was also divergent from the
normal areas in HCM samples, which was consistent with the differential expression results. Overall,
our data identify novel and potential disease-modifying targets for therapy in HCM.

Keywords: hypertrophic cardiomyopathy; spatial transcriptomics; single-nucleus RNA sequencing;
gene expression; bioinformatics; cardiovascular disorder; genetic disorder

1. Introduction

Hypertrophic Cardiomyopathy (HCM) is an inherited disorder affecting between 1 in
500 and 1 in 200 people (OMIM 192600, 115195, 115196, 115197 and others). The disease
is characterized by unexplained left ventricular hypertrophy that is often asymmetric,
involves the interventricular septum, and is associated with left ventricular outflow tract
(LVOT) obstruction, fibrosis, microvascular occlusion, and sudden cardiac death. His-
tologically, it is characterized by focal areas of myocyte hypertrophy, myocyte disarray,
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fibrosis and medial hyperplasia. Anatomically, it is characterized by mitral valve abnor-
malities and left ventricular outflow tract obstruction. Physiologically, it is characterized
by enhanced contractile function, reduced diastolic function and increased risk of sudden
cardiac death [1]. Traditionally, HCM is considered a disease that ensues from sarcom-
ere gene dysfunction, but in most patients, pathogenic sarcomere gene mutations cannot
be identified. In those patients where pathogenic gene mutations are found, most are
located in the sarcomere genes MYBPC3 and MYH7. The genetic landscape of HCM is
well-summarized [2]. The activation of signaling pathways that promote cardiac myocyte
hypertrophy and fibrosis of the heart have been implicated in many studies [3], but ad-
ditional mechanisms are likely contributing. Comprehensive studies to understand how
sarcomere gene mutations can lead to phenotypes not related to sarcomere function or
those seen in cells that do not express sarcomere genes are lacking in the field. Since
sarcomere gene mutation-negative patients have similar phenotypes to sarcomere gene
mutation-positive patients, it is likely that there are final common pathological pathways
independent of sarcomere gene mutations that are involved, but these final common path-
ways are incompletely understood. Recent reports using single-nucleus RNA sequencing
of human HCM tissue have identified potential alterations in cell-to-cell communication
involving extracellular matrix proteins, integrin receptors and the activation of immune
cells as potential contributors to the HCM phenotype [4–6]. These studies, however, did
not determine how these alterations in single-cell transcription and intercellular communi-
cation are spatially organized in the context of known histopathological features of HCM.
To identify changes in gene expression associated with focal areas of myocyte disarray, we
performed a spatial transcriptomic analysis of genes expressed in these areas that included
the identification of differentially expressed genes (DEGs), a gene ontology (GO) analysis
to assign DEGs to molecular function, a Ligand-Receptor (L-R) gene expression analysis
to infer cell–cell communication and a deconvolution analysis to determine the cell-type
composition in these areas. Here, we report that areas of focal myocyte disarray show an
altered expression of genes involved in interferon production, mitochondrial energetics and
the extracellular matrix that may also reflect changes in cellular composition. Furthermore,
these areas also show dysregulation of PDGF and cadherin signaling that may be relevant
to the pathogenesis of HCM.

2. Results
2.1. Identification of Focal Areas of Myocyte Disarray and Designation of Regions of Interest

HCM and control patient sections were stained with morphology markers desmin,
fibroblast activator protein, CD45 and nuclear DNA using Syto83, as described in Methods.
Representative images from HCM sample 2799 and control sample 2879 are shown in
Figure 1. Representative Regions of Interest (ROIs), also called Areas of Interest (AOIs), are
indicated and shown at a higher magnification.

2.2. Identification of Differentially Expressed Genes and Associated Pathways in Areas of Disarray

The bioinformatic analysis pipeline for the identification of differentially expressed
genes (DEGs) between sets of ROIs and associated functional enrichment is shown schemat-
ically in Figure 2A. DEGs were determined in pairwise comparisons between sets of ROIs
classified by the degree of myocyte disarray and patient HCM status (Figure 3A, Supple-
mental Table S1). Given the low number of ROIs that passed quality control, areas of mild
disarray from the control patients were excluded from further analysis. We focused on two
comparisons: normal disarray ROI between HCM and control patients, as well as between
normal and severe disarray ROIs within HCM patients. The largest number of DEGs was
obtained in the comparison of normal disarray ROIs between HCM and control patients,
suggesting that the HCM macroanatomic phenotype itself is associated with large changes
in gene expression, while fewer DEGs were found in the comparison between normal and
severe disarray levels in HCM patients (Figures 3A and S1A). The visualization of intra-
individual variation in gene expression in the top differentially expressed genes confirmed
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that gene expression differences were driven by phenotype or disarray level rather than by
individual patient identity (Figure 3B). Gene Ontology enrichment analysis revealed an
upregulation in genes related to mitochondrial energetics and a downregulation of genes
involved in interferon production in HCM ROIs of varying levels of disarray compared
to normal control ROIs (Figures 3C and S1B). Within HCM patients, severe disarray ROIs
showed a weaker upregulation in genes associated with mitochondrial energetics and
downregulation in genes that were constituents of the extracellular matrix when compared
with normal disarray ROIs (Figure 3C). Interestingly, there was a large overlap between
DEGs obtained in the comparison of the control normal and HCM normal ROIs and other
comparisons between the control normal and HCM with more severe disarray (Supplemen-
tal Figure S1A). This overlap was even more pronounced in the GO categories obtained by
performing GO enrichment of the DEGs obtained from these comparisons (Supplemental
Figure S1B). This suggests that the HCM macroanatomic phenotype itself is associated with
strong gene expression changes independent of the microanatomic severity of disarray.
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Figure 1. Human heart tissue sections used for spatial transcriptomic analysis. Normal and HCM
histological sections from the interventricular septum were immunostained for FAP, CD45, Desmin
and nuclear DNA, as described in Methods. Representative samples 2799 (Normal) and 2879 (HCM)
are shown at lower magnification, along with designated Areas of Interest (AOIs) that were chosen
based on the degree of myocyte disarray. The first 6 AOIs for each sample are shown at higher
magnification. Myocyte disarray is apparent at higher magnification in the HCM samples.
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Figure 2. Study design and overall analysis pipeline for spatial transcriptomic data from HCM
patient tissue. (A) Overall analysis pipeline for spatial transcriptomic data. (B) Overview of the
hierarchy between patients, samples and ROIs. (C) Distribution of ROIs that passed quality control
between patients and colored by disarray level.

2.3. Identification of Potentially Altered Cell–Cell Interactions in Areas of Myocyte Disarray

The bioinformatic analysis pipeline for the identification of Ligand–Receptor (L–R)
pairs that are differentially expressed in areas of myocyte disarray is shown schematically
in Figure 2A and further explained in Figure 4A. Differentially expressed genes were
determined in pairwise comparisons between ROIs classified by the degree of myocyte
disarray and overall patient HCM status, as described above. The gene sets from each
comparison were separated by whether they were down or upregulated. The gene sets
were then compared to the CellChat Interaction Database [7] to identify Ligand–Receptor
pairs that were both present in either the up or downregulated gene sets and which
pathway the Ligand–Receptor pair was associated with (Supplemental Table S2). Here,
we note that, like the differential expression results, significant Ligand–Receptor pairs
are observed when comparing ROIs obtained from HCM patients with varying levels of
disarray to ROIs obtained from control patients. Although the GO enrichment analysis of
the DEGs between control normal ROIs and HCM ROIs with varying levels of disarray
did not uncover differences in GO terms, there were differences in the CellChat pathways
associated with significant ligand–receptor DEG pairs. In HCM patients, compared to the
control patients, normal disarray areas show a downregulation of CD46, junctional adhesion
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molecule, neurotrophin, and NOTCH signaling, while cadherin, CD99 and fibronectin
signaling are upregulated. Areas of mild disarray in HCM patients are downregulated for
junctional adhesion molecule and neurotrophin signaling and upregulated for cadherin,
CD99, fibronectin and amyloid precursor protein signaling compared to normal disarray
areas in control patients. Moderate disarray areas in HCM patients are downregulated
for CD46, neurotrophin, and platelet-derived growth factor signaling and upregulated
for cadherin signaling compared to normal disarray areas in control patients. Severe
disarray areas in HCM patients are downregulated for CD46, junctional adhesion molecule,
neurotrophin, NOTCH, and platelet-derived growth factor signaling and upregulated for
cadherin signaling compared to normal disarray areas in control patients. Interestingly,
CD99 signaling is upregulated in the HCM normal/mild ROIs compared to the control
normal ROIs but downregulated in the HCM moderate/severe ROIs compared to the
HCM normal ROIs. Also, JUN kinase signaling is upregulated in areas of severe disarray
compared to areas of moderate disarray. The greatest number of Ligand–Receptor pairs
driving these pathways is observed in platelet-derived growth factor signaling, followed
by NOTCH signaling. All other pathways have one Ligand–Receptor pair per disarray
level comparison.
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Figure 3. Identification of differentially expressed genes and associated biological processes in
areas of myocyte disarray. (A) Volcano plots comparing areas of normal myocyte disarray between
control and HCM patients and the progression of increasing myocyte disarray within the HCM
phenotype. In each panel, gene expression fold changes are shown in the condition listed second
in the plot title relative to the condition listed first. Only differentially expressed genes that had
an FDR-adjusted p-value below 0.05 were considered differentially expressed. (B) Intra-patient
variability in gene expression of the top differentially expressed genes for the comparison shown
in (A). (C) Gene ontology enrichment dot plot of significant terms per comparison. (D) Module
expression of significant annotations broken down by HCM status and myocyte disarray.
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Figure 4. Identification of differentially expressed ligand receptors in areas of myocyte disarray.
(A) Differentially expressed genes between myocyte disarray levels were filtered by an FDR-adjusted
p-value of 0.05 and split into upregulated and downregulated groups. These gene sets were then
compared to the CellChat database to identify Ligand–Receptor pairs and their associated pathway.
(B) Heatmap indicating which pathways were affected in different disarray level comparisons and
colored by the number of ligand receptors present in the pathway.

2.4. Determination of Cell-Type Composition in Areas of Myocyte Disarray

Previously published snRNA-seq datasets from the patients in this study were rean-
alyzed to determine cell-type compositions [4–6,8]. UMAP plots and a dot plot showing
cell clusters and cell identity assignments separated by disease label are shown in Sup-
plemental Figure S2. To determine whether the cell type composition differs in areas
of myocyte disarray compared to the normal and in HCM vs. control, we performed a
deconvolution analysis (Methods) [9] using genes present in both the snRNA-seq data
and the spatial data (Supplemental Table S3, Figure 5A). Note that areas of moderate and
severe disarray were only present in ROIs obtained from HCM patients. To get a more
granular picture of cell-type composition, the average cell proportion for each observed
cell type was broken down by HCM status, disarray level and patient (Figure 5B). We note
that the proportion of cardiomyocytes, dendritic cells and endothelial cells were relatively
constant across patients, HCM status and disarray levels (Figure 5B). On the other hand,
fibroblast proportions increased as the severity of disarray increased (Figure 5B). ROIs
from HCM patients with normal and mild levels of disarray contained more lymphatic
endothelial cells (Figure 5B). The proportions of macrophages, smooth muscle, neuronal
cells and T-lymphocytes did not show consistent changes in proportions across patients
within a HCM status/disarray level (Figure 5B).
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Figure 5. Cell-type composition of areas of focal myocyte disarray determined by deconvolution of
SnRNA-seq Data. (A) Deconvolution of ROIs using per-patient averaged matched SnRNA-seq data
and broken down by HCM status, patients and disarray level. (B) Average cell proportions of ROIs
in different HCM status, disarray levels and patients.

We also assessed whether cell-type diversity differed between the ROI from the control
and HCM patients using the cell-type diversity statistic described by Karagiannis et al. [10].
Although there is a trend towards higher cell-type diversity in HCM patients compared
to control patients, the results were not statistically significant at the p < 0.05 level when
accounting for inter-patient variability via a linear mixed-effect model (Supplemental
Figure S3A).

3. Discussion

Spatial transcriptomics can be used to map transcriptional patterns to specific anatomic
locations [11–13] and can complement high-resolution, non-spatially resolved single-cell
transcriptomic datasets by facilitating the mapping of diseased cell types to areas of patho-
logical change through bioinformatic deconvolution methods [14,15]. Such approaches
have been used to map areas of SARS-CoV-2 infection and lung injury [16,17] but, to the
best of our knowledge, have not been used to study HCM tissues. Here, we report the
spatial transcriptomic profiling of areas of focal myocyte disarray, lesions pathognomonic
for HCM and thought to reflect the intrinsic pathophysiological processes inherent to
diseased cells using a set of probes specific for the cancer cell transcriptome (nanoString,
Seattle, WA, USA). We have found that focal areas of myocyte disarray specifically show
changes in gene expression associated with interferon production, the extracellular ma-
trix and mitochondrial function. These findings suggest alterations in pro-inflammatory
and metabolic processes in areas of myocyte disarray, which may ensue from sarcomere
dysfunction, often the primary disease-driving process in HCM. These findings are also
consistent with previous studies noting altered interferon levels and inflammatory markers
in HCM patients [18,19] and altered mitochondrial function in HCM patients [20,21]. Our
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study is unique, however, in that it specifically implicates these processes in areas of focal
myocyte disarray, thus linking these processes to discrete histopathological defects.

Analysis of ligand-receptor alterations provides a window into how intercellular
communication may be altered in areas of focal myocyte disarray. The downregulation
of CD46, junctional adhesion molecule, neurotrophin, NOTCH and PDGF signaling in
areas of severe myocyte disarray, as shown in Figure 4, may reflect reduced complement
inactivation (CD46) [22], reduced integrin-mediated leukocyte and platelet adhesion (junc-
tional adhesion molecule) [23], reduced neuronal innervation (neurotrophin) [24], loss of
cardioprotection (NOTCH) [25] and reduced smooth muscle and fibroblast proliferation
(PDGF) [26] in these areas. Increased cadherin signaling implies increased cell adhe-
sion [27], which may represent a response to increased mechanical force associated with
HCM. Reduced inactivation of complement and reduced leukocyte and platelet adhesion
imply alterations in the inflammatory response. Changes in neuronal homeostasis may
imply altered autonomic innervation and the potentiation of arrhythmogenesis. Alterations
in smooth muscle proliferation may also reflect altered vascularity in these areas, while
alterations in fibroblast proliferation may reflect alterations in fibrosis. CD99 plays an im-
portant role in T-cell activation [28] and the suppression of extracellular matrix–integrinβ1
interactions relevant to cell adhesion [29]. Its upregulation in areas of mild disarray but
downregulation in areas of moderate or severe disarray may reflect a role for T-cell immune
function in early, mild lesions that is then dispensable in advanced lesions. Future studies
targeting these specific pathways may lead to improved experimental and therapeutic
outcomes.

Deconvolution analysis of snRNA-seq data in conjunction with spatial transcriptomic
data facilitates the determination of specific cell-type composition within focal areas of
myocyte disarray. As expected, the cell composition in areas of moderate or severe disarray
and normal areas in HCM samples diverged, with areas of disarray showing a higher
proportion of fibroblasts, consistent with altered fibrotic mechanisms in these areas. Normal
areas in HCM tissue showed a higher proportion of lymphatic endothelial cells, suggesting
that these areas are in a different physiological stage compared to areas of moderate or
severe disarray. These findings raise an interesting question of whether the areas of focal
myocyte disarray are anatomically distinct by virtue of differences in innervation, capillary
density, and lymphatics, which may facilitate the differential and distinctive recruitment
of immune-cell populations present in the different areas. In this model, the detection of
focal myocyte disarray would, thus, likely be a local consequence of a more global disease
process rather than an area of focal pathophysiology. Additional higher-resolution spatial
transcriptomic studies with targeted deletion of specific cell populations, such as fibroblasts,
would likely provide further insight.

A recent study examined spatial transcriptomic patterns in Arrhythmogenic Cardiomy-
opathy (ACM) using Tomo-Seq and identified ZBTB11 upregulation in cardiomyocytes as
a potential cause of autophagy and apoptosis in this disorder [30]. ACM and HCM differ
significantly in terms of histopathologic features and genetic causes. We do not see the
alterations in ZBTB11 expression, nor in genes relevant to autophagy or apoptosis in our
study, but this is not surprising given the divergent features of these cardiomyopathies.

Limitations of our study include the small number of patient samples, the use of the
Human Whole Cancer Transcriptome Atlas reagent set and the limited spatial resolution of
the GeoMX technology. Spatial transcriptomic analysis, while powerful, is currently limited
by expense and low throughput, and thus the sample number can be a limiting factor
in determining DEGs and in determining cell composition. We mitigated the effect of a
small sample size on determining DEGs by including a random patient effect in our mixed
model, as described in Methods. The Cancer Transcriptome Atlas assesses approximately
1800 mRNA targets and is designed for the profiling of cancerous tumors and the tumor
microenvironment and, thus, does not address the entire transcriptome and may not detect
critical transcriptional pathways not included in the probe set. At the time this study
was done, the Human Whole Transcriptome Atlas was not yet available. Future studies
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using this newer whole transcriptome atlas will likely be informative. Finally, the spatial
resolution of the GeoMX technology is limited to ~100–200 cells and, thus, cannot truly
provide single-cell resolution. The latest CosMX technology from nanoString can now
provide single-cell resolution. Future studies using these newer technologies may provide
even greater insights into the single-cell and spatial transcriptomic analysis of human
HCM.

4. Materials and Methods
4.1. Patient Characteristics and SnRNA-Seq Datasets

Patients with HCM and the control patients without cardiovascular disease and
their snRNA-seq datasets from the cardiac interventricular septum have been described
previously [4–6,8]. De-identified samples from HCM patients 2799, 2834, 2828 and 2843
and the control patients 2879 and 2880 were used in this study. The snRNA-seq datasets are
available in the Gene Expression Omnibus database under accession numbers GSE161921,
GSE174691 and GSE181764. The HCM and control patients who provided tissues used
in this study have been described extensively in prior publications [5,6]. Control patients
2879 and 2880 are described in [5], Table 2. The HCM patients 2799, 2828, 2834 and 2843
correspond to patients 1, 4, 6 and 9 in [6], Supplemental Table S1. Patient 2828 had a
pathogenic KRAS mutation, and patient 2843 had a pathogenic MYBPC3 mutation.

4.2. Tissue Processing for Spatial Transcriptomics

Paraffin-embedded tissues were generated from each tissue sample and sectioned for
spatial transcriptomic analysis using standard methods. The tissue sections were generated
within 2 weeks of spatial analysis and were processed for spatial transcriptomics analysis
according to the GeoMx Digital Spatial Profiling protocol [12], as provided by the manufac-
turer (nanoString, Seattle, WA, USA). Briefly, samples were stained for morphology using
commercially available antibodies to desmin (Abcam, Cambridge, UK, cat. # ab185033) at
1:200 dilution, fibroblast activating protein (Abcam cat. # ab238148) at 1:50 dilution and
CD45 (Cell Signaling Technology, Danvers, MA, USA, cat. # 13917BF) at 1:100 dilution.
The nuclei were counterstained with Syto83 (ThermoFisher, Waltham, MA, USA). Tissue
morphology was visualized for each tissue slide using the GeoMx Digital Spatial Profiler,
and areas of focal myocyte disarray were designated as regions of interest (ROIs) by an
expert pathologist. The ROIs were graded for the degree of myocyte disarray on a scale
of severe, moderate, mild and normal. A total of 12 ROIs were selected from each tissue
slide. The RNA within the ROIs was captured and profiled using the GeoMx Cancer
Transcriptome Atlas (nanoString) to detect approximately 1800 RNA targets. Samples were
processed in 2 batches, with the first batch consisting of 2 HCM and 2 normal samples and
the second batch with 2 HCM samples. Serially sectioned slides stained with hematoxylin
and eosin or trichrome were also done to aid in morphological assessment.

4.3. Identification and Analysis of Differentially Expressed Genes Associated with HCM Areas of
Myocyte Disarray

Raw expression data from ROIs underwent quality control and Q3 normalization
per the recommendations from the manufacturer (nanoString). Segment, probe, and gene
quality control were performed using the R package, GeoMXTools v2.99.2. The expressed
genes were filtered for inclusion in at least 1% of segments. Samples that passed quality
control underwent unsupervised analysis to identify potential confounding factors. Linear
mixed-effects models were used to test for differential gene expression between groups
of ROIs with different levels of disarray and HCM status using a composite variable
indicating HCM status and disarray level as a fixed effect and setting the patient identifier
as the random effect. Genes with Benjamini–Hochberg adjusted p-values of less than
0.05 were considered significantly differently expressed between groups of ROIs. Gene
Ontology analysis was performed using the R package, ClusterProfiler, using all three GO
ontologies [31,32].
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4.4. Ligand-Receptor Analysis to Delineate Potential Intercellular Communication Pathways That
Promote Focal Myocyte Disarray

Differentially expressed genes were further analyzed for the presence of Ligand–
Receptor pairs that were differentially expressed in the same way (e.g., either both upregu-
lated or both downregulated, called differential combination analysis) [33] using known
human ligand–receptor pairs present in the CellChat Interaction Database [7].

4.5. Deconvolution of Single-Nucleus RNA-Sequencing Data to Determine Cell Composition in
Areas of Focal Myocyte Disarray

SnRNA-seq datasets from the six samples were integrated into a single Seurat ob-
ject [34] using Harmony [35]. The optimal clustering resolution was determined using
ChooseR [36]. Cell assignments were generated using the expression of canonical markers
and methods described previously [4–6,8]. The snRNA-seq datasets were filtered to only
include marker genes present in the GeoMx ROI data and log2 transformed. The GeoMx
ROI data were Q3 normalized and log2 transformed before undergoing deconvolution.
Spatial Deconvolution Analysis was used to determine the cellular composition of areas of
focal myocyte disarray using SpatialDecon [9]. Deconvolution was performed on a per-
patient basis, where each patient’s GeoMx ROI data were deconvoluted using the patient’s
matching snRNA-seq data as a reference. The cell-type diversity statistic, described by
Karagiannis et al. [10], was used to assess the cell-type diversity of ROIs of varying levels of
disarray and HCM status. A linear mixed-effects model was used to test for differences in
the cell-type diversity statistic value between ROIs of varying levels of disarray and HCM
status using a composite variable indicating the HCM status and disarray level as a fixed
effect and setting the patient identifier as the random effect.

5. Conclusions

Here, we report the first spatial transcriptomic analysis of human HCM samples,
focusing on areas of focal myocyte disarray. These areas of focal myocyte disarray show
distinctive changes in gene expression related to interferon production, mitochondrial
metabolism and the extracellular matrix. Analysis of intercellular communication in these
areas reveals significant changes in cell adhesion, PDGF, NOTCH and cadherin signaling.
An analysis of the cell content in these areas reveals characteristic differences in lymphatic
endothelial cells and fibroblasts. The characterization of the complex interplay between
cells within HCM lesions will likely lead to the development of novel, targeted therapeutics,
perhaps those that target interferon signaling or mitochondrial metabolism, to improve
outcomes in HCM patients.
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