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Abstract: The current study reports on the fabrication of composite scaffolds based on polycapro-
lactone (PCL) and cerium (Ce)-containing powders, followed by their characterization from com-
positional, structural, morphological, optical and biological points of view. First, CeO2, Ce-doped
calcium phosphates and Ce-substituted bioglass were synthesized by wet-chemistry methods (pre-
cipitation/coprecipitation and sol-gel) and subsequently loaded on PCL fibres processed by elec-
trospinning. The powders were proven to be nanometric or micrometric, while the investigation
of their phase composition showed that Ce was present as a dopant within the crystal lattice of the
obtained calcium phosphates or as crystalline domains inside the glassy matrix. The best bioactivity
was attained in the case of Ce-containing bioglass, while the most pronounced antibacterial effect was
visible for Ce-doped calcium phosphates calcined at a lower temperature. The scaffolds were com-
posed of either dimensionally homogeneous fibres or mixtures of fibres with a wide size distribution
and beads of different shapes. In most cases, the increase in polymer concentration in the precursor
solution ensured the achievement of more ordered fibre mats. The immersion in SBF for 28 days
triggered an incipient degradation of PCL, evidenced mostly through cracks and gaps. In terms of
biological properties, the composite scaffolds displayed a very good biocompatibility when tested
with human osteoblast cells, with a superior response for the samples consisting of the polymer and
Ce-doped calcium phosphates.

Keywords: CeO2; calcium phosphates; bioglass; polycaprolactone; electrospinning; scaffolds

1. Introduction

In tissue engineering, biomaterials play an essential role by reproducing the mechan-
ical and biological functions of the extracellular matrix in body tissues, working as an
artificial extracellular matrix [1,2]. These biomaterials act like a 3D porous support for
cells to penetrate and produce new tissues with appropriate structures and functions [3].
The key properties include biocompatibility, biodegradability and bioresorbability to allow
tissue replacement without unwanted effects, such as inflammation [4].

Among the most notable technological advances in tissue engineering are the re-
sorbable porous scaffolds [2,5]. The optimized versions can be fabricated only by precise
control of their properties, such as pore shape, diameter, orientation and volume fraction,
but also matrix chemical composition and microstructure [6]. Moreover, the transition
from biostable to bioresorbable implants represented a significant evolutionary step in
biomaterials research [7].

Polymers are the most used biomaterials for the manufacture of scaffolds [8]. Due
to their mechanical properties and degradation rates that match those of soft and hard
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tissues, they are ideal candidates for the development of synthetic bone and vascular
grafts [9]. Polycaprolactone (PCL) is a semicrystalline linear polymer that is flexible and
hydrophobic, as well as easy to process [8]. It has been integrated in a wide range of
medical applications, addressing wound healing [10], drug delivery [11] and soft [12]
or hard [13] tissue engineering. PCL degrades through a hydrolytic mechanism under
physiological conditions, with the resulting fragments at a small molecular level being
captured by macrophages and reduced intracellularly [14]. Moreover, the slow degradation
rate (total degradation in about 2–4 years, depending on quantity) allows the corresponding
scaffold to remain intact long enough to allow new tissue formation and, in the end, its
complete replacement, so that no subsequent surgical intervention will be required for the
implantable device extraction [15]. At the same time, the scaffold must provide sufficient
mechanical support during the degradation process to ensure the integrity and temporary
functionality of the regenerating tissue.

Electrospinning is a widely used technology for electrostatically obtaining fibres
with diameters ranging from 2 nm to several micrometres from polymer solutions of
both natural and synthetic polymers [16]. Lately, it has become one of the most widely
used fabrication methods for the preparation of nanofibrous scaffolds with applications
in tissue engineering [17]. Typical synthetic polymers used in the biomedical field are
hydrophobic biodegradable polyesters, among which PCL [18], polylactic acid (PLA) [19]
and polyglycolic acid (PGA) [20] can be listed. PCL has frequently been combined with
mineral bioactive phases, the most approached one being hydroxyapatite [21,22], a strategy
that has led to multifunctional materials with improved potential in bone regeneration.

On another hand, dopants are often employed in tissue engineering to enhance the me-
chanical, biochemical and biological properties of different parent matrices. From the large
variety of dopants, rare earth (RE) elements have attracted increased attention due to their
special characteristics, playing an important role in refining scaffold performance [23]. Their
cations possess unique biological features required for effective bone regeneration, such
as osteogenic, angiogenic, antimicrobial and immunomodulatory activities [24]. Cerium
(Ce) [25], europium (Eu) [26] and samarium (Sm) [27] are just three examples of elements
with demonstrated potential in developing medical applications.

Cerium oxide (CeO2) nanoparticles represent important antibacterial agents due to
their low toxicity to normal cells and distinct mechanism of antibacterial action, which
is based on the reversible conversion between the two valence states of Ce (3+ and 4+),
subsequently associated with the formation and migration of oxygen vacancies [28]. The
interaction between CeO2 nanoparticles and the bacterial membrane is the crucial step in
determining their toxicity. After CeO2 nanoparticles are adsorbed on bacterial membranes,
based on electrostatic attraction, they can affect bacterial viability through mechanical
effects, inducing oxidative stress or interfering with nutrient transport functions [29,30].
The dual characteristics of CeO2 nanoparticles, which can act as natural antioxidants and
protect cells from oxidative stress, but can also exhibit toxicity under certain conditions,
give them multiple applications in the field of biomedicine [31,32]. However, the toxic
performance on different bacterial colonies depends on various factors, including syn-
thesis methods and operating conditions [33]. In this context, the precipitation route is
a simple method by which a precipitate is separated through chemical reactions from a
primary solution containing the targeted ions [28], while the sol-gel approach is a complex
chemical technique involving the transformation of the precursor solution into a 3D gel by
controlled hydrolysis and condensation of the precursors [34]. Moreover, it was reported
that nanoceria-containing polymeric composites combine the advantages exhibited by
each component and reduce the intrinsic drawbacks of both nanoceria and polymeric
phases [35].

When used as a dopant, Ce can be integrated in different types of host matrices,
both vitreous and crystalline, targeting the achievement of additional valuable biological
properties, such as bioactivity. Calcium phosphates [36,37] and bioglasses [38,39] are
two of the most investigated systems that have multiple doping ions and high doping
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concentrations. Additionally, the combination of such bioactive phases with bioresorbable
polymers has also been extensively studied as innovative architectures with targeted
multifunctionalities [40,41].

Atkinson et al. [42] synthesized Ce-containing mesoporous bioactive glasses by an
evaporation-induced self-assembly method and concluded that the increase in ceria content
up to 5 mol% improves the chemical stability without significantly altering bioactivity.
Zheng et al. [43] developed Ce-doped mesoporous bioactive glass nanoparticles by a
post-impregnation strategy and highlighted their great potential in treating bone defects
under inflammatory conditions, considering their antioxidant, anti-inflammatory and
pro-osteogenesis activities. Leu Alexa et al. [44] printed composite materials based on
gelatine methacryloyl and hydroxyapatite doped with Ce ions and showed their capacity
for osteogenic differentiation. Sousa et al. [45] precipitated Ce-doped calcium phosphates
on bacterial cellulose as a platform for controlling the 3D architecture, followed by thermal
treatment at 600 ◦C, which induced a trabecular morphology similar to bone. Fernandes
et al. [46] produced PCL membranes incorporated with 58S bioactive glass doped with Zn
by electrospinning and reported increased hydrophilicity, as well as suitable conditions for
cell activity and differentiation.

Considering all the above information, the design and development of composite
materials with complex composition and controlled morphological properties seems to be
a promising strategy for achieving unique or personalized implantable devices. Thus, by
combining a bioresorbable polymer with a bioactive phase and an antibacterial agent, a new
type of scaffold that responds to most of current medical requirements could be proposed.
Therefore, in this work, PCL electrospun scaffolds were loaded with Ce-containing mineral
powders, such as CeO2, Ce-doped calcium phosphates and Ce-substituted bioglass. In this
way, the polymer bioresorbability was supplemented with phosphates, bioglass bioactivity
and Ce antimicrobial activity, leading to multifunctional composite materials for bone
engineering. To our knowledge, such ternary systems were not reported until now, opening
the perspective to a novel generation of hard-tissue substitutes.

2. Results and Discussion
2.1. Characterization of Powders

The dried precipitates and gel were subjected to thermal analysis up to 900 ◦C to
identify the appropriate calcination temperatures (Figure 1). Figure 1a displays the resulting
curves in the case of the CeO2 intermediate, for which a single main step of weight loss of
approximately 9.3%, centred at 224 ◦C, can be observed. According to the DSC curve, no
endothermic effect assigned to Ce(OH)4 dehydroxylation can be identified, but a complex
asymmetric exothermic effect is present in the range of 150–280 ◦C. The latter can be
attributed to CeO2 crystallization, which occurs concomitantly with the dehydroxylation
process, this being integrated in the final effect. The total mass loss from room temperature
to 900 ◦C is around 19.7%, while up to 500 ◦C is around 19.1%, meaning that the application
of a calcination treatment at 500 ◦C will ensure the removal of most residues and chemically
bound water, together with CeO2 crystallization.

The thermal analysis performed on the CP-Ce intermediate is shown in Figure 1b.
There are three main stages of weight loss, associated with three endothermic processes.
The first one occurs in the range of 110–150 ◦C (~2.5%) and represents the evaporation of
residual or adsorbed water; the second takes place in the range of 160–210 ◦C (~9.4%) and
is attributed to the removal of chemically bound water; and the third one take place in the
range of 390–470 ◦C (~2.8%) and highlights the decomposition of residual nitrate. Thus,
the total mass loss from room temperature to 900 ◦C is around 22.2%, while up to 800 ◦C is
around 21.8%, which means that most of the gas-generating compounds are eliminated
up to 800 ◦C. However, 500 ◦C was also selected as the calcination temperature, since the
weight loss was around 20.4%: more than 90% of unwanted compounds were removed.

Figure 1c presents the thermal analysis for the BG-Ce intermediate, where at least four
main stages of weight loss, all accompanied by endothermic effects, can be seen. These have
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the following characteristics: 30–120 ◦C (~5.0%), 120–235 ◦C (~7.9%), 235–330 ◦C (~7.8%)
and 430–680 ◦C (~25.9%). They are assigned to the following processes: volatilization of
residual solvents and adsorbed water, removal of chemically bound water, preliminary
decomposition of residual nitrates and completion of nitrate decomposition. WE concluded
that the total mass loss from room temperature to 900 ◦C is around 51.5%, while up to
800 ◦C is around 50.7%, which recommends this temperature for calcination.

The ATR-FTIR spectra recorded on both as-prepared and calcined powders are central-
ized in Figure 2. In the case of CeO2 (Figure 2a), the presence of NO3

− groups coming from
the Ce precursor is confirmed through the vibrational bands that emerged in the range of
1000–1600 cm−1. The calcination process performed at 500 ◦C led to the disappearance
of these bands, demonstrating the removal of all residues. Below 700 cm−1, an intense
vibrational band corresponding to Ce–O bonds can be observed [47]. The other small
contributions profiled between 800 and 1600 cm−1 seem to be the fingerprint of CeO2 as
well [48]. Moreover, the absorbed water molecules give two representative vibrational
bands at 1630 and 3400 cm−1.

Regarding CP-Ce (Figure 2b), the ATR-FTIR spectra indicate PO4
3− (532, 550, 1030,

1070 and 1135 cm−1), HPO4
3− (923 cm−1) and P2O7

4− (720 cm−1), respectively [49].
When it comes to BG-Ce (Figure 2c), the vibrational bands placed in the range of

800–1200 cm−1 are assigned to Si–O bonds and the band centred at 620 cm−1 to P–O
bonds, while at lower wavenumber values the contributions of Ca–O and Ce–O bonds are
found [50]. The residual groups (OH− and NO3

−) or accidentally attached entities (OH−

and CO3
2−), evident in the dried gel, are no longer present in the calcined powder [50].
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Figure 2. ATR-FTIR spectra of the dried precursors (precipitates and gel) and calcined powders:
(a) CeO2, (b) CP-Ce and (c) BG-Ce.

Figure 3 shows SEM images recorded for the powders calcined at 500 and 800 ◦C.
The CeO2 sample consists of bunches of about 100 nm in size, made up of quasi-spherical
particles with dimensions below 10 nm (Figure 3a). Their size distribution is monomodal
and extremely narrow, confirming the suitability of the precipitation method for synthe-
sizing nanoparticles with controlled diameters. The second powder prepared through
coprecipitation is CP-Ce, in its variants CP-Ce-5 and CP-Ce-8, and it exhibits a completely
different morphology. The first one is loose, with elongated fine particles, almost acicular,
whose size cannot be measured with precision but are connected in a porous and fragile
network (Figure 3c). The second one is well defined, with rounded and coarse particles
up to 100 nm in dimension, forming a 3D scaffold due to a high number of bridges that
emerged between neighbouring particles (Figure 3d). The BG-Ce sample contains rugged
particles trapped in a continuous matrix crossed by channels, with the individual blocks
being micrometric (Figure 3b).

The elemental composition was studied by EDX spectroscopy, and the spectra regis-
tered on the calcined specimens are available in Figure 4. The CeO2 powder includes Ce
and O, but C is also present due to sample fixation on carbon tape. In addition to Ce and O,
more spectral lines can be observed in the case of the BG-Ce powder, such as Si, P, Ca and
Na, in correlation with the designed composition. The difference in intensity for Ce peaks
is understandable since the concentration of Ce in CeO2 is much higher compared to its
concentration in bioglass, where it was integrated as substituent at a proportion of 5 mol%
(Figure 4a). The CP-Ce powders have a composition based on Ca, P and O, to which Ce is
added, but low in content as the shallow specific peaks suggest, a fact that is not surprising
considering its role as a dopant.
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The PL spectra recorded at room temperature and employing different excitation
wavelengths are displayed in Figure 5. A large emission band can be seen between 390
and 520 nm for the CeO2 sample, suggesting that the surface defects are prevailing. All PL
spectra obtained after excitation at various wavelengths show a strong maximum at 432 nm
and three weaker maxima around 417, 467 and 495 nm. This broad complex band can be
explained by the fact that different shapes and sizes of particles can influence the excited
charge carriers and then their energy relaxation on the crystal surface, leading to variable
photoluminescence properties [51]. In other words, if the first peak could be attributed to
the band-to-band transition (from the conduction band to the valence band), the surface
defects are responsible for the other emissions, namely electrons hopping from different
defect levels to the valence band. There are multiple defect-related contributions because
oxygen vacancies can trap electrons (one or two) or not [52,53]. Moreover, for the creation
of each oxygen vacancy in CeO2, two neighbouring Ce4+ ions are reduced to Ce3+ ions [54].
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As far as CP-Ce is concerned, the PL analysis did not provide significant information,
probably in correlation with Ce integration in the crystal lattice of calcium phosphates or a
lower degree of precipitation for Ce4+ when in solution with Ca2+ and PO4

3− ions.
According to the XRD pattern from Figure 6c, the CeO2 phase crystallized within

the glassy matrix. CeO2, as an n-type semiconductor, has a bandgap slightly above 3 eV,
depending on the processing method and morphology. Therefore, the emission band
centred at about 403 nm is most likely generated by the transfer of electrons from the Ce 4f
level to the O 2p level [52]. These results suggest that CeO2 domains that are embedded in
the bioglass phase have a higher quality in terms of defect concentration.
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Figure 6 depicts the XRD patterns of the calcined powders to determine the degree of
crystallinity and the crystalline phases. In Figure 6a, all diffraction peaks belong to the same
ordered compound, namely CeO2 with cubic structure (ICDD 00-081-0792). Analysing the
peaks’ width, it can be stated that this material has a lower crystallinity degree, based on
crystallites with small sizes (estimated at approximately 4.6 nm).
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Although a ratio between Ca and P specific to hydroxyapatite was used for the synthe-
sis, the XRD diffractograms from Figure 6b reveal the formation of a mixture of calcium
phosphates. Both at 500 and 800 ◦C, brushite (CaHPO4·2H2O) with monoclinic symmetry
(ICDD 00-072-1240), whitlockite (Ca3(PO4)2) with rhombohedral structure (ICDD 00-070-
2065) and calcium pyrophosphate (Ca2P2O7) with tetragonal symmetry (ICDD 00-081-2257)
were identified. After the treatment performed at 500 ◦C, brushite seems to be the major
crystalline phase, followed by calcium pyrophosphate, while the temperature of 800 ◦C
favoured the appearance of whitlockite. No distinct CeO2 phase was detected, which sus-
tains the idea of Ce integration as a Ce4+ ion into the crystal lattice of calcium phosphates.

In the XRD pattern related to the BG-Ce powder, available in Figure 6c, the pres-
ence of two types of crystals distributed in the glassy matrix can be observed: combeite
(Na4Ca4Si6O18) with hexagonal structure (ICDD 00-079-1089) and the same cubic CeO2
phase. The latter is more crystalline than in the previous case, with larger crystallites
(estimated at approximately 10.2 nm), due to the processing at a higher temperature. How-
ever, the other ordered component (sodium calcium silicate) has an even higher degree of
crystallinity, an aspect confirmed by the sharper and narrower diffraction peaks. In this
way, the bioglass was converted into a bioglass–ceramic made up of a continuous vitreous
matrix and two discontinuous crystalline components.

2.2. Scaffold Characterization

After electrospinning the powder-containing polymeric suspensions, fibrous scaf-
folds were achieved and subsequently characterized from a morphological point of view
(Figures 7–11). The SEM images of PCL fibres obtained from precursor solutions of dif-
ferent concentrations (10 and 15 wt%) evidenced that a lower concentration leads to at
least two families of fibres, some very thin, with an average diameter of 150 nm, and some
thicker, with an average diameter of 700 nm (Figure 7a). The higher concentration enables
the formation of coarser fibres, but more homogeneous in size, with an average diameter
of 1.5 µm (Figure 7b). All of them show a smooth surface, are arranged randomly on the
substrate (aluminium foil) and have a non-woven nature and a tendency to agglomerate,
even to stick. In the case of 15 wt% PCL the fibres are just slightly sinuous, while for
10 wt% PCL they are quite entangled, as a proof of the instability that occurred during
fibre stretching and drying. Overall, the concentration of 15 wt% is more appropriate for
electrospinning high-quality fibres of constant thickness along the entire length.

By adding CeO2 powder in the precursor suspensions, different types of morphologies
were attained, with modifications at the level of both shape and size, as can be seen in
Figure 8. Because of the ellipsoidal beads that arise, the fibres from the PCL-10-CeO2
sample no longer have a perfect cylindrical aspect, and their diameter is variable in a wide
range. In the thickened areas, the diameter increases up to 10 µm, but most of the basic
fibres in Figure 8a maintain their diameter around 250 nm. To assess the degree of loading
with mineral powder, as well as its spatial distribution, SEM images based on backscattered
electrons were also recorded, in which the bright areas are assigned to heavier elements,
Ce in this situation. Thus, CeO2 particles are visible as clusters of different dimensions
(sometimes reaching 20 µm), embedded either in the beads’ volume or inside the fibres.
Figure 8b highlights the influence of polymer concentration increasing, which triggers a
dimensional homogenization of the fibres (diameter around 1.3 µm) and a more regular
arrangement of the particles within them compared to the former situation. For the PCL-15-
CeO2 sample, the powder layout seems to be more balanced and the agglomerates smaller
in size.
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Figure 11. SEM images of the composite fibres: (a) PCL-10-BG-Ce and (b) PCL-15-BG-Ce. First
column represents SEM images based on backscattered electrons; the second and third columns
represent SEM images based on secondary electrons, at different magnifications.

Figures 9 and 10 present the results obtained when electrospinning the suspensions
containing Ce-doped calcium phosphates. As a general observation, it can be stated
that the fibres’ fabrication is affected to a larger extent by the presence of such powders,
which hinder the equilibrium between the surface tension and repulsion force, as well as
the thinning process of the polymeric jet. When the CP-Ce powders are integrated into
the 10 wt% PCL solution, the final scaffolds acquire the features of a mixture of fibres
and polymeric 3D entities, which keep a fusiform design in most cases but also adopt
irregular shapes, especially in the connection points (Figure 9a). The ratio of disordered
micrometric structures is even higher for the sample derived from the suspension with CP-
Ce-8 (Figure 10a), maybe due to the lower efficiency of breaking up particle agglomerates
during ultrasonication. However, both materials contain a spiderweb of thin fibres (150 nm
average diameter) that ensures the assembly between the coarse entities and the integrity
of the composite scaffold.

A concentration of 15 wt% PCL led to distinguishable modifications in morphology:
the thinner fibres sometimes increase their average diameter (200–300 nm), the polymeric
3D entities almost disappear, and instead of them thicker fibres or fibre sections occur,
reaching a maximum of 5 µm. Comparing the PCL-15-CP-Ce-5 sample (Figure 9b) with
the PCL-15-CP-Ce-8 sample (Figure 10b), the second is a little more homogenous from a
dimensional point of view, probably because the surface energy of the particles is lower
after calcination at 800 ◦C, and this condition affects the electrospinning process less.

According to the SEM images capable of differentiating between different atomic
numbers, the agglomerates of particles are unevenly distributed and placed mostly inside
the fibres, as well as partially embedded or attached to their surface in some cases.

The third situation is presented in Figure 11, namely the combination of PCL in
different proportions with a bioglass–ceramic powder. This powder consists of large
angular blocks that can settle at the bottom of the syringe and, therefore, the fibre loading
degree is reduced, as the backscattered-electron-based SEM images emphasize. Figure 1a
shows a small number of polymeric defects and fibres with thickness in a wide range
(200–800 nm) for the PCL-10-BG-Ce sample, while Figure 1b evidences a smooth surface
and a narrow fibre size distribution (900 nm average diameter) for the PCL-15-BG-Ce
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sample. This information is not surprising considering that a higher concentration of PCL
ensures a better control of fibre diameter (Figure 7) and provides more material, so that
thicker structures can be fabricated.

The presence of Ce in the final scaffolds was confirmed through the corresponding
EDX spectra (Figure 12). The tall spectral lines assigned to PCL (C and O) and collector
foil (Al) are accompanied by several well-defined peaks typical of Ce in the case of the
CeO2-containing samples and multiple maxima of variable intensity specific to Si, P, Na
and Ce for the samples with BG-Ce loading (Figure 12a). As it was expected, the intensity
of Ce-related peaks decreases from PCL-CeO2 to PCL-BG-Ce, since in the second case
Ce is just a dopant at a proportion of 5 mol%. The height of the maxima attributed to
Ce reduces further in the EDX spectra of the PCL-CP-Ce scaffolds (Figure 12b), which
is understandable if the integration of the rare earth in the crystal structure of calcium
phosphates happened, leading to a balanced distribution of Ce4+ ions in the entire mass, as
in the other two situations, when Ce is concentrated in a CeO2 continuous phase or isolated
domains. Au was sometimes identified as part of the elemental composition due to the
surface metallization to achieve conductivity.
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Figure 12. EDX spectra of the composite fibres: (a) PCL-CeO2, PCL-BG-Ce and (b) PCL-CP-Ce.

2.3. In Vitro Studies

In this study, both the bioactive powders and bare bioresorbable fibres were subjected
to a long-term immersion in SBF to elucidate the repercussions of such treatment, similar
to the conditions in a living organism on the morphological properties and mineralization
process. The changes were investigated with the help of the SEM images centralized in
Figure 13. The CP-Ce-5 and CP-Ce-8 powders display a reduced coverage with apatite
after SBF immersion for 28 days, visible in the form of small brighter areas in Figure 13a,b,
in correlation with their high degree of crystallinity. However, the bioglass–ceramic, which
supposes the existence of a glassy phase prone to chemical attack, is completely coated
with a thick new layer, which hides the substrate characteristics and looks like a crowding
of fluffy clouds composed of needle or foil-type structures; this morphology corresponds to
apatite, as it has been reported several times in the scientific literature [55]. This indicates
that the analysed material is highly bioactive.

Regarding the PCL fibres electrospun from the solution with 15 wt% concentration,
the corresponding images from Figure 13d indicate the initiation of the degradation process.
Thus, sometimes the shape of the fibres becomes flattened, and other time cracks and
breaks appeared. These modifications, which occurred after such a short term, validate the
possibility of accelerated degradation in the SBF environment, especially if the scaffolds
are maintained for a longer period. The degradation of fibres also suggests a weakening of
their internal structure, which may reduce the mechanical strength of the scaffolds. The
presence of cracks and discontinuities allows the SBF solution to penetrate inside the fibres,
thus hastening the degradation process by providing a higher surface area or enabling the
mineralization process by exposing the embedded bioactive phases.
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Figure 13. SEM images of (a) CP-Ce-5, (b) CP-Ce-8 and (c) BG-Ce powders and (d) PCL-15 fibres
after immersion in SBF for 28 days.

The results of the antibacterial test against E. coli, performed on all calcined powders
(Figure 14), validated the suitability of such materials as antimicrobial agents for tissue
engineering. The antibiogram of the mineral powders demonstrates that these show good
antimicrobial activity against colonization and biofilm development, with the CP-Ce-5
sample having the most pronounced antibacterial activity, followed by CP-Ce-8 and BG-Ce
samples; since the CeO2 powder was not in sufficient quantity, the inhibition zone could
not be determined (Figure 14a). The digital images show the bacterial biofilm development
capacity on the analysed materials (Figure 14b). These findings can be explained based on
Ce incorporation within the developed materials, either as a CeO2 crystalline phase or as
a Ce4+ dopant ion, occupying the sites of Ca in the crystal lattice of calcium phosphates.
Most likely, the switch between Ce4+ and Ce 3+, the transition that is the essential part of
the antibacterial mechanism and reactive oxygen species generation, happens more easily
when Ce is individually localized, not as long-range ordered domains [56].

To investigate the effect of the electrospun composite scaffolds containing 5 wt%
mineral powder on human osteoblast cells, specific cellular tests were performed and
are illustrated in Figure 15. This approach was chosen because there is information in
the scientific literature indicating that an excessive amount of oxide powder can have a
toxic effect on cells. To assess cell viability, the MTT assay was used, as can be seen in
Figure 15a. In the case of the cells grown on the investigated materials for 24 h, the cell
viability is greater than 80%, indicating that the specimens are biocompatible. When the
cells were allowed to grow for 48 h, an increase in cell viability can be observed compared
to 24 h and the control condition. Surprisingly, the results obtained at 48 h indicate that
the prepared scaffolds favour the development of osteoblasts, with the viability reaching
values between 130 and 140% for the samples PCL-10, PCL-15, PCL-10-CP-Ce-5 and PCL-
15-CP-Ce-5. Similar results were obtained for MG-63 cells cultured for 7 days on bioglasses
containing Ce [57].
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The utility of Ce-doped materials promoting bone regeneration was reported in several
studies using various cell lines. Ce-doped bioceramics reduced oxidative stress and pro-
moted the viability of MG-63 cells [58]. Morais et al. [59] reported that Ce-doped glass has
good biocompatibility, as well as cell attachment, adhesion and spreading of MG-63 cells
following 4 and 7 days of growing. Other studies also confirmed the efficiency of the meso-
porous bioactive glasses (MBGs) containing different Ce percentages, which showed good
fibroblast (L929) cytocompatibility at both 48 and 96 h, promoting wound healing [42,55].
A recent study by Varini et al. [60] indicated that MBGs have good biocompatibility for a
mouse calvaria preosteoblastic cell line (MC3T3-E1) grown for various numbers of days.
P2O5-free Ce-containing glasses exhibited good bioactivity and compatibility for murine
long bone osteocytes (MLO-Y4) grown for either 24 or 72 h [61].

Figure 15b presents the sample–cell interface images provided by optical microscopy
following 24 h of cell growing. For all experimental conditions, it can be observed that cells
retain a fusiform, bipolar shape, with an elongated cell body, comparable to the morphology
of control cells (A). The results indicate that the medium coming into contact with the
samples does not contain toxic components, allowing the cells found around the tested
materials to attach, develop and, based also on the MTT assay, survive. It is obvious that
the CP-Ce-5 powder generated the best biological properties in terms of both antibacterial
activity and biocompatibility. A similar result was shown in a previous study, in which the
optical images recorded for Schwan and osteoblast cells grown on Y- and Ce-containing
disks evidenced that the disks support attachment and growth for the osteoblasts, as
opposed to Schwan cells [62].
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Figure 15. (a) MTT assay and (b) optical microscopy images of hFOB cells in contact with (A)
control, (B) PCL-10, (C) PCL-10-CeO2, (D) PCL-10-CP-Ce-5, (E) PCL-10-CP-Ce-8, (F) PCL-10-BG-Ce,
(G) PCL-15, (H) PCL-15-CeO2, (I) PCL-15-CP-Ce-5, (J) PCL-15-CP-Ce-8 and (K) PCL-15-BG-Ce. The
images were acquired with 10× objective. The scale bar is 10 µm for all images.

3. Materials and Methods
3.1. Materials

The purpose of this work resides in the obtaining of composite scaffolds based on
mineral powders and a bioresorbable polymer. To attain it, the following reagents were em-
ployed: ammonium cerium(IV) nitrate ((NH4)2Ce(NO3)6, ≥98%, Sigma-Aldrich, Burling-
ton, MA, USA), calcium nitrate tetrahydrate (Ca(NO3)2·4H2O, 99–102%, Merck, Darmstadt,
Germany), diammonium hydrogen phosphate ((NH4)2HPO4, ≥99%, Merck, Darmstadt,
Germany), ammonium hydroxide (NH4OH, 25% NH3, Sigma-Aldrich, Burlington, MA,
USA), tetraethyl orthosilicate (Si(OC2H5)4, TEOS, 98%, Aldrich, Burlington, MA, USA),
triethyl phosphate ((C2H5O)3PO, TEP, 99%, Merck, Darmstadt, Germany), sodium nitrite
(NaNO2, 99%, Riedel-de Haën, Charlotte, NC, USA), nitric acid (HNO3, ≥65%, Fluka, Char-
lotte, NC, USA), polycaprolactone ((C6H10O2)n, PCL, Mw = 80,000 g/mol, Sigma-Aldich,
Burlington, MA, USA), chloroform (CHCl3, CF, ≥99%, Sigma-Aldich, Burlington, MA,
USA) and N,N-dimethylformamide (C3H7NO, DMF, 99.8%, Sigma-Aldich, Sigma-Aldich,
Burlington, MA, USA).
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3.2. Powder Synthesis

In the first part of this study, three types of Ce-containing powders were synthesized by
wet-chemistry methods, namely precipitation/coprecipitation and sol-gel. Both techniques
ensure superior properties in term of purity, homogeneity, particle size control and low-
temperature processing.

3.2.1. CeO2 Synthesis

To obtain 2 g of CeO2 powders, the necessary amount of Ce precursor (NH4)2Ce(NO3)6)
was solubilized in distilled water by magnetic stirring and then the solution pH was ad-
justed to 10–11 by adding NH4OH. The initial intense orange solution turned into a
yellowish suspension after precipitation. The solid was filtered, washed several times with
distilled water and dried at 60 ◦C for 48 h. The final powder was obtained after calcination
at 500 ◦C for 2 h (coded CeO2).

3.2.2. Calcium Phosphate (CP) Synthesis

The second powder was designed starting from the formula of hydroxyapatite
(Ca10(PO4)6(OH)2, HA), doped with 5 mol% Ce (Ca9.5Ce5(PO4)6(OH)2). To obtain 10 g of
Ce-doped powder, two solutions were prepared: the corresponding quantities of Ca and Ce
precursors (Ca(NO3)2·4H2O and (NH4)2Ce(NO3)6) were dissolved in distilled water, while
P precursor (NH4)2HPO4) was dissolved separately in distilled water, both by magnetic
stirring. The solutions were then mixed, maintaining the pH at 10–11 with NH4OH. The
resultant precipitate of white colour was filtered, washed thoroughly with distilled water
and dried at 60 ◦C for 48 h. The final powders were achieved after calcination at 500 ◦C
(coded CP-Ce-5) and 800 ◦C (coded CP-Ce-8) for 2 h.

3.2.3. Bioglass (BG) Synthesis

The third powder was processed by the sol-gel route, as opposed the first two, which
were prepared by precipitation and coprecipitation, respectively. Thus, starting from the
oxide composition of S53P4 bioglass, known as BonAlive® commercial products, 5 mol%
of Na2O was replaced with CeO2, leading to 53% SiO2–4% P2O5–20% CaO–18% Na2O–
5% CeO2, that, in addition to bioactivity, should also exhibit pronounced antibacterial
properties. After performing the calculations for 10 g of bioglass, Si and P precursors (TEOS
and TEP) were hydrolysed under magnetic stirring, the first one in an acidic environment
provided by HNO3. In addition, Ca, Na and Ce precursors (Ca(NO3)2·4H2O, NaNO2
and (NH4)2Ce(NO3)6) were solubilized in distilled water by ultrasonication. The first two
solutions were added over the third one, with the final mixture being homogenized for
1 h by magnetic stirring. Next, it was placed in an oven at 60 ◦C for 48 h, during which
gelation and maturation of the resulting gel took place, as well as its drying. The resulted
material was mortared and calcined at 800 ◦C for 2 h (coded BG-Ce).

3.3. Scaffold Fabrication

The previously described powders were further integrated in PCL fibres, which were
fabricated by electrospinning. At the beginning, a solvent mixture was obtained by mixing
CF and DMF in a volumetric ratio of 4:1. Then, 5 wt% powder (CeO2, CP-Ce and BG-Ce)
was added, and the resulting suspensions were ultrasonicated for 15 min. Finally, PCL
was added in a concentration of 10 and 15 wt% and dissolved by magnetic stirring for
24 h. The electrospinning process took place in an isolated chamber to be able to control
the environmental parameters, namely temperature and humidity. Thus, the parameters
were set to the following values and maintained for all experiments: 0.5 mL/h feeding
rate, 15 kV applied voltage, 15 cm spinneret-collector distance, 20 min duration, 22–23 ◦C
temperature and 45% humidity. The bare and powder-containing samples were coded
according to Table 1.
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Table 1. Sample codification and precursor suspension composition.

No. Sample Code

Precursor Suspension Composition

PCL
(g)

CF:DMF
4:1

(mL)

CeO2
(g)

CP-Ce-500
(g)

CP-Ce-800
(g)

BG-Ce
(g)

1 PCL-10

1.0

10

- - - -

2 PCL-10-CeO2 0.5 - - -

3 PCL-10 CP-Ce-5 - 0.5 - -

4 PCL-10 CP-Ce-8 - - 0.5 -

5 PCL-10-BG-Ce - - - 0.5

6 PCL-15

1.5

- - - -

7 PCL-15-CeO2 0.5 - - -

8 PCL-15 CP-Ce-5 - 0.5 - -

PCL-15 CP-Ce-8 - - 0.5 -

PCL-15-BG-Ce - - - 0.5

3.4. Physicochemical Characterization

Thermal analysis was performed from room temperature to 900 ◦C, with a heating
rate of 10 ◦C/min in air using a Netzsch STA 449 F3 Jupiter equipment (Netzsch Group,
Selb, Germany). Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR)
spectroscopy was carried out in the wavenumber range of 400–4000 cm−1, with 4 cm−1

resolution and 32 scans/sample, employing a Thermo Scientific Nicolet iS50 spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA, USA). The morphology of the gold-coated
samples was investigated by scanning electron microscopy (SEM) with a FEI Quanta In-
spect F50 microscope (FEI Company, Hillsboro, OR, USA) operated at 20–30 kV accelerating
voltage, 3.5 spot size and 10 mm working distance and equipped with an energy-dispersive
X-ray (EDX) spectroscopy probe. Photoluminescence (PL) spectra were recorded in the
wavelength range of 350–550 nm using a FL 920 Edinburgh Instruments spectrophotometer
(Edinburgh Instruments, Livingstone, UK) equipped with a Xe900 lamp. X-ray diffraction
(XRD) was conducted in the 2θ range of 20–80◦ with a 2◦/min scan speed and 0.02◦ step
size, employing a Shimadzu XRD 6000 diffractometer (Shimadzu Corporation, Kyoto,
Japan) with Ni-filtered Cu Kα radiation (λ = 0.154 nm). The average crystallite size (D) was
estimated with the Debye–Scherrer equation:

D = K·λ/(β·cos θ),

where K is a dimensionless shape factor with a typical value of about 0.9 for spherical
shape, λ is the X-ray wavelength (0.154 nm), β is the full width at half maximum (FWHM)
value and θ is the Bragg angle.

3.5. In Vitro Studies

To study the impact of immersion in simulated body fluid (SBF), small pieces of
samples were fully submerged in a solution prepared according to Kokubo et al. [63] and
incubated at 37 ◦C for 28 days. Afterwards, the samples were extracted, rinsed thoroughly
with distilled water and dried in mild conditions. The surface morphology was analysed
with SEM after gold coating.

The antibacterial activity was evaluated against a Gram-negative strain, Escherichia coli
(E. coli), in Nutrient Agar culture medium (Carl Roth, Karlsruhe, Germany). The pH was
adjusted to neutral, while sterilization was performed at 120 ◦C for 20 min. The culture
medium was distributed in Petri dishes, which were subsequently inoculated using the
depletion technique with 100 µL fresh E. coli bacterial inoculum (grown for 24 h), having an
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optical density of 0.667, measured at 600 nm, which corresponds to the McFarland standard
of 4, namely an approximate cell density of 1.2 × 109 CFU/mL (CFU—colony forming
units). The method of powder diffusion in the culture medium was applied, with 3 wells of
6 mm diameter made in the inoculated dishes and weighted amounts of sample introduced
into each well. The Petri dishes were incubated at 37 ◦C for 24 h, then photographed
and measured. The effective inhibition zone (IZeff) values were calculated by referring
to the sample mass. The experimental determinations for the antibacterial activity were
performed in triplicate and the graphic representation includes the statistical standard
deviation against the mean value.

For the biocompatibility assessment, hFOB 1.19 cells (human osteoblasts) were grown
in an incubator with 5% CO2 in a humid environment. The culture medium employed
for cell growth was DMEM/F12 (Dulbecco’s Modified Eagle Medium/Nutrient Mixture
F-12) supplemented with 0.3 mg/mL G418 (Geneticin), 10% FBS (Foetal Bovine Serum) and
1% P/S (Penicillin/Streptomycin). The samples were cut into squares with a size of 1 cm2

and UV sterilized for 15 min on both sides. Next, they were placed in 24-well plates. The
cells were detached from the culture flask and seeded on the investigated materials at a
density of 20,000 cells/surface. These were then allowed to grow for 24 and 48 h. The same
number of cells was seeded directly in the plate, representing the negative control condition.
After reaching the deadline, the cells were investigated to determine if the studied scaffolds
were biocompatible for osteoblasts.

Cell viability was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay. Metabolically active cells are able, based on NAD(P)H-dependent oxi-
doreductant enzymes, to reduce the tetrazolium (MTT) molecule, which presents a yellow
colour, to an insoluble form of formazan, which has a purple colour. The protocol used
to determine cell viability is described below. At the right time, the culture medium was
removed and replaced with a solution of 1 mg/mL MTT prepared in the culture medium
and left to incubate with the cells for another 4 h. Next, the medium was removed, and
the insoluble formazan crystals were dissolved in dimethylsulfoxide (DMSO). Finally, the
absorbance of the formazan solution was measured at 590 nm using a Mithras LB 970 plate
reader (Berthold Technologies, Bad Wildbad, Germany). The obtained values were used to
determine the percentage of viable cells according to the following formula:

Viability [%] = 100 × Asample/Acontrol,

where Asample is the measured absorbance value for the tested material and Acontrol is the
measured absorbance value for the negative control.

Indirect effects of the disks on cells grown in the wells were imaged at 24 h following
incubation using an Olympus Optical Microscope equipped with a 10× objective and
CCD camera.

4. Conclusions

By employing the electrospinning technique, fibres based on polycaprolactone (PCL)
and cerium (Ce)-containing powders were successfully fabricated. This approach allowed
the incorporation of the mineral particles into the polymeric scaffold, thus providing
additional properties or improving the existing ones. The powders were synthesized by
two wet-chemistry methods, precipitation/coprecipitation and sol-gel. The CeO2 powder
presented a cubic structure and nanometric morphology; calcium phosphate (CP) powders
doped with Ce were also in the nanometric range, but from a compositional point of view
they consisted of a mixture of different calcium phosphates in the structure of which Ce
was integrated as a dopant. The bioglass powder appeared in the form of micrometric
particles in which a vitreous phase and at least two crystalline phases (combeite and
CeO2) coexist, leading to a bioglass–ceramic. The composite materials displayed a fibrous
morphology, with the fibres having a smooth surface and different diameters, both on the
nanometric and micrometric scale. More than that, especially for the scaffolds derived
from the suspensions with a lower concentration of PCL, fusiform or irregular beads
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occurred on the fibres, which validates the conclusion that the fibres’ shape and size are
influenced by the precursor suspension composition used in the manufacturing process.
Moreover, the powders’ distribution within the final scaffolds was evaluated with the help
of SEM images obtained by the detection of backscattered electrons; these showed a less
homogeneous dispersion on large areas, with agglomerates of particles of a broad size
distribution, depending on powder type and polymer proportion.

The powders’ bioactivity and polymer biodegradability were demonstrated through
the SBF immersion test, observing a significant deposition of apatite on the bioglass and
advanced fragmentation and degradation of the polymeric fibres’ surface after exposure to
a simulated physiological environment for 28 days. The studies carried out on the prepared
mineral powders revealed that the best antibacterial behaviour was achieved for calcium
phosphates doped with Ce. To assess their applicability in the field of bone regeneration,
the bare and composite scaffolds were assessed in the presence of human osteoblast cells,
and the results confirmed that the proposed materials are well tolerated by cells and exhibit
good cell proliferation.

Considering both the biodegradability and biocompatibility properties, as well as the
antimicrobial capabilities provided by the integration of the mineral component, it can be
stated that the developed composite scaffolds are materials with potential in the field of
tissue engineering.
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