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Abstract: Salicylic acid (SA) serves as a pivotal plant hormone involved in regulating plant defense
mechanisms against biotic stresses, but the extent of its biological significance in relation to peanut
resistance is currently lacking. This study elucidated the involvement of salicylic acid (SA) in
conferring broad-spectrum disease resistance in peanuts through the experimental approach of
inoculating SA-treated leaves. In several other plants, the salicylate hydroxylase genes are the typical
susceptible genes (S genes). Here, we characterized two SA hydroxylase genes (AhS5H1 and AhS5H2)
as the first S genes in peanut. Recombinant AhS5H proteins catalyzed SA in vitro, and showed
SA 5-ydroxylase (S5H) activity. Overexpression of AhS5H1 or AhS5H2 decreased SA content and
increased 2,5-DHBA levels in Arabidopsis, suggesting that both enzymes had a similar role in planta.
Moreover, overexpression of each AhS5H gene increased susceptibility to Pst DC3000. Analysis of
the transcript levels of defense-related genes indicated that the expression of AhS5H genes, AhNPR1
and AhPR10 was simultaneously induced by chitin. Overexpression of each AhS5H in Arabidopsis
abolished the induction of AtPR1 or AtPR2 upon chitin treatment. Eventually, AhS5H2 expression
levels were highly correlated with SA content in different tissues of peanut. Hence, the expression of
AhS5H1 and AhS5H2 was tissue-specific.
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1. Introduction

The cultivated peanut (Arachis hypogaea L.) is a highly popular and widely consumed
oil crop across the globe. It is cultivated in over 100 countries [1]. However, there are
numerous types of pathogens that pose a significant threat to peanut cultivation and
overall crop yield. The control of pathogens in peanut cultivation often involves the use of
large quantities of fungicides, which can pose significant risks to human health and the
environment.

Salicylic acid (SA), also known as 2-hydroxybenzoic acid, is a plant hormone. It
serves as a mediator for plant defense responses against both biotic and abiotic stresses.
In addition, SA plays a crucial role in regulating various physiological and biochemical
processes in plants [2,3]. SA can be generated in plants via two enzymatic pathways, that is,
isochorismate (ICS), and phenylalanine ammonia lyase (PAL)-mediated pathways, which
require the same primary metabolite chorismate [2]. Studies on mutants deficient in SA
biosynthesis or signaling revealed that SA is essential to PTI and ETI in local tissue and
systemic acquired resistance (SAR) over long distances [4–6].

An increase in SA levels activates the transcription of pathogenesis-related (PR) genes
in Arabidopsis [6,7]. Plants accumulating low SA levels show decreased oxidative stress
and increased shoot and seed number, suggesting that SA has a negative role in plant
growth and development [3,8–10].
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In peanut, the root endophyte Phomopsis liquidambaris B3 effectively protected peanut
against Fusarium oxysporum by activating defense, which positively correlated with SA [11].
The biological importance of SA in peanut resistance remains deficient.

Although the dominant resistance (R) genes have been used to develop resistant
varieties through the ages, resistance mediated by a single R gene frequently lacks durability
due to the loss or mutation of the R gene’s cognate molecule (effector) of pathogens [12]. The
strategy of combining multiple R genes in one genotype, also known as “gene stacking”,
is a more effective approach for maintaining crop resistance [13,14]. Another strategy
for acquiring resistant plants is to inactivate the so-called susceptibility genes (S), which
promote infection and mediate compatible interactions with pathogens [15]. One well-
known S gene is Mildew Locus O (MLO), whose mutations are linked to resistance to
powdery mildew in many crops [16–22].

No S genes were known to confer resistance to pathogens in peanuts, but S genes are
usually conserved among plant species [23]. In Arabidopsis, the downy mildew resistant
(dmr6) mutant has increased resistance against the oomycete pathogen Hyaloperonospora
parasitica, and DMR6 was cloned as a member of 2-oxoglutarate-dependent dioxygenases
(2OGDs) [24]. DMR6 and its close homolog DLO1 (DMR6-like oxygenase1) act as partially
redundant, but distinct, suppressors of immunity [25]. Later, DMR6 and DLO1/S3H1
were identified as SA 5-hydroxylase (S5H) and 3-hydroxylase (S3H), respectively [26,27].
In the dmr6 dlo1/s3h1 double mutant, the SA level is further elevated compared with
that of the dmr6 single mutant, leading to immunity to pathogens and strong growth
retardation [25,27]. In the last few years, orthologs of the DMR6 and DLO genes have been
identified and proved to be S genes in several crops such as tomato, banana, grapevine and
rice [28–31].

This paper demonstrates the significant role of salicylic acid in enhancing peanuts’
broad-spectrum disease resistance through the inoculation of leaves treated with SA. We
subsequently characterized the primary SA hydroxylases, AhS5H1 and AhS5H2, from
peanut. The function of salicylate hydroxylases were confirmed both in vitro and in trans-
genic Arabidopsis plants. Furthermore, the significance of salicylate hydroxylase genes in
the defense response was confirmed through the detection of defense-related gene expres-
sion by applying chitin treatment. The biochemical functions of AhS5H1 and AhS5H2 were
highly similar. However, the expression of AhS5H1 and AhS5H2 in peanuts was specific to
certain tissues.

2. Results
2.1. Peanut Resistance to Multiple Pathogens Was Induced by Exogenous SA Treatment

Although SA is a plant immune signal essential for many species of plants, the role
played in peanut resistance to pathogens remained unclear. Therefore, we inoculated
peanut (Baisha1016) with multiple common peanut pathogens after treatment with 1 mM
salicylic acid at 24 hpt (hours post treatment). Plants inoculated without treatment were
used as controls.

In comparison to the control samples, it was observed that plants subjected to SA treat-
ment exhibited significantly reduced disease lesions upon exposure to Phoma arachidicola
LN1, a highly virulent strain of the peanut web blotch fungus (Figure 1a). Furthermore,
it is noteworthy to mention that the fungal biomass observed within the leaves exhibited
a decrease when compared to the control group, as depicted in Figure 1b. Early leaf spot
resistance was assessed through the application of spores via foliar spraying on plants
that were three weeks old. The control peanuts exhibited a higher susceptibility to the
Cercospora arachidicola SY7 isolate, while leaves treated with SA displayed a reduced number
of diseased spots (Figure 1c,d). In a similar vein, the plants underwent inoculation with
Elsinoë arachidis C01, a pathogenic agent known for inducing peanut scab. The observed
reduction in the number of disease spots on the leaves of plants treated with SA was found
to be statistically significant compared to the control plants. This decrease in disease spots
was also accompanied by a decrease in fungal biomass, as depicted in Figure 1e,f.
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Figure 1. Peanut resistance to multiple pathogens was induced by exogenous SA treatment. Disease
symptoms and severity statistics are shown. Disease phenotypes (a) and severity of P. arachidicola (b).
Three-week-old plants were inoculated with P. arachidicola LN1 isolate (2 × 106 conidia/mL) by
foliar spraying; evaluation of disease severity and photography taken were conducted at 7 d post
inoculation. The relative fungal biomass was evaluated by qRT-PCR using P. arachidicola 26S rDNA
and peanut AhACTIN gene (n = 8). Disease phenotypes (c) and severity of C. arachidicola SY7 (d).
Three-week-old plants were inoculated with C. arachidicola SY7 isolate (5 × 105 conidia/mL) by
foliar spraying; evaluation of disease severity and photography taken were conducted at 8 d post
inoculation. Disease numbers were determined (n = 12). Disease phenotypes (e) and severity of
E. arachidis (f). One-month-old plants were inoculated with E. arachidis. Evaluation of disease severity
and photography taken were conducted at 10 d post inoculation. The relative fungal biomass was
evaluated by qRT-PCR using E. arachidis. 26S rDNA and peanut AhACTIN gene (n = 10). Disease
phenotypes (g) and lesion lengths of Sclerotium rolfsii Sacc CH (h). Four-week-old plants were
inoculated with S. rolfsii Sacc CH isolate. A slice of filter paper containing the S. rolfsii Sacc CH
was pinned around the bottom of the stem. Lesion lengths were measured 6 d after the inoculation
(n = 15). p value evaluated using Student’s t-test is above the boxplot. Bar = 1 cm.
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It is often reported that SA promotes resistance against both local defense response
and SAR [32]. Hence, the basal stem of SA-treated and control plants was inoculated with
S. rolfsii Sacc CH, a virulent peanut stem rot strain, to investigate its important role in
peanut SAR. We observed that the lesion lengths of SA-treated plants were significantly
shorter than the control ones (Figure 1g,h). These results collectively indicate that peanut
resistance to multiple pathogens was induced by exogenous SA treatment.

2.2. Phylogenetic Analysis and Characterization of SA Hydroxylases in Peanut

In several other species of plant, orthologs of DMR6 or DLO1 regulate SA homeostasis
and broad-spectrum resistance to pathogens [27–31]. Therefore, we took into account the
necessity of screening Arabidopsis S3H or S5H homologs in peanut.

Based on conserved domains of the conserved 2-oxoglutarate-dependent dioxygenases,
we used the protein sequences of Arabidopsis S3H and S5H to blast the NCBI database
(https://www.ncbi.nlm.nih.gov/ accessed on 22 January 2022). As shown in Figure 2a,
two homologs were identified in peanut and named AhS5H1 (XP_025631840), AhS5H2
(XP_025683565). AhS5H1 displayed high similarity to Arabidopsis S3H and its close
homolog DLO2 [25,26] due to the phylogenetic analysis, and AhS5H2 was similar to
S5H [27].
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Figure 2. Phylogenetic tree and sequence alignment. (a) The alignment was colored with the
default DNAMAN color scheme according to the amino acid chemical properties. The ordering of the
sequences was based on pairwise similarity. Motifs that were important for the catalytic function were
marked by colored boxes: the HDH motif (green), the NYYPPCP motif (blue), and the WRDY/FLRL
motif (red)—specific to the DMR6 and DLO proteins. (b) The evolutionary history was inferred using
the Neighbor-Joining method. The optimal tree with the sum of branch length = 1.15622734 was
shown. The tree was drawn to scale, with branch lengths in the same units as those of the evolutionary
distances used to infer the phylogenetic tree. The evolutionary distances were computed using the
Poisson correction method and were in the units of the number of amino acid substitutions per site.
Evolutionary analyses were conducted in MEGA7.

https://www.ncbi.nlm.nih.gov/
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The open reading frame (ORF) of AhS5H1 and AhS5H2 was validated to be 1059 bp
and 1014 bp. Respectively, the amino acid sequences of AhS5H1 and AhS5H2 were 353 and
338 in length.

Figure 2b illustrates the identification of conserved patterns observed in both (2OG)-
Fe(II) oxygenases and the DMR6-DLO clade. These patterns are represented by colored
boxes and signify common motifs and specific residues. The HDH motif is responsible
for binding the catalytic iron (Fe II), whereas the NYYPPCP motif plays a crucial role in
interacting with the 2-oxoglutarate substrate. The WRDY/FLRL motif has been postulated
to play a role in the binding of SA [33]. As a result, AhS5H1 and AhS5H2 were chosen as
candidate SA hydroxylases for further study.

2.3. Identification of the Salicylic Acid 5-Hydroxylases In Vitro

To test our hypothesis, we treated peanut seedlings (Baisha1016) with 1 mM SA. As
was shown in Figure 3a,b, the expression of AhS5H1 and AhS5H2 was strongly induced at
the time period tested in contrast to the control seedlings.
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Figure 3. Identification of the salicylic acid 5-hydroxylases in vitro. Expression levels of AhS5H1 and
AhS5H2 in peanuts after SA treatment (a,b). Three-week-old seedlings were treated with 1 mM SA
in 5 mM MES buffer for 1 h, 3 h and 6 h. For the mock treatment, the seedlings received the same
volume of DMSO solvent. Gene expression was determined by qRT-PCR using AhACTIN as the
reference gene. Values are means ± SD (n = 3). Asterisks indicate statistically significant differences
compared with the corresponding mock using Student’s t-test (*, p < 0.05; **, p < 0.01). (c) HPLC
profiles of the 30 min reaction of the recombinant AhS5H1 and AhS5H2 proteins on the SA substrate.
Authentic 2,5-dihydroxyl benzoic acid (2,5-DHBA) was used as a standard. Kinetics curves (d) and
kinetic parameters (e). * nmol/mg protein/min. Km for Michaelis constant, Vmax for maximum
reaction rates, Kcat for catalytic rate constant. Kinetic parameters and curves were obtained from the
reactions at pH 6.8 and 40 ◦C for 30 min. The data are presented as means ± SD (n = 3).
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In order to elucidate the biochemical role of the two anticipated SA hydroxylases in
an in vitro setting, the recombinant proteins of AhS5H1 and AhS5H2 were isolated from
Escherichia coli and subjected to enzymatic activity assays. The enzymatic assays revealed
that both of the candidate SA hydroxylases demonstrated exclusive SA 5-hydroxylase
activities (Figure 3c,d). Figure 3e presents the biochemical parameters pertaining to the
AhS5H proteins. The observed maximum reaction rates (Vmax) for AhS5H1 and AhS5H2
enzymes on substrate SA were determined to be 12.02 ± 1.51 and 60.40 ± 6.99 nmol/mg
protein/min, respectively. The Km values of AhS5H1 and AhS5H2 were determined to
be 44.72 ± 6.95 and 190.52 ± 26.33 µM, respectively. AhS5H2 exhibited a higher level of
enzymatic activity, indicating a greater degree of robustness in its enzyme function. Based
on our collective analysis, it can be deduced that AhS5H1 and AhS5H2 serve as the primary
functional SA 5-hydroxylase enzymes in the peanut species.

2.4. Overexpression of the Candidate Peanut Salicylate Hydroxylase Genes Reduced Salicylic Acid
Level in Arabidopsis

The full-length AhS5H1 and AhS5H2 coding sequences were cloned and placed under
the Cauliflower mosaic virus 35S promoter. The obtained constructs (35S::AhS5H1-GFP
and 35S::AhS5H2-GFP) and control (35S::GFP) were transformed into A. tumefaciens strain
GV3101 to generate transgenic Arabidopsis. Two lines of Arabidopsis for each of the two
genes were obtained.

The expression of AhS5H1 and AhS5H2 was observed to be significantly enhanced
in their respective lines that were subjected to overexpression, as depicted in Figure S1.
The levels of SA, serving as the substrate for AhS5H1 and AhS5H2, exhibited a significant
decrease in comparison to control and wild-type (Col-0) plants at 40 DAG (days after
germination) (Figure 4a). Simultaneously, there was a significant enhancement in the
production of 2,5-dihydroxybenzoic acid (2,5-DHBA) (Figure 4b). The results indicated
that both AhS5H1 and AhS5H2 exhibit hydroxylase activity in plants.
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Figure 4. Phenolic accumulation of transgenic Arabidopsis plants. Accumulation of SA (a) and 2,5-
DHBA (b). The amounts of compounds were determined by HPLC. Values are given as means ± SD
(n ≥ 10). p value evaluated using Student’s t-test is above the boxplot. Prefix 35S for overexpressing
gene.

2.5. Overexpression of the Candidate Peanut Salicylate Hydroxylase Genes Enhanced Susceptibility
to Pst DC3000 in Arabidopsis

We also assessed the pathogen resistance of WT, control (35S::GFP), AhS5H1 overex-
pression lines (35S::S5H1-2 and 35S::S5H1-5) and AhS5H2 overexpression lines (35S::S5H2-7
and 35S::S5H2-9). The transgenic and wild-type plants were inoculated with Pst DC3000, a
common bacterial pathogen, by foliar spraying of a bacterial suspension on three-week-old
plants. All the AhS5H1 and AhS5H2 overexpression lines displayed enhanced susceptibility
to Pst DC3000 compared to the WT or control lines. (Figure 5a,b), which is consistent with
the phenotypes of the DMR6 overexpression lines [25,27].
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Figure 5. Disease phenotypes and severity of Pst DC3000. (a) Disease symptoms of three-week-old
Arabidopsis plants from the WT, 35S::GFP and AhS5H overexpression lines 3 days after Pst DC3000
suspension (OD600 = 0.05) infiltration. Bar = 1 cm (b) The AhS5H overexpression lines in the wild-type
background were more susceptible to Pst DC3000 than the wild-type or 35S::GFP line. CFU, Colony
forming units. The data are presented as means ± SD (n = 8). **, p < 0.01 and ***, p < 0.001 (Student’s
t-test).

2.6. The Expression of AhS5H1 and AhS5H2 Was Defense Associated

To elucidate the potential alterations in the transcription of SA 5-hydroxylase genes
during the defense response, we employed quantitative real-time polymerase chain reac-
tion (qRT-PCR) to determine the relative transcript levels in both peanut and transgenic
Arabidopsis. AhNPR1 and AhPR10 are genes that play a role in the defense mechanisms of
peanut plants, specifically in the salicylic acid (SA) signaling pathway [11]. The expression
levels of AhNPR1 and AhPR10 were observed to exhibit a statistically significant increase
subsequent to chitin treatment, as depicted in Figure 6a,b. In the interim, the transcriptional
activity of the AhS5H1 and AhS5H2 genes exhibited an up-regulated pattern during the
corresponding time period, as shown in (Figure 6c,d).

To gain more information, a set of defense-related genes, such as AtPR1 and AtPR2 [34],
were subjected to qRT-PCR analysis using six biological replicates for validation. Expression
levels were quantified in the wild-type (WT) samples, control (35S::GFP) samples, as
well as the overexpression lines of AhS5H1 (35S::S5H1-2 and 35S::S5H1-5) and AhS5H2
(35S::S5H2-7 and 35S::S5H2-9). Both tested genes exhibited clear induction in response to
chitin stimulation in both wild-type (WT) and control plant samples, when compared to
the overexpression lines (Figure 6e,f). The integrated dataset revealed that the expression
of AhS5H1 and AhS5H2 genes exhibited alterations in the response to defense mechanisms.
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Figure 6. The expression of AhS5H1 and AhS5H2 was defense-associated. Induction of defense-
related genes (a,b) and AhS5Hs (c,d) by chitin. Three-week-old peanut plants grown in soil were
treated with 100 µg/mL chitin and the same volume of DMSO solvent for the mock treatment.
Transcript level was determined by qRT-PCR using AhACTIN as the reference gene. Values are given
as means ± SD (n = 3). Asterisks indicate statistically significant differences compared with the
mock (Student’s t-test, *, p < 0.05). Average fold change in AtPR1 (e) or AtPR2 (f) expression in WT,
35S::GFP and AhS5H overexpression lines of Arabidopsis. Three-week-old seedlings was treated
with 100 µg/mL chitin. Gene expression in mock samples was set as 1 and the samples treated with
chitin were compared with their own mock samples, unless otherwise indicated. Values are given as
means ± SD (n = 6).

2.7. The Expression of AhS5H1 and AhS5H2 in Peanut Was Tissue-Specific

As indicated by the results above. The AhS5H1 and AhS5H2 were highly similar
in biochemical function and response to chitin treatment. Therefore, in order to find the
differences between the two genes, we collected the roots, stems, leaves and flowers of
peanut at the flowering stage for the detection of transcript levels.

The expression levels of AhS5H2 were highest in leaves, followed by roots, stems, and
flowers (Figure 7b). Interestingly and surprisingly, the order of AhS5H1 expression levels
was completely reversed(Figure 7a), suggesting that the expression of AhS5H1 and AhS5H2
in peanut was tissue-specific.

The determination of phenolics showed that free SA content was highest in leaves
among the tissues tested(Figure 7c), followed by roots, stems, and flowers. So was the
level of 2,5-DHBA (Figure 7d). The relationships between the expression level of salicylate
hydroxylase genes and SA content are shown in Table S2. AhS5H2 expression levels were
highly correlated with SA content (r = 0.9600) in roots, stems, leaves, and flowers. In
contrast, AhS5H1 was highly negatively correlated (r = −0.8038). It is possible that AhS5H2
prefers to be expressed in tissues with high SA content in order to exert a stable function
due to its higher Km value.
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Figure 7. Expression of AhS5Hs and accumulation of SA and 2,5-DHBA. AhS5H1 (a) and AhS5H2
(b) expression in different tissues of peanut. Roots, leaves, stems and flowers were collected from
plants grown in the paddy field at stage of flowering. Transcript level was determined by qRT-PCR
using AhACTIN as the reference gene. The accumulation of SA (c) and 2,5-DHBA (d). Values are
means ± SD (n = 3). Columns marked with different letters (a–d) indicate significant differences, as
analyzed by the SPSS software version 22.0 (Duncan’s multiple range test, α = 0.05).

3. Discussion

The roles of SA during immune responses and senescence have been widely investi-
gated in different plant species [35–39]. However, the biological importance of SA in peanut
resistance remains deficient. Our results showed that the resistance of peanuts to many
common pathogens could be induced by the SA. Therefore, the role of the SA-signaling
pathway in peanut disease resistance deserves further investigation.

Phytochemical protection can easily cause environmental safety problems. In contrast,
the acquisition of resistant materials seems more worthy of adaptation. The development
of resistant varieties typically relies on the deployment of dominant resistance (R) genes,
whose products mediate the recognition and protection against specific pathogen strains.
However, resistance mediated by a single R gene frequently lacks durability, because
pathogens can easily lose or mutate their R gene’s cognate molecule (effector) [12]. Resis-
tance is not easily overcome by combining multiple R genes in a genotype. It implies that
extra effort is needed to find more R genes [13,14]. On the contrary, it is more efficient to
look for the so-called S genes that are conserved in various species of plants [40]. No S genes
are yet known to confer resistance to pathogens in peanuts. In this work, we identified
two S genes (AhS5H1 and AhS5H2) with some similar characteristics to those previously
described in rice and Arabidopsis [25–27,30] (Figure 2). Both of the proteins (AhS5H1 and
AhS5H2) converted SA to 2,5-DHBA in vitro (Figure 3), but also showing differences in the
kinetic properties. For example, both OsS5H-1 and OsS5H-2 in rice are inhibited by the
substrate (SA), showing very low Ksi values (9.10 and 1.60 µM) [41]. In contrast, AhS5H1
and AhS5H2 were not inhibited by SA, showing a hyperbolic response when SA levels were
increased (Figure 3d). This result suggests that the role of rice enzymes in hydroxylating
SA is probably more significant at low SA concentrations, while the peanut enzymes may
have a major role at higher SA concentrations.

To further analyze the roles of AhS5H1 and AhS5H2, we generated overexpressing
lines in Columbia-0 (Col-0) background Arabidopsis. In this study, overexpression of
AhS5H1 or AhS5H2 decreased SA content, suggesting that both enzymes could have a
similar role in planta. In the meantime, the content of 2,5-DHBA was significantly increased
in the corresponding overexpression lines. The results of the phenolic content assay were
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consistent with those of the AtDMR6 overexpression lines in previous reports [24,25].
Therefore, the functions of AHS5H1 and AHS5H2 were highly similar to those of AtDMR6.

The inactivation of orthologs of AtDMR6 caused an increase in the SA content in
plants. It always confers resistance to more than one pathogen species or to most races or
strains of the same pathogen [28,31,42]. In this study, SA treatment was used to simulate
the increase in endogenous SA in peanut, and our results indicated that peanut resistance to
multiple pathogens was induced by exogenous SA. The phenotype of increased resistance
was similar to that of those mutants. Moreover, Ah5H1 and AhS5H2 overexpression lines
displayed low SA levels and were more susceptible to Pst DC3000. This also proves that the
candidate S genes, AhS5H1 and AhS5H2, are important for their effect on disease resistance.

Systemic acquired resistance (SAR) is a defense reaction that can be aroused when plants
are infected by pathogens. It is effective against bacterial, fungal and virus pathogens [43–45]
through the concerted activation of pathogenesis-related (PR) genes [46,47]. Generally,
pathogen-induced SAR relies on an activated SA-dependent pathway [43], while PR10
encodes SA-inducible PR [48]. Additionally, none expressor of pathogenesis-related genes 1
(NPR1) has been identified as an important component for the SA-regulated resistance [49].
Both AhNPR1 and AhPR10 are associated with Phomopsis liquidambaris B3-induced SA-
dependent signaling in suppressing root rot [11]. Our results confirmed that the levels of
AhNPR1 and AhPR10 expression were significantly induced after being treated with chitin.
Simultaneously, the Ah5H1 and AhS5H2 were remarkably up regulated. In Arabidopsis, the
SAR against pathogens has been associated with the accumulation of salicylic acid (SA) and
the expression of the pathogenesis-related proteins AtPR1, and AtPR2 [38]. Overexpression
of each AhS5H in Arabidopsis abolished the induction of AtPR1 or AtPR2 upon chitin
treatment (Figure 6e,f). Our study demonstrated that expression of AhS5H1 and AhS5H2
was affected during defense responses.

AhS5H1 and AhS5H2 were highly similar in biochemical function and response to
chitin treatment. However, the transcriptional levels of AhS5H1 and AhS5H2 were tissue-
specific. Compared with AhS5H1, AhS5H2 had a higher Km value. This means that a higher
content of SA is required to achieve an optimal enzymatic reaction rate for AhS5H2. The
detection of compounds also attested that the expression of AhS5H2 was higher in tissues
containing more adequate SA.

In conclusion, the results presented here demonstrate that peanut plants have two
salycilic hydroxylase enzymes. AhS5H1 and AhS5H2 were identified as candidate suscep-
tibility genes in peanuts for the first time. Both hydroxylases have similar biochemical
functions. Meanwhile, the expression of AhS5H1 and AhS5H2 was defense-associated and
tissue-specific in peanut.

4. Materials and Methods
4.1. Plant Materials and Treatments

The peanut variety Baisha1016 (Arachis hypogaea cv. Baisha1016, as a hyper-susceptible
variant to all the pathogens involved in this study) was used for all inoculations. At
28 ◦C in darkness, pre-germinated seeds were sown in a controlled climate room that was
maintained at 28 ◦C, with a 12 h photo-phase. The Arabidopsis plants were grown on
potting soil at 21 ◦C with 16 h of light and 75% relative humidity. The Arabidopsis and
peanut seedings were treated with 5 mM MES (4-morpholine ethanesulfonic acid, pH 5.8)
buffer containing 1 mM SA or 100 µg/mL chitin, and the same volume of DMSO solvent
was used as the control.

4.2. Phylogenetic Analysis

The molecular weights were deduced using Lasergene ediseq ver.7.1 software. Ho-
mologs of DMR6 and DLO proteins were retrieved from GenBank databases using protein
blast (available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 18 January
2022). The multiple sequence alignment was carried out via DNAMAN6.0, and a phyloge-
netic dendrogram was generated with MEGA 7.0 using the neighbor-joining method.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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4.3. Pathogen Inoculation

After 24 h of SA treatment, peanuts were inoculated with the pathogens, and untreated
plants served as controls. Three-week-old peanut plants were inoculated with a virulent P.
arachidicola LN1 strain by spraying the spore suspension (2 × 106 conidia/mL containing
0.1% Tween 20) as described by [50]. Disease severity was evaluated by PCR amplification
of the relative biomass. Quantification was performed with primers from P. arachidicola 26S
rDNA and the AhACTIN gene. Template DNAs from the inoculated leaves were collected
7 days after the inoculation.

To evaluate resistance against Early Leaf Spot, three-week-old peanut plants were
inoculated with C. arachidicola SY7 by foliar spraying (5 × 105 conidia/mL spores containing
0.005% Silwet L-77), in which the C. arachidicola SY7 strain was isolated from the naturally
infected peanut leaves. The number of disease spots was counted as described previously
by Zanão Júnior et al. [51].

Baisha1016 susceptible to E. arachidis served as a host. Mycelium suspension was
sprayed onto the one-month-old peanut leaves, and then incubated in a chamber under
constant light conditions at 25 ◦C for lesion formation [52]. Disease severity was also
evaluated by PCR amplification of the relative biomass. Quantification was performed
with primers from E. arachidis 26S rDNA and the AhACTIN gene. The inoculated leaves
were collected 10 days after the inoculation.

Subsequently, four-week-old peanut plants were inoculated with Sclerotium rolfsii Sacc
CH isolate grown on PDA with slices of filter paper (about 10 mm × 4 mm) on the agar for
five days. The filter paper, grown over by CH, was pinned around the bottoms of peanut.
The lengths of the disease lesion were measured at 6 dpi (days post inoculation).

The Arabidopsis inoculation protocol was performed as described by Zeilmaker
et al. [25]. To measure the growth of P. syringae pv tomato DC3000, Arabidopsis plants
at the age of three weeks were subjected to a bacterial suspension (optical density 0.05)
supplemented with 0.02% silwet L-77. Leaf samples (four plants per line; three leaves per
plant) were collected for enumeration of colonies at 0 and 3 days after inoculation.

4.4. Protein Expression and Enzyme Assays

The sequences of AhS5H1 and AhS5H2 were amplified from cDNAs of Arachis hypogaea
L. leaves. Both were cloned into a modified pGEX-tag vector with 3 × Myc at the C-terminus
of the recombinant protein [53]. After transformation of each plasmid into Escherichia coli
BL21 (DE3), protein expression was induced by the addition of 0.2 mM IPTG grown at
28 ◦C for 6 h. Recombinant proteins were purified using Glutathione Sepharose 4B (GE
Healthcare, Chicago, IL, USA).

The enzymatic activity assay was performed as described previously [30]. Briefly, a
total volume of 100 µL reaction mixture contains 5 µg recombinant protein in the reaction
buffer (1 mM 2-oxoglutaric acid, 1 mM sodium ascorbate, 0.4 mM FeSO4, 0.1 mg/mL
catalase, 5 mM DTT, 50 mM phosphate buffer at pH 6.8) with different concentrations of
SA. The reaction was incubated at 40 ◦C for 30 min and stopped by adding two volumes of
acetonitrile and boiling for 1 min. The supernatant was analyzed by HPLC.

4.5. Determination of Metabolites

The leaves and other tissues of the peanut from wild-type and transgenic Arabidopsis
plants were collected and stored at −80 ◦C. The samples were extracted with 90% aqueous
methanol containing 0.1% formic acid as described previously [54].

Chemicals were separated by a DIKMA (Beijing, China)C18 column (250 × 4.6 mm,
5 µm) on a Waters 2695 separation module (Waters, Shanghai, China). The elution condi-
tions were at a flow rate of 1 mL/min with a gradient program of 12% acetonitrile for 15 min
up to 75% in 8 min, then to 95% in 1 min, then the column was washed and equilibrated
to the initial conditions. The absorption at 230 nm was detected and concentrations were
calculated by the peak area of samples according to a standard curve.
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4.6. Reverse Transcribed Quantitative (qRT-PCR) Analysis

After removing possible DNA contamination, two micrograms of total RNA were
reverse transcribed with random hexamers and oligo(dT)18 primers using M-MLV reverse
transcriptase (Takara, Kusatsu-shi, Japan). The relative transcript levels were quantified
using SYBR Green PCR Master Mix (Takara) and normalized to AhACTIN or AtACTIN2.
The relative expression level of each gene was analyzed using the delta-delta Ct method.
Gene-specific primers used in qRT-PCR are listed in Supplementary Table S1.

5. Conclusions

Two salicylate hydroxylase genes were successfully predicted and identified within the
peanut genome, marking a significant milestone as the inaugural discovery of susceptible
genes in this particular crop. The salicylate hydroxylase exhibited analogous biochemical
functions, thereby resulting in a reduction of the SA content within transgenic Arabidopsis.
However, their expression exhibited tissue specificity.
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com/article/10.3390/ijms241814210/s1.
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