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Abstract: The paper presents a review of models that can be used to describe dynamics of lung cancer
growth and its response to treatment at both cell population and intracellular processes levels. To
address the latter, models of signaling pathways associated with cellular responses to treatment are
overviewed. First, treatment options for lung cancer are discussed, and main signaling pathways
and regulatory networks are briefly reviewed. Then, approaches used to model specific therapies
are discussed. Following that, models of intracellular processes that are crucial in responses to
therapies are presented. The paper is concluded with a discussion of the applicability of the presented
approaches in the context of lung cancer.
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1. Introduction

Despite decreasing trends concerning incidence and mortality in the male population,
lung cancer is still one of the most commonly diagnosed cancers, the leading cause of
cancer-related deaths [1], and annual cases are expected to reach 3.8 million in 2050 [2].
While 3-year relative survival increased to 31%, it is due not only to new treatments being
developed, but also to the increase in localized-stage diagnoses [3]. Therefore, finding new
and improving existing treatments for lung cancer is one of the most important challenges
in oncology.

Various types of therapy, and protocols, have been approved for the treatment of lung
cancer, and still more are either already in clinical trials or in different development stages.
The choice of therapy mode depends on the cancer type, its molecular features specific for
an individual patient, its grade, the general patient state, and other factors.

Standard cancer treatment protocols, approved by respective agencies, are developed
based on carefully conducted trial studies. For the most part, either their parameters are
rigidly defined, or there are only a few variants of protocols, concerning timing and dosage
(see, e.g., [4]). Personalized medicine aims at changing that. Designing a treatment protocol
for a trial study in new therapy tests is a much more complicated problem—and the trial
success or failure may heavily depend on the protocol applied. Mathematical modeling
may help in testing alternative protocols and estimate the variance in treatment results
stemming from intra- and intertumor heterogeneity, thus providing valuable insight even
before trials start. When personalized treatment is considered, the benefits of in silico tests
are even greater.

This work is focused on models that have been developed to describe cancer growth
and therapy effects. First, a short review of available therapies is presented, though it is lim-
ited and aimed only to provide basic background before introducing mathematical models.
Those interested in details of therapies available, under development, or considered to be
promising should refer to one of many medical reviews in the field (e.g., [5–8]). Then, a
general concept of mathematical modeling applied to describe cancer at different levels
of organization is introduced, followed by specific examples, relating to lung cancer and

Int. J. Mol. Sci. 2023, 24, 14516. https://doi.org/10.3390/ijms241914516 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241914516
https://doi.org/10.3390/ijms241914516
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6120-4424
https://doi.org/10.3390/ijms241914516
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241914516?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 14516 2 of 21

signaling pathways associated with it. The paper is concluded with remarks of applicability
of the models developed so far and directions to be pursued in future research.

2. Lung Cancer Treatment and Associated Signaling Pathways
2.1. Treatment Options

The recommended treatments for lung cancer include, among others, surgery, ra-
diotherapy, chemotherapy, various types of targeted therapy or immunotherapy, and a
combination of these approaches. Details of the protocols are publicly available, e.g., [9–11].
Each of the therapy types has enormous literature devoted to it, dealing with efficacy,
side effects, particular therapeutic agents, intracellular signaling, and regulatory networks
involved in response to treatment, etc. This section lists the types of treatment that are
considered in mathematical models described farther in the text.

Surgery is most often recommended for early-stage tumors. Though it may be re-
garded as a standard procedure, it is still a subject of ongoing research that is focused on
determining the optimal resection area [12]. Computational methods are used for image
analysis, used to support image segmentation and determine the tumor boundaries. Math-
ematical models of cancer growth and its response to treatment do not take it into account
explicitly, and therefore, this type of treatment is not dealt with in this paper. Image-guided
thermal ablation, also used in lung cancer treatment [13], is omitted for the same reason.

Chemotherapy remains to be another widely used option, for both NSCLC [14] and
SCLC [15] subtypes. Though a combination of chemo- and immunotherapies (with a shift
towards the latter) has been gaining increasing interest in recent years, chemotherapy is still
regarded as a necessary treatment mode, needed even if targeted immunotherapy is avail-
able [16]. It is also used in palliative therapy, as increasing survival times due to reduced
chemotherapy protocols have been reported, for treatment that does not involve very early
palliation [17]. It is worth noting that the question of reduced dosage and its benefits have
been the subject of research for many years in the context of metronomic chemotherapy [18].
However, even though new drug agents are developed to be used against lung (and other)
cancer, chemotherapy efficacy is hampered by drug resistance that is evolved by cancer
cells to escape treatment. There are many different mechanism of such resistance [19,20],
and learning them requires gaining insight into their molecular context, thus opening new
areas to mathematical modeling that supports molecular biology research.

Radiotherapy constitutes the third standard treatment type in fighting many cancer
types, including lung cancer [21–24]. It comprises a large group of treatment options,
including external beam radiotherapy, stereotactic body radiation therapy, brachytherapy,
and stereotactic ablative brachytherapy. Of these, stereotactic body radiation therapy
(SBRT) is the standard of care for inoperable early-stage [25] or oligometastatic NSCLC [26].
There is an ongoing debate whether stereotactic radiotherapy yields better results than
other forms of treatment, with some papers reporting its advantage (e.g., [27,28]), while
other claiming otherwise (e.g., [26,29]). It seems that the conclusions strongly depend on
the characteristics of patient groups, and mathematical modeling might help in explaining
these discrepancies. Sadly, comprehensive modeling studies comparing the effects of
different radiotherapy options hardly exist.

As in chemotherapy, cancer cells may develop resistance to it [30], and similarly,
learning molecular mechanisms behind it may lead to the development of new combined
treatments of better efficacy [31].

Both chemo- and radiotherapy belong to the family of nontargeted therapies, as are
less common options, such as radiofrequency ablation, microwave ablation, cryoablation [13],
or photodynamic therapy. While the current trend is to develop targeted and personal-
ized medicine, still much effort is directed toward increasing the effectiveness of existing
agents [32] and limiting the damage of healthy cells through localizing the area of ther-
apy actions [6].

In recent years, targeted therapies and immunotherapy have gained increasing popu-
larity in the treatment of various types of cancer, including lung cancer [33,34]. A query
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for lung cancer immunotherapy in the PubMed database returns over 2300 articles pub-
lished in the last year alone. The options range from antibody–drug conjugates (ADCs),
PARP inhibitors, and tyrosine kinase inhibitors to immune checkpoint inhibitors, to name
only a few. Additionally, immunotherapy is used together with other forms of treatment,
including radiation [35]. Immunotherapy has also brought back antiangiogenic treatment,
disregarded for some time as the one that did not fulfill its promise, as an important
component in combined therapies [36,37].

2.2. Sample Molecular Players Involved in Tumor Response to Treatment

Molecular biology coupled with bioinformatics methods support oncology in two
different aspects. First, they provide tools for finding new biomarkers of cancer of a
specific type. Second, they help to unravel regulatory networks and signaling pathways
that are behind carcinogenesis or cancer response to treatment, with respect to cancer
metabolism, DNA damage detection, and repair mechanisms as well as overcoming cell
cycle checkpoints [38]. That, in turn, facilitates the development of better treatment proto-
cols and overcoming treatment resistance. This issue is particularly important in targeted
and immunotherapies.

In the past, arguably most research efforts were directed at p53 and NF-κB associated
pathways, as they are involved in processes activated by cells to minimize damage to
important cellular targets caused by radio- or chemotherapy [39]. Jak/STAT pathways,
utilized in many intracellular processes, are also investigated in the context of anticancer
therapies [40]. Wnt and Notch signaling and EGFR were also investigated in much detail,
as they are involved in epithelial–mesenchymal evolution, important for metastasis [41].
In the context of lung cancer, it is particularly important, as advanced NSCLC is likely to
metastasize and the presence of distant metastases is one of the most predictive factors of
poor prognosis [42]. However, other pathways, specific for particular resistance mecha-
nisms, gained a lot of interests in recent years. Below, only a few examples are mentioned.
An excellent thorough review can be found in [43].

Of the of molecular players involved in resistance to radio- or chemotherapy ABC
family transporters, EGFR, MAPK, PI3K/Akt, PTEN, NRF2, BCL-2, and FOXF1 are the
most often considered subjects of research [43,44]. More and more microRNAs are found to
be responsible for radio- or chemoresistance as well as altering responses to immunother-
apeutic actions [45,46]. This alteration can be also used for the benefit of anticancer
therapies [47]. On the other hand, EGFR mentioned above in the context of therapy re-
sistance is studied extensively as a major factor in immunotherapy using EGFR-tyrosine
kinase inhibitors (TKIs) [48]. TLR is considered to be a convenient sensitization target in
immunotherapy [49].

The brief outline given above shows an enormous scope of research needed to cover
the area. However, much more work is needed to design alternative protocols that would
take into account individual responses to treatment and determine synergistic or antag-
onistic effects with other forms of anticancer therapy. As these depend on intracellular
processes activated during interaction between cancer and immune cells, the dynamics
of these processes must be determined, and the heterogeneity of cellular responses must
be taken into account when trying to predict the treatment outcome for specific protocols.
Mathematical models allow for addressing these issues. Simulation provides convenient
means to test alternative protocols, and analysis of stationary points of cell population
models facilitates answering questions about conditions of eradication of cancer cells,
containment of tumor size under a given threshold, relapse, etc. Additionally, models of
signaling pathways associated with cancer cell responses to treatment may provide hints
about yet-to-be-discovered mechanisms controlling them. Subsequent sections introduce
mathematical modeling in the context of biomedical research summarized above.
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3. Modeling Cancer Growth and Response to Treatment at Different Levels

The term model is ambiguous and, even in the field of cancer research, may have
various meanings subject to the context it is used in. For experimentalists, an animal, in
vitro, or a 3D model (e.g., [50]) of a disease means an organism or cell culture, studied to
gain knowledge about progress or treatment responses of this disease in, e.g., a human.
Statistical models are employed, e.g., to analyze high-throughput data or the survival of
patients or generate artificial data if real-life data are not available. Graph models are used
to represent structures and relations, like a structure of a regulatory network or binding
site affinity. In this paper, models of dynamics of processes are considered, at either a
cell population/tissue (cancer growth) or intracellular (signaling pathways, intracellular
responses to treatment) levels. In this section, basic modeling concepts are introduced,
without providing specific details or complex expressions that may appear in the equations.

3.1. Cancer Growth

Three main approaches are most often used to model tumor growth and its response
to treatment: ordinary differential equations (ODEs), partial differential equations (PDEs),
and agent-based methods (ABMs). The latter approach does facilitate only computational,
simulation-based analysis, while the first two make it possible to use formal analytical
methods that allow for determining some properties of the systems without making a priori
assumptions about parameter values. Despite that, agent-based methods are increasingly
popular, as the aforementioned advantage of ODEs and PDEs disappears for systems too
complex to apply effectively analytical approaches.

ODE models describe dynamics of cancer growth in terms of tumor volume or density,
or number of cells or concentrations of cells or molecular species. In some cases, variables
representing cells or tissues other than cancerous are included, but their meaning is anal-
ogous. If N(t) = [N1(t), . . . , NR(t)]T denotes a vector, representing types of cells taken
into account in the model, U(t) = [U1(t), . . . , UM(t)]T denotes a vector whose elements
represent different therapy modes, and X(t) = [X1(t), . . . , XK(t)]T represents a vector of
other variables, e.g., concentration of nutrients, oxygen, and cytokines, all at time t, then
the most general form of these equations is as follows:

dN
dt

= f (N(t), X(t), U(t))− g(N(t), U(t), X(t)) + h(N(t), X(t), U(t)), (1)

dX
dt

= p(N(t), X(t), U(t))− q(N(t), X(t)), (2)

where f (.) = [ f1(.), . . . , fR(.)], g(.) = [g1(.), . . . , gR(.)], h(.) = [h1(.), . . . , hR(.)],
p(.) = [p1(.), . . . , pK(.)], and q(.) = [q1(.), . . . , qK(.)] denote growth, therapy effect on
cells, flow between compartments representing different cell types (if applicable), produc-
tion, and degradation (or utilization), respectively. While the notation above is the most
general, with functions f (.), g(.), p(.), and q(.) that may depend on all possible model
variables, in particular models, any of them depends on just either one or two of N(t),
U(t), and X(t). Different forms of these functions are considered, depending on model
assumptions, therapy type, and variables taken into account (see, e.g., [51] for a general
introduction to these models).

Functions hi(.), are usually scalar products of a vector of parameters ai and
vector N(t):

hi(N(t), U(t), X(t)) = ai · N(t) (3)

with parameters that may depend on drugs, i.e., ai = ai(U(t), e.g., in the case of chemother-
apy involving chemostatic drugs or recruitment of quiescent cells back to the G1 phase of
the cell cycle.

Three basic forms of growth function are used. The simplest one is the exponential
growth, which, under the simplifying assumption that the growth rate is not affected by
nutrient availability or molecular concentrations of any molecule types in the cell neigh-
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borhood, or by therapy (i.e., therapy does not affect cell cycle), takes the following form:

f (N(t), U(t), X(t)) = ρ1N(t), N(0) = N0. (4)

As the assumption about growth independence on therapy or nutrients is an oversim-
plification, the model can be changed so that growth rate is not constant ρ = ρ(X(t), U(t))
(see [51] for such model variants). Alternatively, logistic or Gompertzian growth is as-
sumed, which, in their simplest forms (once again, assuming growth independence on
therapy or nutrients, with similar remarks as those given for exponential growth), are as
follows, respectively:

f (N(t), U(t), X(t)) = ρ2N(t)
(

1− N(t)
K

)
, N(0) = N0, (5)

f (N(t), U(t), X(t)) = −ρ3N ln
N
N0

, N(0) = N0. (6)

In (4)–(6), ρi and K represent growth rates and so-called carrying capacity (the latter
limiting maximum population size) and are the model parameters.

Production functions in (2) are either explicit functions of time, if they represent an
explicit input to the system (then, usually, pi(N(t), X(t), U(t)) = Ui(t)), or usually given
by linear or Michaelis–Menten–type expressions assuming that they are produced by cells
in the population, i.e.,

pi(N(t), X(t)) = ∑
i

ki Ni(t), (7)

or

pi(N(t), X(t)) = ∑
i

ki1Ni(t)
ki2 + Ni(t)

, (8)

where ki, kij are model parameters.
Depending on its interpretation, the function q(.) in (2) takes usually either a linear or

bilinear form. If it represents natural degradation, then the linear term is used, i.e.,

qi(N(t), X(t)) = kdeg_iXi(t). (9)

If the function q(.) represents utilization, or uptake, of molecules by cells in a popula-
tion, then bilinear or Michaelis–Menten–type expressions are used, i.e.,

qi(N(t), X(t)) = ∑
i

∑
j

kijNi(t)Xj(t), (10)

where ki are model parameters, or

qi(N(t), X(t)) = ∑
i

∑
j

kij1Ni(t)Xj(t)
kij2 + Xi(t)

. (11)

3.2. Therapy Modeling at the Cancer Cell Population Scale
3.2.1. Surgery

As mentioned before, surgery itself is not modeled explicitly. If a model is to describe a
case in which cancer grows first and then resection takes place, followed by some adjuvant
therapy, it can be represented by a switch in Ni value at surgery time, where the previous
value is replaced by its fraction µNi(µ ≤ 1), sampled from a priori assumed distribution
(µ = 0 would mean not leaving a single tumor cell behind, and µ = 1—completely ineffective
surgery). Otherwise, the analysis starts at t = 0 representing the moment after resection,
with an initial condition N(0) that represents tumor that remained after the procedure.

The same approach might be applied for modeling image-guided thermal ablation,
which is another treatment.
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3.2.2. Chemotherapy

Chemotherapy effects are most often modeled following Skipper’s laws [52], stating
that the relationship between dose and tumor regression is linear logarithmic. That leads to
the following gi(.) form in (1), assuming a single relation between subpopulation i and the
drug j, whose dose at time t is denoted by Uj(t):

gi(N(t), U(t), X(t)) = cijNi(t)Uj(t), (12)

or, in a more realistic case, when pharmacokinetics (PK) is taken into account, e.g., in its
simplest form:

gi(N(t), U(t), X(t)) = cijNi(t)cj(t), (13)

where cj(t) denotes local concentration of drug affecting tumor, which is the solution to the
following PK equation:

dcj

dt
= Uj(t)− kcj(t), cj(0) = 0. (14)

Despite many other approaches existing in the literature, the one given by (14), or
its modifications that take into account pharmacodynamics (PD), shown below, seem to
be prevalent.

When a combination of drugs is applied, the approach used depends on the drug
types. If each of them targets cells in a different phase of the cell cycle; then the equations
given above hold for compartments representing subpopulations in the specific phase and
respective drug agent. If they may affect cells of the same type, their joint effect (additive or
synergistic) must be considered. For example, in [53], the combined therapy effect for two
drugs is described as a sum of their impact on the tumor cell population, but each drug’s
effect takes into account a possible synergy between them:

gi(N(t), U(t), X(t)) = N(t)S3_1(t) + N(t)S3_2(t) (15)

where the individual drug’s effects S3_i(t) are the solutions of the set of three ODEs,
representing both PD and PK:

dS1_i
dt

=
1
τi
·
(

Kmax_ic
γi
i (t)

cγi
i (t) + (Ψ · KC50_i)

γi
− S1_i

)
, (16)

dS2_i
dt

=
1
τi
· (S1_i − S1_i), (17)

dS3_i
dt

=
1
τi
· (S2_i − S3_i), (18)

where Kmax_i, ci(t) KC50_i, and γi denote the maximum killing rate constant, the effective
drug concentration in the tumor neighborhood, the concentration that induces 50% of
the killing capacity, and the Hill coefficient, respectively, for the i-th drug. S1_j and S2_j
(j = 1, 2, 3) represent hypothetical signal transduction compartments for each drug that
introduces a time delay in the downstream pharmacodynamic response, and τj denotes the
mean transit time from one compartment to another. A possible sensitization to one drug
by another drug’s action is represented by the Ψ parameter (for Ψ ≤ 1, the drugs work in a
synergistic way; for Ψ = 1, their effect is additive; and for Ψ ≥ 1, they are antagonistic). A
good review of drug synergy modeling can be found in [54].

3.2.3. Radiotherapy

Radiation impact on cell population is usually taken into account in the form of the
so-called linear quadratic (LQ) model, first formulated in [55] and still widely used today,
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either as originally devised or with some modifications. The cell loss rate in that model is
given by the following relation [56]:

gi(N(t), U(t), X(t)) = (αd + βd2)N, (19)

with d representing irradiation dose and α, β being LQ model parameters. However,
actual radiation doses, represented by the control variable U(t), are introduced into the
model in a different way than in the modeling of chemotherapy protocols, where that
variable represents an actual chemotherapy protocol. Instead of explicitly using U(t) as a
series of impulses representing subsequent irradiation fractions, it is recalculated into the
biologically effective dose (BED) [57]:

d = ndi

(
1 +

d
α/β

)
− ln

(
2(T − Tk)

αTp

)
, (20)

where n, di, T, Tp denote the number of radiation fractions, a single dose in (Gy), the overall
length of a radiation cycle, and tumor population doubling time in (days), respectively. It
is assumed that the repopulation starts after Tk days, the time delay needed to complete
DNA damage repair, caused by the irradiation. Then, d is used in the model as a constant
throughout the whole period of the radiation cycle. A brief review of modifications of that
basic model can be found in [58].

The LQ model does not work well with high radiation doses, characteristic for stereo-
tactic body radiation therapy. Among different approaches proposed to deal with that
problem, the so-called microdosimetric kinetic model (MKM) [59] gained the largest fol-
lowing. In [60], it was merged with a compartmental ODE model, in which variables
corresponded to active tumor cells, resting cells, and nondividing cells. The dynamics of
the subpopulations were modeled similarly as for the LQ model, described above. How-
ever, the parameters corresponding to the radiation-induced death were not constant but
calculated using the MKM approach.

It should be noted that mathematical modeling supporting radiotherapy is a much
broader topic than indicated by the considerations given in this section. For example,
methods developed for image analysis focused on either diagnostics or beam-guidance
purposes [61], or more detailed dosimetric models [62] have been omitted, as they would
call for a separate review paper.

3.2.4. Antiangiogenic Treatment

The modeling of the antiangiogenic treatment requires taking into account vasculature
growth, in addition to cancer growth. To keep notation consistency throughout this paper,
let this be described by N2(t), with N1(t) describing cancer volume in the general vector
N(t) = [N1(t)N2(t)]. Then, the simplest model would include the following growth
functions [63]:

f1(N(t), U(t), X(t)) = −ρ3N1 ln
N1

N2
, N1(0) = N10, (21)

f2(N(t), U(t), X(t)) = k1N1 − k2N2N2/3
1 , N2(0) = N20. (22)

The function f1(.) comes from the application of the Gompertz growth given by (6) but
with the maximum tumor size limited by the vasculature N2(t) available. The function f2(.)
accounts for the release of vasculature growth factors (first term) and inhibitors (second
term) by tumor cells. Since the antiangiogenic drugs do not affect cancer cells directly,
the therapy effect given by g1(N(t), U(t), X(t)) = 0. The impact of the antiangiogenic
treatment on the vasculature is calculated in a way similar to the chemotherapy effect in (12):

g2(N(t), U(t), X(t)) = c2N2(t)U(t), (23)
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where U(t) represents antiangiogenic drug concentration.
There are many versions of this model, utilizing logistic instead of Gompertz cancer

growth or slightly different expressions representing tumor-induced vasculature growth
(see their analysis in [64]).

3.2.5. Immunotherapy Models

Due to the increasing interest in immunotherapies, many mathematical models have
been developed recently in addition to those tumor–immune interactions proposed much
earlier. New models usually describe combined therapies, where immunotherapy is one of
the modalities used. The simplest model of tumor–immune interactions is based on two
variables, N1 and N2, representing tumor and immune effector cells, respectively (once
again, the original notation is changed here to maintain consistency with the one used
throughout this paper), and is based on the predator (immune cells)–prey(tumor) models.
The tumor growth function can be any of (4)–(6), and the loss of tumor cells due to their
interactions with immune effector cells is given by

g1(N(t), U(t), X(t)) = k1N1(t)N2(t), (24)

with k1 being the model parameter. Since the effector cells are supposed to be activated by
tumor cells, their growth rate function is given by

f2(N(t), U(t), X(t)) = k2N1(t). (25)

Introducing therapy in that model is straightforward—if it is based on the injection
of immune effector cells, then an additional term U(t) is added in the above equation,
representing it (e.g., in [65]).

f2(N(t), U(t), X(t)) = k2N1(t) + U(t). (26)

The loss rate of the immune effector cells is either assumed to be linear
g2(N(t), U(t), X(t)) = p1N2(t) or takes into account an additional term, describing their
utilization in the interaction process [66]:

g2(N(t), U(t), X(t)) = p1N2(t) + p2N1(t)N2(t). (27)

Other models take into account rate-limited tumor–immune interactions, resulting in
the loss of tumor cells given by [67]

g1(N(t), U(t), X(t)) = k1

(
N2/N1

k2 + N2/N1

)
N1(t). (28)

More complex models distinguish different types of immune cells [68], separate com-
partments, and additional phenomena such as time delays, or include signaling molecules
that mediate tumor–immune interactions, represented by separate model variables X(t),
leading to models in the form given by (1) and (2). This, in turn, leads to population-
level models of targeted therapies like in [69], where the vector X(t) of concentrations
of molecules taken into account consists of four components, representing free fibroblast
growth factor receptors, their active dimer complexes, programmed cell death protein 1
(PD-1), and programmed death-ligand 1 (PD-L1). Production and degradation rates in (2)
are nonlinear functions. For example, if X− 1(t) and X2(t) denoted concentrations of free
fibroblast growth factor receptors and their active dimer complexes, respectively, then cor-
responding functions in (2) would take the following form (for more details, and remaining
functions, see [69]):

p1(N(t), U(t), X(t)) = k1X2
1 + k2X2 + k3N1, (29)
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q1(N(t), U(t), X(t)) =
c1N2

1 + c2X2/N1
. (30)

As that model accounts for programmed death-ligand 1 (PD-L1) blockade, it includes
a component of targeted therapies, in which specific molecules are used to activate or
inhibit specific molecular processes. Since targeted therapies involve taking advantage
of knowledge of intracellular signaling pathways and regulatory networks, they employ
models briefly described in the subsequent sections.

A good review of immune and targeted therapy models can be found in [70].

3.2.6. Models of Combined Therapies

In most cases, models of combined therapies are created by merging models of their
components. For example, when radiochemotherapy is considered, the therapy effect,
described in (1) by the function g(.) is a sum of terms given by (12) and (19), i.e., [71]:

gi(N(t), U(t), X(t)) = k1c(t)N(t) + k2(αd + βd2)N(t), (31)

where U(t) = [U1(t)d], representing chemo- and radiotherapy components, with c(t) related
to U1 dose by the PK model (13) and d being the biologically effective dose defined by (20).

For chemoimmunotherapy, a separate variable representing drug concentration is
added, together with PK equations and respective terms describing the chemotherapy
effects, exactly as in a pure chemotherapy model [72,73]. The same is true for combined
radio- and immunotherapy [74,75].

Model (31) does not take into account synergistic or antagonistic effects of one therapy
on another in combined therapies. Though some papers claim that a possible interac-
tion between chemo- and radiotherapy may be neglected [71], other works account for
a chemotherapy-induced sensitization of cells to concurrent radiation, e.g., through the
modification of the LQ model parameters [76]. Other modeling works focus on other
sensitization approaches, e.g., thermal radiosensitization [77].

3.2.7. Therapy Resistance and Metastasis

Therapy resistance is usually incorporated in the model by introducing separate vari-
ables, representing sensitive and resistant (or partially resistant) cells, and differentiating
therapy functions in respective equations. The modification of the g(.) function usually con-
sists in multiplying the function that represents tumor cell loss for a sensitive population by
a factor γ ∈ [01], where the smaller γ is, the stronger therapy resistance is exhibited. Such
approach is used in models dealing with any therapy type, describing chemoresistance or
radioresistance or resistance to immune checkpoint inhibitors in lung cancer [78].

While the resistance was quite often analyzed in the context of a single type of therapy,
nowadays, it is dealt with using an alternative modality meant to overcome it (e.g., an-
tiangiogenic and chemotherapy [79]), leading to the models of combined therapies. Other
approaches are based on the analysis of intracellular regulatory pathways and specific
signaling pathways involved in therapy resistance mechanisms [80], and the models used
to deal with it are quite often multiscale, agent-based or hybrid models mentioned farther
in the text.

Similarly, metastasis is quite often incorporated by adding separate compartments
representing these sites, and flows from primary to metastatic compartments, thus fitting
into the general model given by (1) and (2) [81]. Parameters for metastatic compartments
are usually different from those for primary tumor, accounting for their partial or total
therapy resistance or more aggressive growth. Another approach might involve using
partial differential equations, as described in the subsequent section.

3.3. PDE Models

The main drawback of ODE models is not taking into account the heterogeneity of
tumor cells with respect to their cell cycle length and responses to treatment. To some
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limited extent, PDE models may help overcome it. Using a PDE-based approach makes it
possible to take into account spatial effects in addition to temporal ones, cell age structure,
different levels of therapy resistance, and even metastasis.

In majority of cases, these models are built upon reaction–diffusion–chemotaxis
equations [82]:

∂N
∂t

= f (N)−∇ · (Nχ(X)∇X) +∇ · D∇N, (32)

∂X
∂t

= p(X, N) +∇ · DX∇X. (33)

where Nχ(X) denotes a function of attractant concentration that drives the chemotaxis,
while D and DX denote diffusion coefficients for cells and attractant, respectively.

Drug resistance can be taken into account in a PDE modeling framework by associating
resistance with a continuous variable x ∈ [0, 1], with x = 0 representing a sensitive
phenotype, while x = 1—a totally resistant one. Then, denoting by N(t, x) the density of
cells at time t and with phenotype x, the population dynamics can be described by the
equation similar to (1), but in a PDE form [83]:

∂N
∂t

= f (N(t), U(t), X(t))− g(N(t), U(t), X(t)), (34)

where the loss function g() depends on a phenotype in a manner given by a function d(.)
(which may take different forms, subject to model assumptions):

g = d(x, U(t))ρ(t)N(t, x) (35)

and

ρ(t) =
∫ 1

0
N(t, x)dx (36)

An interesting application of PDE can be found in [84], where the number of metastatic
sites is not an integer but a continuous variable ρ(x, t) (colony size distribution), denoting
a definite number of metastatic tumors of size from x to x + dx. Its changes in time are
described by the following PDE:

∂ρ(x, t)
∂t

+
∂g(x)ρ(x, t)

∂x
= 0 (37)

with initial and boundary conditions given by

ρ(0, x) = 0 (38)

g(1)ρ(1, t) =
∫ ∞

1
β(x)ρ(x, t)dx + β(xp(t)). (39)

In [84], the growth rate g(x) was assumed to be a Gompertzian, but depending on
model assumptions, it could be any of the functions given by (4)–(6).

The emission rate β(x) was assumed to take the following form:

β(x) = mxα (40)

The growth of primary tumor xp(t) can be described by the general form given by (1),
though in the original work [84], no therapy-related component was given.

The examples given below show that the PDE approach makes it possible to overcome
some drawbacks of ODE modeling, by allowing for representing the heterogeneity of
cancer cells and spatial effects. However, it is still a deterministic modeling framework and,
thus, cannot capture stochastic phenomena that arise from tumor growth and treatment.
To overcome that, agent-based models (or hybrid models) are used.
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3.4. Agent-Based Models and Multiscale Modeling

Agent-based modeling (ABM) is a computational approach that uses the so-called
agents representing individual cells or cell subpopulations, usually distributed on a 2D
or 3D spatial grid. Model rules determine interactions between them and between agents
and molecular species that might be also present in the grid (such as oxygen and nutri-
ents), affecting agents’ discrete states (e.g., proliferation, death, release of communication
signals) [85]. The transport and utilization of theses molecular species are modeled either
by separate agents or by means of PDE in space superimposed on the grid. Since each
agent may behave in a different, stochastic-driven way, the heterogeneity of cancer cells is
naturally represented, which is one of the most important advantages of this approach.

To illustrate the concept of the ABM approach, let us consider a relatively simple
example of 2D tumor growth that depends on oxygen, nutrients, growth factors, growth
inhibitors, and killing agents that happen to be in its neighborhood. Let each cell grid
represent a small homogenic tumor cell subpopulation (an agent) that can be in one of
several states, e.g., proliferating, with a stopped cell cycle and trying to repair DNA damage,
senescent, necrotic, apoptotic, or empty. Additionally, it might be described by a vector of
additional features, such as the cell cycle phase and density (to be used by rules that are
used to decide if cells in the subpopulation divide, thus increasing the agent density), or
therapy resistance level. The agent can change the state subject to a set of rules that define
the influence of neighboring agents and concentrations of all factors that affect it (for a
neighborhood that needs to be defined—Figure 1). To take the latter into account, a separate
agent grid is created, in which each agent represents a vector of local concentrations of
these factors. A separate list of rules needs to be defined to describe how the concentrations
change, i.e., how the state of each agent in the second grid changes. These rules may
describe, e.g., diffusion-led concentration changes, or the release or uptake of molecules by
the agents in the first grid. Initial conditions define the state of each agent in both grids.
Additionally, border conditions may be used to not only introduce the necessary parameters
for running a simulation, but also introduce a therapy-related input, e.g., chemotherapeutic
agents or immune cells.

Once all rules and parameters have been defined, a simulation starts, showing spa-
tiotemporal tumor growth and its response to treatment. There are various procedures
of updating the agents’ states (synchronous and asynchronous constitute an example of
possible approaches). The simplest one would involve calculating a new state for each
agent in the first grid, starting from the upper left corner and moving to the right and then
to the next row, which would be followed by an update of the second grid. Snapshots
of the grid in a simulation may be then compared with medical image data, such as CT
or MRI scans. To compare this approach with those based on differential equations, the
total number of cells in respective subpopulations must be calculated from the densities
characterizing the agents. The length of a simulation is chosen arbitrarily, or the simulation
is run until the steady state is reached (i.e., the first grid does not significantly change from
one iteration to another). This includes also the case when the grid is composed of the same
tumor cells, since the grid size does not allow the tumor to grow further, or with dead cells.

It should be noted, that at least some of the rules of state change are probabilistic, which
means that one needs to run multiple simulations to be able to draw meaningful conclusions.

If the agents represent individual cells and their behavior is determined by rules
based on the description of the dynamics of intracellular processes, they are often referred
to as hybrid or multiscale models. Such models enable the prediction of tumor growth
under given molecular properties, microenvironment conditions, and drug PK/PD pro-
file. Various frameworks have been developed in this area, including discrete dynamic
network models [86].
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(a) (b)

Figure 1. Main concept of ABM. The upper and lower panels represent the agents and the supplemen-
tary grids, respectively. (a) The agent represented by the red element changes its state according to the
set of rules that define interactions with neighboring agents (light arrows) and the impact of elements
whose concentrations define the state in the supplementary grid (black arrows). Once the new state
for each agent is defined, then (b) concentrations in the supplementary grid are updated, according
to the rules defining the impact of agents in the neighborhood (gray arrows) and concentrations in
the neighborhood (black arrows).

ABM or hybrid models found multiple applications in modeling cancer growth, cancer
vascularization, and its response to treatment, including chemotherapy [87], radiotherapy [88],
antiangiogenic [89], immunotherapy [90,91], to name just a few examples.

Despite the popularity of these methods, their two main drawbacks should be stated:
lack of analytical methods for a qualitative analysis of such models and large computational
burden for large grids.

3.5. Changing the Perspective from a Tumor in a Single Patient to a Patient Population

It should be emphasized that any of the approaches described above refer to modeling
cancer growth and response to treatment for a single patient. Tuning parameters for
these models constitutes a very difficult and delicate task due to lack of adequate, dense
measurement data. Bioimaging data are usually available (if they are available at all) for two
time points (before and after treatment). Though there is a lot of research into biomarkers
that could provide information about the state of the disease, it is not possible yet to
use them to determine the size of the tumor. Moreover, clinicians are used to evaluating
treatment efficacy based on Kaplan–Meier curves, showing either overall survival or
metastasis-free survival in a population of patients. Therefore, models should be able to
take into account intertumor heterogeneity in a population of patients. This is usually
achieved by the creation of a pool of virtual patients that are described by the same model
but with different parameters [92]. Such setup makes it possible to computationally test
the efficacy of alternative treatment protocols with either a standard protocol used for all
patients, and evaluate its quality by means of Kaplan–Meier curves, or a personalized
treatment for each patient and look at the patient’s response [93].
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4. Modeling Intracellular Processes Associated with Cancer Growth and Its Responses
to Treatment
4.1. General Modeling Remarks

While various approaches were developed to model intracellular processes [94], ODE
(or PDE, if spatial phenomena are to be captured) models seem to be the most popular.
Variables represent concentrations, levels, or the number of molecules of molecular species
that are taken into account in a given system. The processes taken into account include
translation, transcription, degradation of proteins, transcripts and other molecules, produc-
tion of other molecules (such ROS), complex creation and dissociation, and degradation of
molecules. Since it is impossible to take into account interactions between all possible types
of molecules, it is assumed that the system under consideration is not affected by molecules
and interactions not included in the model (which usually is an oversimplification). As
a result, the models developed describe individual regulatory networks or regulatory
pathways that are important from the research focus (e.g., cancer treatment or cell cycle
or immune response). When the ODE modeling framework is used, the nonlinear state
equation that is used can be represented by the form of (2). Such models help to find their
properties in terms of transient responses and stationary states.

Sometimes, such approaches are expanded by adding a component from other method-
ologies, e.g., fuzzy logic [95], Petri nets, [96] or others [97].

Knowledge gained from the computational analysis of these models is key to under-
stand possible types of system behavior and provides valuable information concerning,
e.g., the planning of molecular biology experiments aimed at confirming hypotheses about
control mechanisms governing cellular responses to treatment. Moreover, the computa-
tional analysis of these models makes it possible to test certain hypotheses that would be
impossible to check experimentally, e.g., due to lack of available antibodies, sequences,
or insufficient current biological knowledge (about intermediary proteins or protein com-
plexes involved). Properly constructed models help to elucidate inconsistencies in the
experimental results that might be the result of the heterogeneity of cellular responses
(see, e.g., [98,99]). This is particularly important when the molecular players may pro-
mote or inhibit certain processes, depending on the cellular state (such as NF-κB pro- or
antiapoptotic actions [100]).

Models of intracellular processes may also be used in the search for prospective new
drug targets [101], which, when combined with structural biology and molecular dynamics
analysis, significantly reduces the time needed to design new drugs.

Finally, as the intracellular responses determine cell fate and intercellular signaling,
these models can also be used as a component of a more general framework, describ-
ing responses of tumor to therapeutic actions, with cell death, change of proliferation
rate, intercellular signaling, or interactions with immune cells resulting from individual
cell responses.

4.2. Examples of Models of Intracellular Processes Related to Cancer Growth and Its Response
to Therapy

Arguably, regulatory networks most important for the analysis of cellular responses to
antitumor therapy are those determining cell fate in general and cell death in particular.
While it may seem that the scope of research is narrowed that way, it is unfortunately not
true, as even when considering cell death, one must take into account the various processes
leading to it, such as apoptosis, necroptosis, and ferroptosis [102], each associated with a
different regulatory network.

Signaling pathways and regulatory networks, associated with cancer progression,
metastasis, response to treatment, and therapy resistance have been the subject of modeling
investigations. Taking into account their impact on cell population dynamics and the
prospective development of multiscale models, facilitating personalized medicine progress,
models of the following pathways, or regulatory modules seem to be the most promising
(only sample references are given in the list below):
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• p53 regulatory network [103,104];
• JAK/STAT signaling pathway [99,105];
• NF-κB [98,106];
• Large systems involved in DNA damage detection and repair, involving ATM, PTEN,

and p53 proteins [96];
• NRF2 pathway [107];
• Wnt pathway [108];
• Cell cycle models [109].

Despite a lot of efforts in the area, these models have hardly been used to build multi-
scale models and thus facilitate the development of new treatment protocols. Moreover,
models of intracellular processes are usually built upon in vitro experiments involving cell
lines, and thus, the tissue context is not taken into account. That has begun to change only
recently, with the development of 3D biological models.

5. Discussion

While various models have been developed and used for the analysis of cancer growth
and treatment, relatively few of them are focused specifically on lung cancer. More precisely,
even models whose parameters were fitted to clinical data of lung cancer patients do not
take into account phenomena that are specific for lung cancer only. They utilize general
modeling techniques and frameworks, changing parameter values, if necessary, to produce
either transient responses to treatment or survival curves or particular indices such as
metastasis-free survival that are observed clinically. The models were developed that way
for both SCLC [110] and NSCLC [68], as well as Lewis lung carcinoma xenografts grown
in immunogenic mice [111]. One of the indirect proofs that such approach works can be
seen in the context of metronomic chemotherapy, both curative [112] and palliative [17],
and combined with other forms of treatment [79], which have recently been tested through
modeling in the lung cancer context [113]. One of the most important issues in cancer
treatment—its adverse effects—has also been modeled for NSCLC [114].

Time scales used in simulations vary, depending on the type of the model. Generally,
models at the population level cover months, if the goal is to observe tumor growth rate
and direct therapy effects, to years (usually 2 or 5), if the treatment response is modeled for
a virtual patient to find survival curves. For models of signaling pathways, simulation time
usually does not exceed several hours, since additional molecular mechanisms are switched
on as time passes and become impossible to neglect in the model structure, increasing the
complexity of the model and making analysis very difficult, if possible at all. Moreover,
model parameters are fitted to experimental data, and experiments’ duration is most often
constrained to anything between 1 and 12 h, with a much smaller fraction of experiments
looking at what happens after 24 or 48 h.

As far as spatial scales are concerned, two approaches prevail. The first one relates to
existing imaging data, which makes it possible to estimate tumor size. Then, the spatial
scale is directly related to what is observed in data. In the second approach, spatial
dimension depends on the computational burden involved in simulation. Then, more often
than not, that scale is not biologically relevant and the models are used to draw rough
conclusions only.

It seems that the models that facilitate a comparison of alternative treatment protocols
have been the most useful for some time now. In [115], a simulation-based comparison of
alternative radiotherapy protocols for NSCLC allowed for concluding that two dose frac-
tionation schedules, continuous hyperfractionated accelerated radiotherapy that included
weekend irradiation and hyperfractionated accelerated radiotherapy weekend, yield almost
the same long term-effects on locoregional NSCLC tumor control. While there were clinical
trials devoted to the analysis of weekend gaps in head and neck tumors [116], no such
studies were performed for lung cancer. That way, modeling work provided additional
argument in the debate about weekend gaps in radiotherapy that are standard in health
care systems.
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Of the many papers devoted to the modeling of metronomic chemotherapy, one should
distinguish [117], which proposed an alternative, counterintuitive vinorelbine dosage pro-
tocol for NSCLC, based on a computational study that could not have have been identified
simply by analyzing the results of reported clinical trials. It is one of a few cases, when
modeling was actually followed by a clinical trial that tested its applicability, confirming
that the suggested protocol yields better efficacy [118]. Another study, combining mathe-
matical modeling with in vivo experiments, showed that chemotherapy with doses smaller
than MTD in NSCLC treatment leads to longer survival times and a lower level of drug
resistance. It was also proven in the modeling of combined chemo- and antiangiogenic
therapy [79], that the model was a general one, not specific for lung cancer. The mathe-
matical analysis used in these works makes it possible to generalize the properties of the
treatment under consideration and distinguish those that are parameter independent from
properties arising under specific conditions only. Such conclusions could not be reached in
studies based on clinical results only.

Sensitivity analysis of the models shows the most promising ways to increase treat-
ment efficacy. The model developed in [68] showed somehow an intuitive result that it
can be achieved in immunotherapy by increasing macrophage repolarization from the
protumor anti-inflammatory M2 cells to the antitumor proinflammatory M1 cells. Less
intuitive was another important conclusion that single immunotherapies might not affect
tumor significantly. Only combining two immunotherapy approaches could be effective,
even leading to complete tumor elimination (though the latter might require unfeasible
biological parameters).

As mentioned earlier in the text, simulation models are particularly valuable in mod-
eling immunotherapy, and this has been recently addressed in the context of lung cancer
showing how possible treatment protocols can be simulated to identify possible problems
that may arise [119]. Analysis of neoadjuvant PD-1 inhibition in NSCLC was studied
in [120]. Important implications of immune-mediated metastatic growth on metastatic
dormancy, blow-up, early detection, and treatment have been stated in [121], following a
careful model analysis. It is worth noting that interactions between lung cancer, primary
and metastatic, and the immune system have been studied in silico for many years now,
also in the context of lung cancer immunotherapy [122,123].

Relatively few works have been published on modeling therapy adverse effects. How-
ever, this is slowly beginning to change, as quantified data on these effects start to appear,
also in the case of adverse effects in lung-cancer-targeted therapies [124]. In [114], mathe-
matical models led to the formulation of guidelines concerning adjuvant steroid protocols
that are used to support targeted therapy of metastatic lung cancer.

The mathematical modeling of signaling pathways or regulatory network dynamics
that can be associated with either a tumor response to treatment or mechanisms of its
evasion has been developed in recent years (e.g., [105]), but it has been hardly utilized in
higher-level analysis. Similarly, as in population-level modeling, there is an open question
about the similarity in dynamics and structure of intracellular pathway models developed
for other cancer types (particularly p53, NF-κB, Wnt, or NRF2 pathway models, important
for chemoresistance) and their analogues in lung cancer.

Taking all of the above into account, current challenges in modeling lung cancer
growth and treatment include the following:

• Trying to fit models into data for lung cancer in immunotherapy [15,125];
• Transforming structure, graph models of lung cancer metastasis, or regulatory net-

works involved in cellular responses to treatment into models describing the dynamics
of these processes;

• Linking models describing synergistic effects of drugs in chemotherapy with models
of cancer growth;

• Development of multiscale models, linking intracellular dynamics, specific for lung
cancer, with models of metastasis or therapy resistance.
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Achieving the goals stated above requires a lot of effort and cooperation of researchers
whose interests are focused on model development, mathematical analysis, experimental
work, and clinical data analysis. Therefore, in the near future, one should expect only
gradual progress and the impact on clinical practice coming mostly from population-
level modeling.
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