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Abstract: A fatty liver index (FLI) greater than sixty (FLI ≥ 60) is an established score for metabolic
dysfunction-associated steatotic liver disease (MASLD), which carries a high risk for diabetes and
cardiovascular disease, while a FLI ≤ 20 rules out the presence of steatosis. Thus, we investigated
whether FLI was associated with cardiometabolic risk factors, i.e., visceral (VAT), subcutaneous (SC),
epicardial (EPI), extrapericardial (PERI), and total cardiac (CARD-AT) adipose tissue, hepatic fat ((by
magnetic resonance imaging, MRI, and spectroscopy, MRS), and insulin resistance (IR, HOMA-IR and
OGIS-index), and components of metabolic syndrome. All individuals with FLI ≥ 60 had MASLD,
while none with FLI ≤ 20 had steatosis (by MRS). Subjects with FLI ≥ 60 had a higher BMI and visceral
and cardiac fat (VAT > 1.7 kg, CARD-AT > 0.2 kg). FLI was positively associated with increased
cardiac and visceral fat and components of metabolic syndrome. FLI, VAT, and CARD-AT were all
associated with IR, increased blood pressure, cholesterol, and reduced HDL. For FLI ≥ 60, the cut-off
values for fat depots and laboratory measures were estimated. In conclusion, FLI ≥ 60 identified not
only subjects with steatosis but also those with IR, abdominal and cardiac fat accumulation, increased
blood pressure, and hyperlipidemia, i.e., those at higher risk of cardiometabolic diseases. Targeted
reduction of FLI components would help reduce cardiometabolic risk.

Keywords: MASLD; epicardial fat; cardiac fat; visceral fat; insulin resistance; metabolic syndrome;
cardiometabolic risk

1. Introduction

Cardiometabolic risk (CMR) refers to risk factors that increase the likelihood of de-
veloping diabetes or cardiovascular disease (CVD). Specific factors that can cause this
increased risk include obesity (especially abdominal fat accumulation), hyperglycemia,
hypertension, insulin resistance, dyslipoproteinemia, and, with respect to metabolic syn-
drome, include physical inactivity and smoking. Individuals with intra-abdominal (e.g.,
visceral, hepatic, and pancreatic) and/or intra-thoracic (as epicardial, mediastinal, and/or
intramyocardial) fat have increased cardiometabolic risk [1–4], and this phenotype may
be present even in subjects with a low BMI and normal weight that not only have abdom-
inal obesity and/or hepatic steatosis but also have abnormal metabolism and increased
cardiometabolic risk [4–8].

The metabolic origin of hepatic steatosis is now also recognized in the name of the
disease. In fact, the American Association for Study of Liver Disease (AASLD) and the
European Association for Study of the Liver (EASL), in collaboration with the Asociación
Latino-americana para el Estudio del Hígado (ALEH), have changed the nomenclature
of nonalcoholic fatty liver disease (NAFLD), which is now called metabolic dysfunction-
associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steato-
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hepatitis (MASH) [9]. The nomenclature is still new, but the discrepancy between MASLD
and NAFLD is minimal [10].

The definition of MASLD includes subjects with hepatic steatosis and at least one of
five cardiometabolic risk factors, thus taking into consideration the pathophysiology of the
disease that is related to insulin resistance and adipose tissue dysfunction [11,12]. When
subcutaneous adipocytes enlarge to store excess energy intake, the subject is less likely to
accumulate ectopic fat and develop MASLD [6,11,12], whereas if subcutaneous fat does not
expand, excess fat accumulates as intra-abdominal fat (e.g., visceral, hepatic, and pancreatic)
and/or intra-thoracic fat (as epicardial, mediastinal, and/or intramyocardial fat) [11,13–16].
This latter phenotype is associated with increased cardiometabolic risk [1–4].

The latest estimates indicate that over 1/3 of the population has MASLD with a rapid
increase in prevalence from 25% to 38% in the latest years [17]. However, most of these
individuals are unaware of their condition and the increased risk of comorbidities associated
with it. This is because MASLD is usually diagnosed incidentally after an imaging test or
during a liver biopsy for suspected liver disease. Some of the guidelines-approved scores
for the estimation of liver steatosis could be used for an initial diagnosis [18]. Among
these scores, the fatty liver index (FLI) developed by Bedogni et al. [19] is an established
index to diagnose hepatic steatosis and thus MASLD [18], and one of the most widely
used and validated worldwide [20–24]. The parameters used to calculate FLI, i.e., BMI,
waist circumference (WC), triglycerides (TG), and γ-GT concentration, are also markers of
increased risk of cardiometabolic disease [25–30]. In particular, WC is a surrogate marker
of upper body obesity and abdominal fat accumulation, and a high γ-GT concentration is
associated with atherosclerosis, cardiovascular risk and mortality [26,29–38].

Thus, the aim of this paper was to investigate if FLI > 60, which is the cut off to
diagnose hepatic steatosis, could also identify subjects with increased visceral and cardiac
fat, as well as with increased cardiometabolic risk given by insulin resistance and other
components of metabolic syndrome such as high blood pressure and hyperlipidemia.

2. Results

Table 1 reports the clinical characteristics of the study subjects. Most of the subjects
(83%) were men with a median age of 53 years (IQR 42–59). The body mass index (BMI)
ranged from 19 to 40 kg/m2; obesity was present in 24% of them (n = 22); 21 of them
had type 2 diabetes (T2D, i.e., a fasting plasma glucose ≥ 7.0 mmol/L or a 2 h plasma
glucose ≥ 11.1 mmol/L), which was newly diagnosed in 13 of them by OGTT.

Table 1 also shows the characteristics of the 33 subjects who had liver fat measured by
magnetic resonance spectroscopy (MRS). This subgroup had characteristics similar to those
of the whole group.

As can be seen from Figure 1, all subjects with a FLI ≥ 60 except one had a liver fat
fraction IHTG > 0.05 (5%) that is the threshold for hepatic steatosis [18], confirming that
a value of the FLI ≥ 60 was a good cutoff for the presence of hepatic steatosis according
to the present operational definition. Using beta regression, we estimated the hepatic fat
fraction to be 0.04 (95% CI 0.02 to 0.06) in the subjects with FLI = 20 and 0.09 (0.07 to 0.11)
in those with FLI = 60. This corresponded to a difference of 0.05 (0.03 to 0.07) in the liver fat
fraction between the two groups (p < 0.001).

There was a strong positive association between FLI and visceral, subcutaneous, or
cardiac adipose tissue, as shown in Figure 2. FLI explained 40% of the variance of both
visceral and subcutaneous adipose tissue. The association of FLI with total cardiac adipose
tissue was also strong and explained 32% of the variance; it is interesting that the variance
was almost entirely explained by extra-pericardial fat.

FLI was also strongly associated with insulin resistance (i.e., positive with HOMA-IR
and negative with OGIS, which is an index of insulin sensitivity), but it was the insulin
resistance measured in postprandial conditions (i.e., OGIS) and reflected mainly muscle
IR that explained a great part of the variability, 40% (Figure 3). Also, blood pressure, in
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particular high diastolic blood pressure, was associated with the FLI, while the association
with cholesterol, total and HDL, was modest, explaining only 5% of the variance.

Table 1. Clinical characteristics of the study subjects.

Characteristics Entire Cohort Group with MRS

Number 89 33
Age (years) 53 (42; 59) 54 (42; 63)

Sex F/M 15 (17%)/74 (83%) 7 (21%)/26 (79%)
Weight (kg) 82.3 (71.7; 90.0) 83.0 (75.0–89.8)
Height (m) 1.74 (1.67; 1.79) 1.75 (1.67–1.80)

BMI (kg/m2) 27.1 (25.0; 29.9) 27.7 (25.5–29.4)
BMI class (NIH)

Normal 22 (25%) 8 (24%)
Overweight 45 (51%) 17 (52%)

Obesity class 1 19 (21%) 7 (21%)
Obesity class 2 2 (2%) 1 (3%)
Obesity class 3 1 (1%) -

Waist circumference (cm) 95.0 (89.0; 101.5) 96.0 (92.0–102.0)
ALT (U/L) 20 (17; 32) 24 (16–34)
AST (U/L) 21 (19; 25) 21 (19–26)
GGT (U/L) 24 (16; 36) 25 (17–42)

NGT/IGT/T2D 49/25/15 18/7/8
Glucose (mg/dL) 100 (92.5; 110.5) 100 (91–111)
Insulin (mU/mL) 12 (8.2; 17.1) 10 (7–17)

HOMA-IR 2.9 (2.0; 4.4) 2.6 (1.6–3.7)
QUICKI 0.17 (0.16; 0.18) 0.17 (0.16–0.19)

OGIS (mL/kg/min) 8.81 (7.68; 9.87) 9.19 (7.91–10.35)
Cholesterol (mg/dL) 190 (162; 216) 189 (162–211)

HDL (mg/dL) 44 (37; 51) 49 (40–54)
LDL (mg/dL) 123 (97; 138) 120 (96–136)

Triglycerides (mg/dL) 84 (67; 118) 87 (70–128)
Systolic BP (mm Hg) 128 (118; 142) 127 (117–140)
Diastolic BP (mm Hg) 75 (67; 85) 73 (65–85)
Fatty liver index (FLI) 39 (23; 64) 45 (30–68)

FLI category < 20 19 (21%) 5 (15%)
FLI category 20 to 59 45 (51%) 17 (52%)

FLI category ≥ 60 25 (28%) 11 (33%)
Liver fat (%)—MRS 4 (2–13) 4 (2–13)

Subcutaneous fat (g)—MRI 2970 (2326; 3590) 3079.6 (2460.2–4077.2)
Visceral fat (g)—MRI 1405 (873; 1761) 1407.5 (892.8–1830.4)

Epicardial fat (g)—MRI 60 (38; 76) 50 (35–72)
Extra-pericardial fat (g)—MRI 136 (82; 183) 112 (81–166)

Mediastinal fat (g)—MRI 187 (141; 252) 187 (117–235)
Measurements of the study subjects. The data are reported as the median (interquartile range) for continuous
measures and number (proportion) for discrete measures. Some values were missing at random, e.g., for broken
test tube.

Moreover, as shown in Table 2, not only the FLI but also VAT and CARD-AT were
associated with IR, positively with HOMA-IR (Pearson coefficient ρ = 0.46, 0.49 and 0.31, re-
spectively, all p < 0.005) and negatively with OGIS (ρ = −0.63, −0.64 and −0.48, respectively,
all p < 0.0001), with increased diastolic blood pressure (ρ = 0.42, 0.32 and 0.32, respectively,
all p < 0.0005), and reduced HDL (ρ = −0.23, −0.23 and −0.20, respectively, all p < 0.03).
VAT and CARD-AT were also correlated with increased triglycerides (ρ = 0.45, and 0.39,
respectively, all p < 0.0001).
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Figure 1. Relationship (beta regression with logit link) between the MRS liver fat fraction and fatty
liver index (solid red line) in a subgroup of 33 subjects (blue dots). A cut off of IHTG > 5% (horizontal
dashed line) was used to diagnose hepatic steatosis. Vertical dashed lines indicate fatty liver index
(FLI) cut off of 20 and 60.
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Figure 3. Relationship between fatty liver index and components of insulin resistance, HOMA-IR
(A) and OGIS (B) or of the metabolic syndrome, i.e., systolic (C) and diastolic (D) blood pressure,
HDL (E), and total cholesterol (F). OLS regression plots the association between the selected laboratory
measures and FLI.

Then, it was investigated which values of fat depots and laboratory measurements
corresponded to the cut-off FLI values for ruling out or diagnosing hepatic steatosis, i.e., a
FLI equal to 20 and 60, respectively (Table 3). To estimate these values, regression models
were used as described under Statistical Analysis. Although this should be validated in
other cohorts, the results indicated that a FLI ≥ 60 may be used to identify individuals at
high cardiometabolic risk, and a FLI < 20 for those at low risk.
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Table 2. Associations between cardiometabolic parameters, FLI, VAT, and CARD-AT.

Outcome FLI VAT CARD-AT

Total cardiac fat (g) 0.56 § 0.57 § -
Extrapericardial fat (g) 0.55 § 0.57 § 0.96 §

Epicardial fat (g) 0.33 § 0.32 * 0.65 §
Visceral fat (g) 0.64 § - 0.57 §

Subcutaneous fat (g) 0.63 § 0.34 * 0.33 *
HOMA-IR 0.46 § 0.49 § 0.31 *

OGIS −0.63 § −0.64 § −0.48 §
Systolic BP (mm Hg) 0.39 § 0.33 * 0.37 §
Diastolic BP (mm Hg) 0.42 § 0.32 * 0.32 *

HDL (mg/dL) 0.23 * 0.17 0.10
Cholesterol (mg/dL) −0.23 * −0.23 * −0.20
Triglyceride (mg/dL) - 0.45 § 0.39 §

Pearson coefficient, * p < 0.05, § p < 0.001.

Table 3. Estimated reference values for fat depots and laboratory measures for FLI values of 20
and 60.

Outcome FLI = 20 FLI = 60 p-Value

Hepatic fat 0.04 (0.04) 0.09 (0.04) <0.001
Total cardiac fat (g) 154.37 (10.44) 228.53 (9.95) <0.001

Extrapericardial fat (g) 102.64 (8.77) 163.20 (7.51) <0.001
Epicardial fat (g) 51.73 (3.69) 65.33 (3.15) 0.02

Visceral fat (g) 958.82 (85.24) 1694.43 (74.15) <0.001
Subcutaneous fat (g) 2329.96 (156.61) 3666.31 (136.24) <0.001

HOMA-IR 2.53 (0.31) 4.12 (0.27) <0.001
OGIS 9.87 (0.22) 8.16 (0.19) <0.001

Systolic BP (mm Hg) 124.53 (2.27) 134.48 (1.94) <0.001
Diastolic BP (mm Hg) 71.88 (1.57) 79.39 (1.34) 0.154

HDL (mg/dL) 48.17 (1.72) 44.02 (1.45) <0.001
Cholesterol (mg/dL) 181.49 (5.55) 195.18 (4.68) 0.01

Median and interquartile range of values estimated from the underling regression models as described under
Statistical Analysis.

3. Discussion

The prevalence of obesity and related comorbidities continues to increase [39], and,
along with obesity, MASLD is also on the rise. The latest estimates indicate that the
prevalence of MASLD has increased from 25% (1990–2006) to 38% (2016–2019) [17]. Fur-
thermore, the prevalence of cardiometabolic disease is increasing due to the steady rise of
the prevalence of obesity worldwide [39], where obesity is defined as a body mass index
(BMI) > 30 kg/m2. However, it is now evident that BMI alone does not fully capture the risk
of disease or death [40], nor does it indicate how fat is distributed, i.e., the accumulation
of visceral adipose tissue [41], epicardial and extrapericardial adipose tissue [26,42–46],
or hepatic steatosis [47], which are established risk factors for cardiometabolic disease
stronger than the BMI in both men and women [46]. MASLD is a cardiometabolic risk
factor [7,8,48,49], and subjects with MASLD have high visceral adipose tissue (VAT) [47]
and cardiac fat [50] compared to those of subjects without steatosis, even when BMI is
below 25 kg/m2 [34,47].

Thus, we aimed to investigate whether FLI ≥ 60, which is the cut off for diagnosis
of hepatic steatosis, could also identify subjects with increased visceral and cardiac fat,
insulin resistance, and components of metabolic syndrome such as hypertension and
hyperlipidemia, thus with high risk of cardiometabolic disease.

The results of our study showed that FLI was not only a marker of hepatic fat content
(measured by MRS) but was also linearly correlated with increased visceral and cardiac
fat, insulin resistance, particularly when measured during OGTT as the OGIS index, with
increased blood pressure, and with total and HDL cholesterol, although less strongly
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(Table 2). Other studies have shown that individuals with increased visceral fat accu-
mulation also have liver steatosis [51–53] and cardiac fat accumulation [49,54–56], but
none using the FLI. In general, this reflects a condition of lipotoxicity and altered lipid
metabolism [11,12] and explains why ectopic fat accumulation is an important risk factor
for the development of cardiometabolic diseases such as diabetes, hypertension, metabolic
syndrome, and cardiovascular disease [1,26,27,44].

Here, we have shown a strong linear association not only of the FLI but also visceral
and cardiac fat with increased fasting insulin resistance (HOMA-IR) and with reduced
glucose clearance (OGIS) during OGTT, which is an index of insulin sensitivity. This
confirms previous results that showed an association between the severity of MASLD and
insulin resistance measured during fasting conditions as HOMA-IR [57,58], during OGTT
as Matsuda or OGIS index [58–60], or during a clamp [26,61].

It is recognized that adipose tissue is an active and complex organ with important
endocrine functions and adverse metabolic consequences [6,11,62]. Adipose tissue accumu-
lates primarily as subcutaneous fat, but when the individual becomes obese, he or she may
accumulate a significant amount of fat as visceral or intrathoracic fat. Increased abdominal
fat is also associated with the release of proinflammatory adipokines, the concentration of
which is associated with elevated cardiometabolic risk [6].

It is well established that accumulation of abdominal fat, rather than total fat, is
a major cause of the high prevalence of type 2 diabetes and cardiovascular disease [1].
Visceral adipose tissue has been associated with insulin resistance, hypertension, diabetes
mellitus, and other metabolic abnormalities [1,47,51–53,63]. Increased VAT correlates with
increased serum concentrations of small and dense LDL, low HDL, inflammatory markers,
proinflammatory adipocytokine production, impaired insulin sensitivity, dyslipidemia and
hypertension, and increased risk of endothelial dysfunction and thrombosis [1,49].

Hepatic steatosis is also associated with an increased risk of cardiovascular diseases [44,49].
This is not surprising, since these individuals have increased VAT [47], which is highly
lipolytic [64] and releases free fatty acids (FFA) directly into the portal vein, making the
liver the first organ where they are taken up before reaching systemic circulation [11].
Moreover, VAT amount is strongly correlated with hepatic fat accumulation [11,47], and
the presence of high IHTG and VAT synergistically increases insulin resistance in the liver,
muscles, and adipose tissue [44,49,53].

Moreover, the fat accumulated around the heart (as epicardial or mediastinal/
extrapericardial fat) or within cardiomyocytes as lipid droplets is associated with metabolic
abnormalities such as insulin resistance, increased serum TG and blood pressure, atheroscle-
rosis, and altered cardiac function [3,43,65]. Epicardial fat is a potential key mediator of
cardiac metabolism since FFA and adipokines released from these adipocytes can be taken
up by coronary arteries and reach the heart [66]. Moreover, these cytokines promote
macrophage differentiation in the intima, with the development of a pro-inflammatory
environment that can lead to the development of coronary atherosclerosis [67].

The strength of this study lies in the extensive metabolic characterization of the subjects
and the measurement of visceral, cardiac, and hepatic fat during the same exam, together
with a measurement of insulin resistance during fasting and OGTT. We defined values
for fat depots and laboratory measures for FLI values of 20 and 60 that could be used as
cut-off or reference values (Table 3). Our study has some limitations, the most important
of which is the relatively low number of subjects, and that it is not a longitudinal study.
However, the results are in agreement with previous analyses that found that the FLI is
associated with an increased risk of cardiovascular disease in the UK Biobank cohort [68],
type 2 diabetes (T2D) [27,69], atherosclerosis [26,45], chronic kidney disease [70–72], and
mortality [38]. The FLI was developed in the general population with only mild obesity [19],
although it has been widely used in different cohorts. Although our study included a
limited number of subjects, to the best of our knowledge, there are no other studies that
looked at the association between the FLI, visceral fat, and cardiac fat in the same group.
The ability to identify individuals with increased VAT and CARD-AT is important, but
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the measurement requires MRI or computed tomography. In contrast, the FLI is easy to
calculate and relatively inexpensive because it uses variables that are usually collected
during routine clinical examination such as the BMI, waist circumference, and TG and GGT.
Thus, the result of this study confirm the ability of the FLI to identify subjects at risk of
cardiometabolic risk in line with previous studies that also showed how a FLI > 60 is able
to identify the hazard of atherosclerosis and endothelial dysfunction, both at a subclinical
stage and as an overt disease [26,29–37], and to detect incident diabetes [27,29,73–75] and
chronic kidney disease [70–72].

In conclusion, the FLI can be used not only to identify individuals with MASLD but
also those at higher risk of metabolic disorders underlying an increased risk of cardiovas-
cular events, selecting those who would need to improve their lifestyle and possibly be
referred to a specialist for further investigation. Its use may be broader, i.e., not only in
primary care, but also secondary and tertiary care centers.

4. Materials and Methods
4.1. Study Protocol

This analysis included individuals who participated in previous protocols at the CNR
Institute of Clinical Physiology in Pisa for measurement of abdominal and cardiac adipose
tissue by magnetic resonance imaging (MRI) and spectroscopy (MRS). The subjects who
had waist circumference, BMI, triglyceride, and gamma GT concentrations measured to
calculate the fatty liver index (FLI) were included in this analysis (n = 89). A subgroup
of subjects also had measurements of liver fat (n = 33). In 81 individuals, an oral glucose
tolerance test (OGTT) was performed in the morning after an overnight fast (10–12 h) for
the measurement of glucose tolerance and assessment of insulin sensitivity by the OGIS
index [76]. Timed blood samples (at −15, 0, 30, 60, 90, 120 min) were collected for the
measurement of plasma glucose (Beckman Glucose Analyzer, Fullerton, CA, USA) and
insulin concentrations (Linco Research, St. Louis, MO, USA). Liver enzymes and serum
lipid profile were determined by standard laboratory methods (Beckman Coulter AU400,
Brea, CA, USA).

The study protocol was approved by the local Ethics Committee, and all individuals
gave their informed consent to participate.

4.2. Magnetic Resonance (MRI-MRS) Study

We used magnetic resonance imaging (MRI) to evaluate cardiac and visceral fat, and
magnetic resonance spectroscopy (MRS) to measure intrahepatic triglycerides (IHTGs) as
the hepatic fat fraction.

The protocol has already been described [3]. Briefly, MRI acquisition of the heart was
performed using a standardized protocol. Cardiac adipose tissue scans were obtained by
fast-spin echo T1-weighted sequences with an oblique axial orientation using a cardiac
coil and an ECG trigger. During the acquisition time, the patients were in breath-hold
(10–12 s). Pericardial and epicardial fat areas were measured in a four-chamber view using
an in-house semi-automated program to determine the margin of fat around the heart,
identifying the region of interest (ROI) and measuring the number of pixels, as previously
described [63]. We used the previously validated conversion factor of 0.076 g/mm2 [3] to
calculate cardiac adipose tissue mass from area measurements.

Two fat depots could be easily distinguished: (a) epicardial adipose tissue (EPI),
i.e., the fat concentrated in the atrioventricular and interventricular grooves, along the
major branches of the coronary arteries, and, to a lesser extent, around the atria, over the
free wall of the right ventricle and over the apex of the left ventricle (LV); (b) pericardial
adipose tissue (PERI), i.e., the fat situated on the external surface of the parietal pericardium
within the mediastinum, also termed mediastinal or intrathoracic fat [63]. Visceral and
subcutaneous fat images were acquired during the same MRI session using imaging
procedures published previously [63]. Briefly, 32 transverse, T1-weighted images centered
through the space between L4 and L5 were acquired in breath hold. Abdominal visceral
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(VAT) and subcutaneous fat depots (SC) were quantified using imaging procedures and in
house ad hoc developed software, “Hippo fat software” (2.0) [3]. A factor of 0.92 kg/cm3

was used to convert adipose tissue volume into adipose tissue mass [63].
In a subgroup of 33 subjects, we also measured intrahepatic triglycerides by wa-

ter suppression 1H-MRS using the single-voxel stimulated acquisition mode (STEAM)
(TR/TE = 5000/12 ms) with a GE body coil as previously described [52]. Typical voxel
size was 3.5 mm × 3.5 mm × 3.5 mm, placed within the right lobe of the liver, avoiding
the vessels, bile ducts, and focal lesions. The quantification was achieved using NUTS
software (1D version, Acorn NMR Inc., Livermore, CA, USA) after correcting the T1 and T2
relaxation times as previously described [77]. A cut off of 5% was used to rule out hepatic
steatosis according to European guidelines [18].

4.3. Calculations and Statistical Analysis

We calculated several insulin resistance (IR) indexes [78]. HOMA-IR was calculated as
(fasting glucose (mmol/L) × insulin (mU/L))/22.5. A value of HOMA-IR > 2 was used as
the cut-off since it was found to be associated with hepatic fat above the normal values (i.e.,
>5.6%) [78]. We also calculated the OGIS index from glucose and insulin concentrations
measured during OGTT, performed in 76 individuals [76]; OGIS is an index of insulin
sensitivity as it measures glucose clearance, but it is also associated with the severity of
MASLD, especially liver fibrosis [59,60].

The FLI (fatty liver index) was calculated using a previously described algorithm [19]
based on BMI, waist circumference, TG, and GGT. The score varied between 0 and 100.
With an accuracy of 0.84 (95% confidence interval (CI) 0.81–0.87) in detecting fatty liver, the
FLI does not discriminate by sex or ethnicity and is calculated using waist circumference
(WC in cm), body mass index (BMI), triglyceride concentration (TG in mg/dL), and GGT
concentration (in mg/dL) as follow:

FLI = ez/(1 + ez)

where

z = 0.953 × ln(TG) + 0.139 × BMI + 0.718 × ln(GGT) + 0.053 × WC − 15.745

The cut off of FLI > 60 indicates a likelihood > 78% of the presence of steatosis;
FLI < 20—a likelihood >91% of the absence of steatosis [28].

Thus, three groups with different risk were identified [28]: Group 1 = FLI ≤ 20
with a probability not to have MASLD >90%; Group 2 = FLI: 21–59, intermediate group;
Group 3 = FLI ≥ 60 with a probability to have MASLD >78%.

Most continuous variables were not Gaussian-distributed, and all are reported as the
median (50th percentile) and interquartile ranges (IQR, 25th and 75th percentiles). Discrete
variables are reported as the number and proportion of individuals with the characteristic
of interest.

The relationship between the liver fat fraction and the FLI was evaluated using beta
regression with a logit link and robust confidence intervals in a subsample of 33 individuals.
The outcome variable of the beta regression model was the liver fat fraction, and the
predictor was the FLI [79]. The relationship between the outcome and the predictor
was linear as detected by fractional polynomials [80]. Using the regression equation, we
calculated the marginal estimates of the liver fat fraction at values of the FLI of 20 and 60
and contrasted them using the delta method [81]. The association between MRI-detected
fat and laboratory measures and the FLI was evaluated using ordinary least square (OLS)
regression in the full sample of 89 individuals. The outcome variable of the regression
model was the fat compartment or laboratory measure, and the predictor was the FLI. We
used fractional polynomials to test whether the outcome–predictor relationship was linear
and found it to be so in all cases [80,81]. Statistical analysis was performed using Stata 15.1
(Stata Corporation, College Station, TX, USA).
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