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Abstract: The human zinc finger protein 521 (ZNF521) is a co-transcriptional factor with multiple
recognized regulatory functions in a range of normal, cancer and stem cell compartments. ZNF521
regulates proliferation, progression and CSC (cancer stem cell) compartments in human ovarian
cancer (hOC), which is a very aggressive and late-diagnosed female tumor. Two other important
regulators of hOC are the NRF2 and NOTCH signaling pathways. In the present paper, the mRNA
and protein levels of ZNF521 were correlated with those of the NRF2-NOTCH signaling components
in two different hOC cell lines and in a public dataset of 381 hOC patients. The data show that
high levels of ZNF521 significantly increase NRF2-NOTCH signaling expression; conversely, the
silencing of ZNF521 impairs NRF2-NOTCH signaling. This experimental work shows that, in hOC,
different levels of ZNF521 modulate the NRF2-NOTCH signaling pathway and also influences hOC
CSC properties.

Keywords: human ovarian carcinoma; NOTCH; NRF2; zinc finger protein; ZNF521

1. Introduction

Ovarian carcinoma (OC) is the most malignant gynecological tumor [1]. A total of 75%
of OC patients are diagnosed with stage III–IV cancer in the first instance, and even if a
patient exhibits a good response to surgery and chemotherapy, they often exhibit tumor
relapse combined with metastasis and chemoresistance [2,3]. Therefore, the identification of
the molecular mechanisms and early biomarkers involved in cancer initiation, development
and progression is of utmost importance in the fight against this type of tumor. Recently, we
identified the multi-zinc finger protein ZNF521 as a regulator of tumor growth, proliferation
and migration in hEOC (human epithelial ovarian carcinoma) through the modulation that
ZNF521 exerts on key regulatory genes involved in EMT (epithelial mesenchymal transi-
tion) [4]. ZNF521 acts via multiple molecular interactions to control the homeostasis of the
immature cell compartment in different tissues and in cancers [5–11]. ZNF521 is abundant in
OC, where its high expression is associated with a poor prognosis, and a significant number
of gene amplifications in the ZNF521 gene (6%) have been detected [12,13]. Indeed, ZNF521
has been included in a list of the 15 top genes associated with poor survival in patients with
serous cystadenocarcinomas [14].

Several molecular pathways are involved in the development of hOC (human ovarian
carcinoma), two of which are NRF2 (nuclear factor erythroid 2-related factor 2) and NOTCH
signaling [15–17].

The transcription factor NRF2 is primarily known for its role during oxidative stress,
but it is also involved in cellular metabolism, carcinogenesis and other cellular processes
like inflammation and autophagy [18]. The Cap’n’Collar (CNC) subfamily of transcription
factors comprises NRF1, NRF2 and NRF3 [19]. Through different conserved NRF2-ECH
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homology domains (Neh), NRF2 can (i) bind to ARE (antioxidant response element) se-
quences on its antioxidant target genes; (ii) interact with the Kelch domain of Kelch-like-
ECH-associated protein 1 (KEAP1); (iii) function as a transcriptional activator; (iv) bind to
E3 ubiquitin ligase and RXR (retinoic X receptor) alpha. Normally, the majority of NRF2
proteins interact with KEAP1 via Neh2 [18]. This interaction results in NRF2 ubiquitination
and degradation, but during cellular stress conditions, ROS (reactive oxygen species),
which play an important role in tumorigenesis [20–22], interfere with KEAP1, promoting
NRF2 release and its translocation into the nucleus [23,24]. In oncological patients, NRF2
is associated with poor overall survival (OS). NRF2 prevents complete EMT with a more
stem-like phenotype inducing chemoresistance and enhancing metastasis [25–28]. In a
retrospective study on 108 OC patients, high expression of Nrf2 was indicative of shorter
disease-free survival (DFS) and overall survival (OS) [29].

The Notch pathway plays an important role in different biological processes such as the
development of many organs, tissue homeostasis, cell fate and apoptosis [30–34]. The Notch
family are single-pass transmembrane receptors that transduce signals to neighboring
cells [35]. In mammals, there are four Notch receptors (Notch 1–4), activated by the ligand
on adjacent cells [36,37]. Binding with a ligand leads to a conformational change and
exposure of a cleavage site in its extracellular domain that moves into the nucleus and
interacts with CSL (CBF1-Suppressor of Hairless-LAG1) and the Mastermind co-activator
(MAML1) to activate transcription [38,39]. When this complex, containing CSL, NICD
(Notch intracellular domain) and MAML1, is formed, it recruits several co-activators and
co-repressors (including histone acetylase P300 and P53), which bind DNA and control
the transcription of Notch target genes [40–42]. The Notch gene is considered an oncogene
and is responsible for the formation and progression of several types of tumors [43]. The
overexpression and gene amplification of Notch have been associated with hematopoietic
and solid tumors including ovarian cancer [44–52]. The increased expression of Notch1 and
of its NICD in human ovarian carcinoma induces an advantage for growth, cell proliferation
and colony formation, and it is related to cancer progression, resistance to chemotherapy
and a decreased survival rate, highlighting Notch as a possible therapeutic target [47,53–56].

In the present work, we modulate intracellular ZNF521 levels via lentiviral overex-
pression or silencing in two different hOC cell lines and demonstrate through mRNA and
protein analysis that the NRF2-NOTCH axis is similarly modulated.

2. Results
2.1. ZNF521 Overexpression Modifies the NRF2-NOTCH Axis

To study the role of ZNF521 in hOC, two cell lines, HeyA8 and ES-2, were infected
using a lentiviral vector expressing ZNF521, and a panel of genes involved in the NRF2-
NOTCH axis was analyzed.

qRT-PCR analysis demonstrated, in both cell lines, that the overexpression of ZNF521
increased the mRNA levels of P300, an important co-activator of NRF2 and NOTCH
signaling pathways. It is known that Zfp521 (the murine homolog of human ZNF521)
interacts with P300 via the ZF1 to ZF8 at its N-terminus [57].

In our models, ZNF521 enhanced the transcription levels of P300 and NOTCH1 in
both cell lines, but only in ES-2 cells were the NRF2 transcripts also significantly modulated
(Figures 1A and 2A). This modulation was confirmed at the protein level, where P300,
NRF2 and NOTCH components (NOTCH1, NOTCH2, MAML1, MAML2, MAMLD1, P53
and HES1) were analyzed. The results showed that the NRF2-NOTCH axis was induced by
ZNF521, via P300, only in the ES-2 hOC cell line (Figure 1B: HeyA8 and Figure 2B: ES-2).
In particular, the expression levels of NOTCH1, NOTCH2, MAML2, P53 and HES1 were
upregulated 1.84- to 5.31-fold, as well as a small increase in MAML1 and MAMLD1, which
were upregulated by 1.41 to 1.5-fold in both transduced human OC cell lines. Moreover,
the expression of P300, even if high at basal level, was upregulated (more significantly in
ES-2 than in HeyA8 cells) by ZNF521 (Figures 1A and 2A). In ES-2 cells, the modulated ex-
pression of P300 enhanced NRF2 levels 6.79-fold. The results illustrated in Figures 1 and 2
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show that the overexpression of ZNF521 significantly amplified the expression of NRF2
and NOTCH. These data were confirmed via western blotting (Figures 1B and 2B) and
prompted us to investigate the effects of ZNF521 on the NRF2-NOTCH pathway only in
ES-2 cells.

Figure 1. ZNF521 modulates NRF2-NOTCH1 crosstalk in HeyA8 hOC cell line. mRNA ((A): qRT-
PCR) and protein levels ((B): Western blotting) of P300, NRF2 and NOTCH components in ZNF521-
overexpressing HeyA8 hOC cell line in adherent cell growth conditions. CTL: empty vector. Densito-
metric analysis of Western blotting were shown in Figure S1A. All experiments were performed in
triplicate. Asterisks indicate p < 0.05 *, p < 0.01 **, p < 0.001 ***.

Figure 2. ZNF521 modulates NRF2–NOTCH1 crosstalk in ES-2 hOC cell line. mRNA ((A): qRT-PCR)
and protein levels ((B): Western blotting) of P300, NRF2 and NOTCH components in a ZNF521-
overexpressing ES-2 hOC cell line in adherent cell growth conditions. CTL: empty vector. Densito-
metric analysis of Western blotting were shown in Figure S1B. All experiments were performed in
triplicate. Asterisks indicate p < 0.05 *, p < 0.01 **, p < 0.001 ***.



Int. J. Mol. Sci. 2023, 24, 14755 4 of 12

2.2. Nrf2-Notch Axis was Modulated by ZNF521 also in 3D Culture

We previously demonstrated that the overexpression of ZNF521 enhances the pro-
liferation of ES-2 cells both in dependent- and independent-anchorage conditions where
ZNF521 induced an enrichment in the CSC subpopulation [4]. For this reason, ES-2 cells
cultured as spheres were also investigated. The results in Figure 3 show that ZNF521
induced an increase of 2-fold in the transcript levels of P300 and of 6.54-fold in NRF2 levels
compared to control cells. This modulation largely resulted in an overall upregulation
trend of the NOTCH pathway. In particular, mRNA transcripts for NOTCH2, MAML1,
MAML2 and MAMLD1 increased 5- to 18-fold compared to 2-fold for the HES1 NOTCH
target gene.

Figure 3. ZNF521 modulates NRF2-NOTCH signaling in anchorage-independent growth. Modula-
tion of the NRF2-NOTCH axis by ZNF521 overexpression in an ES-2 hOC cell line: mRNA expression
levels by qRT-PCR (A). CTL: empty vector. Densitometric analysis of Western blotting were shown in
Figure S1C. All experiments were performed in triplicate. Asterisks indicate p < 0.01 **, p < 0.001 ***.

2.3. Silencing of ZNF521 Impairs the ES-2 Spheroid Formation Ability

To assess the importance of ZNF521 in the NRF2-NOTCH axis for the maintenance
of CSCs, ZNF521 expression was silenced in ES-2 cells. Silencing ZNF521 using a shRNA
resulted in the down-regulation of the mRNA expression levels of P300, NRF2 and NOTCH
components (Figure 4A) and of the corresponding protein levels (Figure 4B). The impair-
ment of NRF2-NOTCH signaling negatively affected the sphere formation ability of ES-2
cells. In ZNF521-silenced cells, a lower number of spheres was observed compared to
control cells (Figure 4C,D). To further investigate the CSC properties, a sphere assay was
performed in limiting dilution conditions (LD) and analyzed using Extreme Limiting Dilu-
tion Analysis (ELDA) software version 5.6.1.5980 of 01.06.2023 [58,59]. The results showed
impairments of the stem cell frequency (1 cell/(stem cell frequency)) of 7.29 for CTL and
11.54 for shRNA cells (p = 0.0123).
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Figure 4. Effect of ZNF521 knockdown by shRNA in the ES-2 cell line. Silencing of ZNF521 in
adherent cell growth conditions (A: first graph). Modulation of NRF2-NOTCH axis: qRT-PCR
(A) and Western blotting (B). Silencing of ZNF521 reduced the sphere-forming ability in ES-2 cells:
representative images (5×) are shown (C); the number of cells derived from spheres were counted, as
shown in (D), and analyzed with ELDA software version 5.6.1.5980 of 01.06.2023 (E). CTL: non-target
shRNA control vector; shRNA: shRNA lentiviral vector for silencing of ZNF521 expression. Scale
bars correspond to 100 µm. All experiments were performed in triplicate. Asterisks indicate p < 0.05
*, p < 0.01 **, p < 0.001 ***.
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2.4. Analysis of hOC Data Set

To establish whether there was a relationship between ZNF521 expression and NRF2-
NOTCH signaling, a set of 381 hOC cases (R2 analysis platform, public database Tumor
Ovarian Serous Cystoadenocarcinoma 2022-v32) [60] was analyzed. To this end, the mRNA
levels of P300, NRF2, NOTCH1 and NOTCH2 were plotted against those of ZNF521 and
among each other (Figure 5). The scatter profile XY plots show that the expression of P300,
NOTCH1 and NOTCH2 was significantly and positively associated with the presence of a
ZNF521 transcript (Figure 5A), and that of P300 was significantly and positively correlated
with NRF2 (NFE2L2 in Figure 5) and NOTCH1/2 (Figure 5B).

Figure 5. Correlation analysis between ZNF521 and the NRF2-NOTCH axis in hOC. R2 analysis of
381 specimens in a hOC public database (Tumor Ovarian Serous Cystoadenocarcinoma 2022-v32):
ZNF521 expression data plotted vs. those of P300, NRF2 (NFE2L2 in figure), NOTCH1 and NOTCH2
(A); P300 expression data plotted vs. those of NRF2 (NFE2L2 in figure), NOTCH1 and NOTCH2 (B).

3. Discussion

Understanding the molecular mechanisms involved in tumor development and pro-
gression is essential for identifying early functional and prognostic markers to implement
adequate and timely cancer therapeutic strategies. Different molecular pathways are
involved in the initiation and progression of human ovarian carcinoma, which is still
one of the most lethal types of cancer in women [2,3,61]. ZNF521 is a well-known co-
transcriptional factor involved in the homeostasis of normal, cancer and stem cell compart-
ments. ZNF521 can enhance cellular proliferation in different tissues, reduce the cellular
differentiation of neural and bone stem cells, and augment stem- and cancer stem-cell com-
partments [6,7,9,10,57,62–65]. In hOC, ZNF521 is highly expressed (commonly amplified),
and it is one of the top genes associated with a poor prognosis and drug resistance [13,14].
In human epithelial ovarian carcinoma, ZNF521 is also considered an important regulator
of the CSC compartment and EMT [4], in which two other important genes are involved:
NRF2 and NOTCH. In cancer, NRF2 and NOTCH signaling pathways regulate initiation,
differentiation, the CSC compartment and drug resistance [25,43,66,67]. NRF2 and NOTCH
signaling influence each other and are considered a unique pathway called the NRF2-
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NOTCH axis [68–71]. The NRF2-NOTCH axis is important for the maintenance of cellular
homeostasis: it is involved in cell fate determination during hematopoiesis, and it regulates
self-renewal in the lungs, adult neurogenesis occurring in the subventricular zone and
osteogenesis in the bone [71–78]. In lung and hepatocellular carcinoma, the activation of
the NOTCH pathway increases the expression of NRF2 and its target [69,71]. Moreover,
NRF2-NOTCH signaling coordinates cancer cell migration during EMT [68]. This is not
only functional crosstalk; NRF2 and NOTCH1 physically interact with each other. NOTCH1
can bind to functional Rbpjk sequences present in the regulatory region of NRF2 and, vice
versa, NRF2 can bind to a functional ARE sequence present in the gene regulatory region
of NOTCH1 [71]. In the NRF2 and NOTCH pathways, P300 is a functional and physical
co-activator [40,41,79]. Ganner and colleagues demonstrated that P300 competes with
KEAP1 for binding to NRF2 and that the overexpression of P300 significantly enhances
NRF2 levels. The acetylation of NRF2 by P300 enhances the half-life of NRF2 and prevents
the NRF2 degradation induced by KEAP1, increasing NRF2 DNA binding to ARE target
sequences (including that present on NOTCH) [79].

The data illustrated so far provide evidence that the overexpression of ZNF521 in HeyA8
and ES-2 human ovarian cancer cell lines induces a clear increase in the expression of NRF2
(only in the ES-2 cell line) and NOTCH component genes (Figures 1A and 2A), as well as that
of the corresponding proteins (Figures 1B and 2B), both in 2D cultures and in non-anchorage-
dependent cultures (Figure 3). On the contrary, the silencing of ZNF521 impairs P300, NRF2
and NOTCH components both at the mRNA and protein level (Figure 4A,B). This down-
regulation negatively affects the ES-2 CSC subpopulation (Figure 4C,D). Additional analysis of
a public database containing 381 hOC specimens [57,58] validates our in vitro results: ZNF521
expression data strongly correlate with those of the NRF2-NOTCH pathway (Figure 5).

The data shown in the present work confirm our hypothesis that ZNF521 activates the
NRF2-NOTCH axis through the formation of a complex with P300 [57] that directly activates
NRF2 and NOTCH [40,41,79], and also justify why they cannot be further augmented by
ZNF521 overexpression in HeyA8 OC cells (where basal P300 protein levels are high).

Our data, for the first time, identified the modulatory function that ZNF521 exerts on
the NRF2-NOTCH axis in this tumor model, and whose expression could be used to select
hOC patients potentially responsive to treatments with NRF2 or NOTCH inhibitors [80,81].
Further analyses will help us to better characterize the molecular interactions underly-
ing this modulation that may be the key molecular mechanism regulating the initiation,
proliferation and progression of human ovarian cancer.

4. Materials and Methods
4.1. Cell Lines and Culture Conditions

The HeyA8 cell line, derived from differentiated papillary human ovary cystoadeno-
carcinoma, was cultured in DMEM. The ES-2 cell line, a human ovarian adenocarcinoma
cell line, was cultured in RPMI. Cell culture media were supplemented with 10% fetal
bovine serum, 50 U of penicillin and 50 µg of streptomycin/mL (Thermo Fisher Scientific,
Milan, Italy), and cell lines were maintained at 37 ◦C in 5% CO2.

4.2. Transfection and Transduction of Cell Lines

Lentiviral vectors were used to transfect HEK293T cells where 10 µg of plasmid
(control vector, ZNF521-overexpressing vector or shRNA lentiviral vectors for specific
silencing of ZNF521, respectively named CTL, ZNF521 and shRNA in figures) (Sigma,
Milan, Italy). Each vector was added to cells with lentiviral packaging plasmids (2 µg of
pCMV-VSVG and 10 µg of pCMV-deltaR8-9) and cells were transfected using the calcium
phosphate method. Three rounds of transduction were performed, each for 24 h, by means
of centrifuging HeyA8 or ES-2 with the lentivirus supernatant with 6 µg/mL of polybrene
at 3200 rpm at 32 ◦C for 50 min.
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The transduction was performed in three independent experiments, and cells were
further sorted for EGFP, giving a homogeneous population that was over 90% positive
for EGFP.

4.3. Sphere-Forming Assay

Transduced single cell preparations were counted and resuspended in a medium
containing DMEM F12 (GIBCO, Milan, Italy), L-glutamine (Thermo Fisher Scientific), 1%,
Pen/Strep (Thermo Fisher Scientific), 1%, B27 (GIBCO) 50×, 20 ng/mL hEGF (Pepro-
Tech, DBA, Milan, Italy) and 2 ng/mL hFGFb (PeproTech). ES-2 sphere medium was
supplemented with 10 µg/mL of insulin (Sigma-Aldrich, Milan, Italy) and 4 µg/mL of
heparin (Sigma-Aldrich) and plated at a concentration of 4.5 × 104 cells/well in 6 ultra-low
attachment wells (Corning Inc., Milan, Italy).

After 7 days, when spheres were observed, the number of cells for each culture was calcu-
lated, and the size of spheres was estimated from the acquired images (at 10×magnification)
using ImageJ 1.51j8. All the experiments were performed in triplicate.

4.4. Spheres Limiting Diluitions Assay (LDA) and Extreme Limiting Dilution Analysis (ELDA)

Sphere assays were also performed under limiting dilution conditions. ES-2 cells si-
lenced for ZNF521 were plated in 96-well ultra-low attachment plates using serial dilutions.
Transduced cells were counted and plated in the appropriate medium (see paragraph 4.3)
at the following concentrations: 500, 166.66, 55.55, 18.51, 6.17 and 2.05 cells/well. After
7 days, spheres were counted and analyzed using ELDA software: version 5.6.1.5980 of
1 June 2023 [58,59] to compare the enrichment or depletion in CSC populations between
the CTL and shRNA transduced cells. All the experiments were performed twelve-fold.

4.5. Expression Analysis by qRT-PCR

A total of 1 µg of RNA, previously prepared with Tri Reagent (Sigma-Aldrich) and
verified using a NanoDrop 2000/2000c Spectrophotometer (Thermo Fisher Scientific), was
used to synthesize cDNA using SuperScript III reverse transcriptase and was amplified
with the iQ™ SYBR® green super mix (BioRad, Milan, Italy) using the qRT-PCR amplifier
QuantStudio3 (Applied Biosystems, Milan, Italy).

The analysis of gene expression was calculated as 2−ddCt and normalized for the
house-keeping gene (GAPDH). Primers used in this study were as follows (5′–3′):

h-ZNF521 was previously described [11];
h-NRF2 (fwd) CACCACCCACACAACTTACTGC,
h-NRF2 (rev) GGTCTTCTTGGGGCTTAGGT;
h-NOTCH1 (fwd) CTGGAGGACCTCATCAACTC,
h-NOTCH1 (rev) TTCTTCAGGAGCACAACTGC;
h-NOTCH2 (fwd) ATGCTCAGCCGGGATACCT,
h-NOTCH2 (rev) GGTTGGCCACAGTGGTACAGG;
h-MAML1 (fwd) GCAACAGCAGTTCCTTCAGAGG,
h-MAML1 (rev) GTGAACTGTCCAACCTGCTGTG.
h-MAML2 (fwd) TGCCCAATCTCTACCAAGCCAG,
h-MAML2 (rev) AGCAGGGGTTAGGACTTGGACT;
h-MAMLD1 (fwd) CCTCAGATTCCATGCCTGCTCT,
h-MAMLD1 (rev) CTTGCCTT-GATCCGGCTACACTTGG;
h-P300 (fwd) GATGACCTTCCCAGCCTCAAA,
h-P300 (rev) GCCAGATGATCTCATGGTGAAGG;
h-P53 (fwd) CCTCAGCATCTTATCCGAGTGG,
h-P53 (rev) TGGATGGTGGTACAGTCAGAGC;
h-HES1 (fwd) CCAAAGACAGCATCTGAGCA,
h-HES1 (rev) GCCGCGAGCTATCTTTCTT;
h-GAPDH (fwd) CACCATCTTCCAGGAGCGAG,
h-GAPDH (rev) TCAC-GCCACAGTTTCCCGGA.
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4.6. Protein Extraction and Western Blotting

Nuclear proteins were obtained using a hypotonic lysis buffer consisting of 10 mM
HEPES pH7.9, 10 mM KCl, 0.1 mM EDTA, protease inhibitors (P8849, Sigma-Aldrich)
and phosphatase inhibitor cocktails 2 and 3 (P0044, P5726, Sigma-Aldrich), which was
used to incubate cells on ice for 20 min. After the addition of 0.25% Igepal-630 (NP40)
(Sigma-Aldrich), samples were centrifuged at 3000 rpm for 5 min. Nuclear pellets were
resuspended in 20 mM HEPES pH7.9, 0.4 M NaCl and 1 mM EDTA with protease and
phosphatase inhibitors. After three cycles of vortexing and incubation on ice, samples were
centrifuged at 12,000 rpm for 20 min, and the nuclear extracts were collected.

The total protein of transduced cells was extracted as described in [82]. Proteins were
denatured, reduced and separated using 4–12% NuPAGE Novex bis-Tris or 3–8% NuPAGE
Tris-Acetate Protein gradient polyacrylamide gels (Thermo Fisher Scientific) and blotted
onto nitrocellulose. ZNF521 was detected using a rabbit anti-ZNF521 (PA534388, Life
Technologies) antibody at 1:1000, P300 with a rabbit anti-P300(C-20) (sc-585, Santa Cruz
Biotechnology) antibody at 1:10000, NRF2 with a rabbit anti-NRF2 (D1Z9C) XP (#12721,
Cell Signaling) antibody, NOTCH1 with a rabbit anti-NOTCH1 (ab-52301, AbCam, Milan,
Italy) antibody at 1:500, NOTCH2 with a rabbit anti-NOTCH2 (sc-5545, Santa Cruz Bio-
technology) antibody at 1:1000, P53 with a rabbit anti-P53 (#9282, Cell Signaling) antibody
at 1:1000 and GADPH with a mouse anti-GAPDH (sc-166574 Santa Cruz Biotechnology) an-
tibody at 1:1000. Secondary rabbit and mouse HRP antibodies were used, and signals were
detected using the ImmunoCruz Western blotting luminal reagent (sc-2004, sc-2005, Santa
Cruz, Biotechnology) and exposure to auto-radiographic film (GE Healthcare, Milan, Italy).

4.7. R2: Genomics Analysis and Visualization Platform of TCGA hOC

A public database [R2: Genomics Analysis and Visualization Platform (http://r2
.amc.nl, accessed on 15 November 2015) [60] of human tumor ovarian serous cystade-
nocarcinoma that includes the expression data for 381 hOC specimens (Tumor Ovarian
Serous Cystadenocarcinoma 2022-v32-tcga-381-tpm-gencode36) was investigated for the
correlation between the mRNA of ZNF521 and the NRF2-NOTCH pathway.

4.8. Statistical Analysis

Students’ t test, assuming unequal variances between two samples, was used to
determine the significant differences (p < 0.05 *, p < 0.01 **, p < 0.001. ***, p > 0.0001 ****).
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