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Abstract: Male infertility is a global health issue, affecting over 20 million men worldwide. Genetic
factors are crucial in various male infertility forms, including teratozoospermia. Nonetheless, the ge-
netic causes of male infertility remain largely unexplored. In this study, we employed whole-genome
sequencing and RNA expression analysis to detect differentially expressed (DE) long-noncoding
RNAs (lncRNAs) in teratozoospermia, along with mutations that are exclusive to teratozoospermic
individuals within these DE lncRNAs regions. Bioinformatic tools were used to assess variants’
impact on lncRNA structure, function, and lncRNA–miRNA interactions. Our analysis identified
1166 unique mutations in teratozoospermic men within DE lncRNAs, distinguishing them from
normozoospermic men. Among these, 64 variants in 23 lncRNAs showed potential regulatory roles,
7 variants affected 4 lncRNA structures, while 37 variants in 17 lncRNAs caused miRNA target loss or
gain. Pathway Enrichment and Gene Ontology analyses of the genes targeted by the affected miRNAs
revealed dysregulated pathways in teratozoospermia and a link between male infertility and cancer.
This study lists novel variants and lncRNAs associated for the first time with teratozoospermia. These
findings pave the way for future studies aiming to enhance diagnosis and therapy in the field of
male infertility.
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1. Introduction

Infertility is a significant global health concern that affects approximately 50 million
couples worldwide [1]. It is estimated that around 12.5% of women and 10% of men
experience infertility [2]. The World Health Organization (WHO) defines infertility as the
inability to achieve pregnancy after engaging in regular unprotected sexual intercourse
for a duration of 12 months or longer. The male factor contributes to 50% of infertility
cases [3], and various sperm defects, such as quantity and quality issues, can be identified
through semen analysis as causes of male infertility [4], though the etiology of sperm defects
remains idiopathic in 30–50% of cases [5]. Teratozoospermia is defined as a percentage
of morphologically normal spermatozoa below the lower reference limit. However, the
definition of normality has significantly changed over the past few decades, ranging from
50% in the initial WHO classification in 1980 [6] to 4% in the most recent version published
in 2010 [7]. In general, a morphologically normal spermatozoon is characterized by specific
features, including a normal acrosome, an oval-shaped head with a width ranging from 2.5
to 3.5 µm and a length between 5 and 6 µm, a midpiece measuring approximately 4.0 to
5.0 µm, and a tail that is approximately 50 µm in length [8]. Teratozoospermia encompasses
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a heterogeneous group of abnormal sperm phenotypes that can affect different parts
of sperm, such as the head, neck, midpiece, and tail. These abnormalities may occur
individually or concurrently [9].

Although significant progress has been made in investigating teratozoospermia, the
molecular mechanisms underlying this condition in male infertility are not yet fully un-
derstood. In general, the identification of the molecular causes of male infertility is a
major challenge. It is estimated that more than 4000 genes play a role in spermatogenesis,
making the characterization and identification of their specific contributions a complex
undertaking [10]. Furthermore, emerging evidence suggests that noncoding RNAs have
crucial Molecular Functions [11], including a role in reproduction and male infertility [12].
Various techniques, such as real-time quantitative PCR, microarrays, and high-throughput
next-generation sequencing, have been developed to detect and measure noncoding RNAs.
These techniques provide valuable insights into the role of noncoding RNAs and the devel-
opment of complex diseases, such as cancer, diabetes, cardiovascular diseases, etc. [13,14].
Regarding reproduction, attention has been drawn to a particular type of noncoding RNA,
long-noncoding RNAs (lncRNAs). LncRNAs, a diverse group of RNA molecules larger
than 200 nucleotides, despite lacking the ability to code for proteins, play important roles
in cellular functions. They can be classified based on their chromosomal location in several
categories, including antisense lncRNAs, intronic lncRNAs, divergent lncRNAs, inter-
genic lncRNAs, promoter-associated lncRNAs, transcription start site-associated lncRNAs,
and enhancer RNAs [15]. LncRNAs also exhibit four distinct functions [15–18]: signal-
ing, where they regulate gene transcription either independently or with proteins like
transcription factors; decoying, in which they bind to proteins to impede interactions
with DNA, mRNA, or miRNA; guiding, as they transport proteins to precise intracellular
sites; and scaffolding, where they facilitate the assembly of macromolecular complexes for
coordinated interactions.

When it comes to the involvement of lncRNAs in male infertility, particularly ter-
atozoospermia, studies prove that these molecules play a role in the functions of sper-
matogonial stem cells, including the regulation of their differentiation, proliferation, and
self-renewal processes [19]. Moreover, various studies have highlighted distinct expression
patterns of lncRNAs between fertile and infertile men [12]. Nevertheless, our understanding
of how lncRNAs precisely regulate reproduction and their association with teratozoosper-
mia is still limited and subject to ongoing debate [20]. Except for studies reporting lncRNAs
that are deregulated in teratozoospermia, there is also a significant knowledge gap in
studying variants and mutations within lncRNA regions and investigating their role in
teratozoospermia. Traditionally, research has primarily focused on genetic variations oc-
curring within protein-coding regions to elucidate the molecular mechanisms underlying
disease [21]. However, some genome-wide association studies (GWAS) have provided
evidence suggesting that polymorphisms within lncRNA genes are linked to human dis-
eases [21,22]. More specifically, single nucleotide polymorphisms (SNPs) in lncRNAs can
have various consequences [21]. Firstly, variations in regulatory regions, such as transcrip-
tion binding sites or lncRNA gene promoters, can affect lncRNA expression, resulting in
the dysregulation of associated pathways [22,23]. SNPs can also disrupt the secondary
structure of lncRNAs, thereby impacting their interactions with miRNAs, RNA-binding
proteins, and other molecules [21,24]. Furthermore, the presence of a variant within the se-
quence of a lncRNA can potentially affect RNA turnover by altering the binding of proteins
responsible for lncRNA’s stability [21]. Lastly, similar to protein-coding genes, mutations in
lncRNA regions can disrupt the splicing process and influence the structure and functional-
ity of lncRNAs [21]. Numerous studies have demonstrated that variations in lncRNAs can
contribute to the development of various diseases, such as different types of cancer [21,25]
and a type of muscular dystrophy [26], through the mechanisms described above. However,
despite indications of the significant role of lncRNAs in male infertility, no studies have
been conducted to explore whether specific variants can impact lncRNA’s expression or
function, thereby leading to specific subtypes of male infertility, such as teratozoospermia.
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Thus, this study aims to explore the role of lncRNA variants in the pathogenesis of
male infertility, specifically teratozoospermia. To achieve this, we utilized whole-genome
sequencing (WGS) data and integrated these with RNA expression profiles from normo-
zoospermic and teratozoospermic men. Our objectives are to (a) identify and characterize
variants that present solely in teratozoospermic men and map to differentially expressed
lncRNA regions and (b) investigate the impact of prioritized variants on the function, struc-
ture, and interactions of lncRNAs, particularly with microRNAs (miRNAs). By exploring
these effects, we aim to shed light on the role of lncRNAs in teratozoospermia. The ultimate
goal of this study is to provide a valuable reference for future research on teratozoospermia,
as identified variants could hold significant importance in unraveling the genetic basis of
teratozoospermia, potentially leading to improved diagnosis and treatment.

2. Results
2.1. WGS and RNA Expression Results—Identification of Exclusive Variants on DE lncRNAs

The primary objective of this study was to identify exclusive variants in teratozoosper-
mic men that are mapped to differentially expressed (DE) lncRNA regions and explore their
role in the pathogenesis of teratozoospermia as well as their impact on lncRNAs. To accom-
plish this, whole-genome sequencing (WGS) and RNA expression data were integrated.

Specifically, 617,722 variants were found exclusively in teratozoospermic men, while
2,342,243 variants were present only in normozoospermic men. The identified variants
were mapped to 34,603 and 22,022 genes and characterized as non-coding regions, such as
miRNAs and lncRNA genes, in normozoospermic and teratozoospermic men, respectively.
However, for this study, only the variants identified exclusively in teratozoospermic men
were selected for further analysis, as the aim was to detect and investigate variants in
lncRNA regions contributing to teratozoospermia.

Furthermore, to identify lncRNAs that are deregulated in teratozoospermia and, thus,
that may play a role in male infertility, the analysis of Zhou and Wang (2020) [27] was
utilized. Zhou and Wang (2020) [27], by applying a significance threshold of p-value < 0.05
and a fold change cutoff of [logFC] > 2, detected a total of 101 differentially expressed
lncRNAs. Specifically, in comparison with the normozoospermic group, 68 lncRNAs
were upregulated, and 33 lncRNAs were downregulated in the teratozoospermic group.
Supplementary Table S1 provides a comprehensive list of these differentially expressed
lncRNAs, as reported by Zhou and Wang [27].

Finally, the two datasets mentioned above, namely the differentially expressed (DE)
lncRNAs and the exclusive variants in teratozoospermic individuals, were integrated. The
aim was to identify exclusive variants found in teratozoospermic men that were mapped
to DE lncRNAs. These variants have the potential to impact the structure, function, and
interactions of lncRNAs, leading to altered gene expression and potentially contributing
to the pathogenicity of teratozoospermia, as described in the Introduction [21]. Moreover,
they have the potential to be used as biomarkers in teratozoospermia. Consequently, a
total of 1166 variants found only in teratozoospermic men were identified to be mapped
onto DE lncRNAs. The complete list of these unique variants mapped onto DE lncRNAs
can be found in Supplementary Table S2. Subsequently, these variants were prioritized
by applying a series of filters to investigate their consequences on lncRNAs and their role
in teratozoospermia.

2.2. Exclusive Variants with a Functional Role

First, to comprehensively evaluate the impact of identified variants on lncRNA func-
tionality and prioritize them, our analysis incorporated data from both RegulomeDB [28]
and 3DSNP [29] databases. RegulomeDB [28] provides valuable insights into the regulatory
significance of these variants by assessing their association with known regulatory ele-
ments, such as transcription factor binding sites and DNase I hypersensitive sites. On the
other hand, the 3DSNP [29] database assesses variant significance by considering multiple
factors, including thermodynamic stability, evolutionary conservation, protein binding
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sites, and structural dynamics. Therefore, in our study, we set stringent criteria, considering
variants with a 3DSNP score greater than 10 and a RegulomeDB Rank ranging from 1a
to 2c. Applying these criteria, we identified 64 variants on 23 lncRNAs that displayed a
strong likelihood of influencing lncRNA functionality and contributing to teratozoospermia.
These findings are presented in Table 1.

Table 1. Prioritized variants found exclusively in teratozoospermic men, which are mapped to
differentially expressed lncRNAs, and have a strong likelihood of affecting lncRNAs’ functionality,
according to RegulomeDB [28] and 3DSNP [29] databases.

Variant lncRNA 3DSNP Score RegulomeDB Rank

rs11170045 LINC00592 42.35 1b

rs17126450 LINC00592 34.82 1b

rs7972661 LINC00592 28.40 1f

rs936329 LINC00592 26.09 1f

rs1870213 LINC00592 27.76 1f

rs143637901 LINC00592 27.63 1f

rs7301136 LINC00592 23.79 1f

rs7315889 LINC00592 44.57 1b

rs10783499 LINC00592 45.49 1f

rs7316130 LINC00592 45.37 1f

rs10876245 LINC00592 46.98 1f

rs10876246 LINC00592 14.97 1f

rs10876247 LINC00592 16.98 1f

rs10876248 LINC00592 12.32 1f

rs10783500 LINC00592 12.40 1f

rs7303604 LINC00592 10.60 1f

rs10783503 LINC00592 25.87 1f

rs10783504 LINC00592 125.41 1f

rs11170048 LINC00592 125.70 1f

rs11170049 LINC00592 125.39 1f

rs11170050 LINC00592 123.71 1f

rs56035420 HOXC-AS3 48.25 1b

rs1956568 FRMD6-AS1 25.01 1b

rs1956567 FRMD6-AS1 22.74 1f

rs566495825 FRMD6-AS1 16.98 2b

rs71266965 AQP4-AS1 23.77 2b

rs953369619 AQP4-AS1 38.38 2b

rs1265960 A1BG-AS1 23.04 1f

rs56822355 LINC01350 136.62 1b

rs41453048 LINC01350 18.39 1b

rs12029108 LINC01350 16.82 1f

rs72727706 LINC01350 12.63 1f

rs80202485 LINC00466 126.85 1f

rs72781367 LINC00276 11.09 1b
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Table 1. Cont.

Variant lncRNA 3DSNP Score RegulomeDB Rank

rs2969359 LINC01116 84.20 1b

rs2969358 LINC01116 84.25 1f

rs2969357 LINC01116 74.60 1f

rs6723379 DCTN1-AS1 44.15 1f

rs1727884 ARHGEF26-AS1 18.68 1f

rs1713828 ARHGEF26-AS1 55.43 1f

rs1713827 ARHGEF26-AS1 125.75 1f

rs71281391 PRICKLE2-AS3 23.94 2b

rs901028815 LINC00877 11.67 2b

rs59058260 LINC00877 15.06 2a

rs10016533 SEC24B-AS1 111.37 1f

rs553142360 LINC01091 56.16 2b

rs17491036 LINC01091 24.33 2b

rs1560738 LINC01091 21.52 1b

rs58833496 LINC01091 10.36 1f

rs78146337 NNT-AS1 12.66 1b

rs3734931 C7orf69 50.17 2b

rs4595031 C7orf69 10.44 1f

rs7823346 ZNF252P-AS1 205.05 2b

rs2978419 ZNF252P-AS1 106.11 1f

rs7832026 ZNF252P-AS1 54.79 1f

rs10107110 LZTS1-AS1 20.92 1b

rs12681283 STAU2-AS1 52.30 2b

rs199889712 OTUD6B-AS1 75.01 1b

rs3217986 CDKN2B-AS1 75.44 2b

rs1368574245 CDKN2B-AS1 92.75 2b

rs73652847 CDKN2B-AS1 12.19 2b

rs17694555 CDKN2B-AS1 14.83 1f

rs564311323 CDKN2B-AS1 17.41 2b

rs112111321 RAP2C-AS1 216.01 1a

2.3. Exclusive Variants Affecting lncRNAs’ Structure

Among the 1166 variants exclusively observed in teratozoospermic men and identi-
fied within DE lncRNAs, the variants affecting the secondary structure of lncRNAs were
prioritized, as they could contribute to the development of teratozoospermia. Even minor
changes in the nucleotide sequence, such as single nucleotide polymorphisms (SNPs),
have the potential to disrupt the thermodynamic stability of RNA secondary structures.
Consequently, these alterations can impact the overall three-dimensional conformation and
stability of lncRNAs, potentially influencing their interactions with other molecules, includ-
ing proteins and DNA. Furthermore, since lncRNAs lack protein-coding capacities and rely
on their structural integrity for proper functioning, SNPs can induce significant structural
alterations that can affect the functionality of lncRNAs [30–32]; thus, they were prioritized.
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In this study, variants with a p-value < 0.2, a cutoff indicating an impact on lncRNAs’
structure as determined by lncRNASNP v3 [33], were selected. Overall, the analysis
revealed 7 SNPs that affected the structure of 4 specific lncRNAs, as summarized in Table 2.

Table 2. Prioritized variants found exclusively in teratozoospermic men, which are mapped to
differentially expressed lncRNAs, and have an impact on the structure of lncRNAs, as determined by
lncRNASNP v3 database [33].

Variant lncRNA Transcript p-Value

rs139506376 LINC00944 NONHSAT031816.2 0.1688

rs200712585

PRMT5-AS1 NONHSAT035833.2 0.0739

PRMT5-AS1 NONHSAT168171.1 0.0814

PRMT5-AS1 NONHSAT168172.1 0.1409

PRMT5-AS1 NONHSAT035834.2 0.0818

rs4792409 PRMT5-AS1 NONHSAT145734.2 0.1078

rs150364102

COX10-AS1 NONHSAT145753.2 0.0946

COX10-AS1 NONHSAT145752.2 0.0946

COX10-AS1 NONHSAT145754.2 0.0946

COX10-AS1 NONHSAT145751.2 0.0921

COX10-AS1 NONHSAT175957.1 0.0946

COX10-AS1 NONHSAT175958.1 0.0946

rs75133618
COX10-AS1 NONHSAT175957.1 0.1591

COX10-AS1 NONHSAT175958.1 0.1591

rs142992890 MIR663AHG NONHSAT189547.1 0.1669

rs1285843394 MIR663AHG NONHSAT189547.1 0.1941

2.4. Exclusive Variants Affecting miRNA–lncRNA Interactions and Investigation of Target Genes
of Affected miRNAs

Exclusive variants on teratozoospermic men were also prioritized to identify those that
affect miRNA–lncRNA interactions. These variants can lead to the gain or loss of miRNA
target sites within lncRNAs, consequently altering the regulation of gene expression [34].
Through their intricate interactions, miRNAs and lncRNAs orchestrate important cellular
processes and can contribute to the development and progression of various diseases [35],
such as teratozoospermia. Therefore, according to the lncRNASNP v3 database [33], out
of the 1166 exclusive variants identified on DE lncRNAs, 37 SNPs were found to affect
interactions between 17 lncRNAs and 151 miRNAs. The complete list of variants and the
corresponding affected interactions (lncRNAs and miRNAs) can be found in Supplementary
Table S3.

Subsequently, an investigation was carried out to determine the overlap of target genes
among affected miRNAs, aiming to identify common pathways that become deregulated
in teratozoospermia due to lncRNA variants. According to miRTargetLink 2.0 [36], affected
miRNAs targeted a total of 198 common genes. The complete list of these genes and their
interactions with miRNAs is provided in Supplementary Table S4. It is important to note
that only strong and validated interactions were selected for constructing miRNA–mRNA
interaction networks.

Additionally, to gain further insights into the role of target genes, Gene Ontology (GO)
Enrichment analysis [37,38] and KEGG pathways analysis [39] were performed. These
analyses revealed dysregulation in processes such as cell proliferation and programmed cell
death, with many miRNAs and miRNA target genes being involved in pathways associated
with various types of cancer. In terms of Cellular Components, most of these genes were
associated with the Bcl-2 family protein complex, while the most enriched category for
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the Molecular Function consisted of genes encoding proteins with tyrosine kinase activity
(Figure 1a–d).
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and the x-axis represents the fold enrichment. The p-values were corrected for multiple tests using 
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or structure of lncRNAs and on miRNA–lncRNA interactions. These variants, which are 
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spermic men and are mapped to lncRNAs, which are known to be deregulated in terato-
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Figure 1. Significant (a) GO Biological Process, (b) GO Molecular Function, (c) GO Cellular Com-
ponent, and (d) KEGG pathway terms associated with the overlap gene targets of miRNAs that are
affected by variants in lncRNA regions. The size and color of the dots represent the number of genes
and the range of statistical significance, respectively. The red color indicates higher -log10(FDR)
values, followed by pink, purple and blue colors. The y-axis represents the GO and KEGG terms, and
the x-axis represents the fold enrichment. The p-values were corrected for multiple tests using the
false discovery rate (FDR).

2.5. Variants Affecting Both Structure or Function of lncRNAs and miRNA–lncRNA Interactions

Then, we identified prioritized variants that had potential effects on both the func-
tion or structure of lncRNAs and on miRNA–lncRNA interactions. These variants, which
are listed in Table 3, are particularly significant as they are exclusively found in tera-
tozoospermic men and are mapped to lncRNAs, which are known to be deregulated
in teratozoospermia.
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Table 3. Exclusive variants mapped on DE lncRNAs that affect both the structure or function of
lncRNAs and miRNA–lncRNA interactions.

Variants lncRNAs Impact on lncRNAs

rs150364102 COX10-AS1 Structure and miRNA–lncRNA interactions

rs56035420 HOXC-AS3 Function and miRNA–lncRNA interactions

rs2969359 LINC01116 Function and miRNA–lncRNA interactions

rs2969358 LINC01116 Function and miRNA–lncRNA interactions

rs2969357 LINC01116 Function and miRNA–lncRNA interactions

rs1713827 ARHGEF26-AS1 Function and miRNA–lncRNA interactions

2.6. lncRNAs with Multiple Variants Affecting Their Function, Structure, or Interactions
with miRNAs

As a final step in this study, we identified lncRNAs with multiple prioritized variants
that affect both the function or structure of lncRNAs and their interactions with miRNAs.
The lncRNAs are presented in Table 4. These findings shed light on the potential mecha-
nisms underlying teratozoospermia and provide valuable insights into the role of lncRNAs
in male fertility issues.

Table 4. DE lncRNAs with exclusive variants that affect both their function or structure and lncRNA–
miRNA interactions.

lncRNAs Number of Variants Impact of Variants

COX10-AS1 7 Structure and miRNAs–lncRNAs

MIR663AHG 6 Structure and miRNAs–lncRNAs

HOXC-AS3 2 Function and miRNAs–lncRNAs

AQP4-AS1 5 Function and miRNAs–lncRNAs

A1BG-AS1 6 Function and miRNAs–lncRNAs

LINC01116 7 Function and miRNAs–lncRNAs

DCTN1-AS1 2 Function and miRNAs–lncRNAs

ARHGEF26-AS1 6 Function and miRNAs–lncRNAs

PRICKLE2-AS3 2 Function and miRNAs–lncRNAs

STAU2-AS1 2 Function and miRNAs–lncRNAs

RAP2C-AS1 2 Function and miRNAs–lncRNAs

CDKN2B-AS1 7 Function and miRNAs–lncRNAs

3. Discussion

Previous studies have demonstrated that variants in lncRNAs can impact their func-
tion, structure, and interactions with other molecules [21]. Consequently, these variants
may lead to the dysregulation of gene expression and contribute to disease develop-
ment [14,21,40]. While the functions of the majority of estimated ~20,000 lncRNAs remain
unknown [21], studies suggest that they play an essential role in spermatogenesis regu-
lation [19,20]. Furthermore, lncRNAs have been associated with male infertility and its
specific subtypes [12], such as teratozoospermia, which is characterized by morphological
abnormalities in spermatozoa. However, no studies have investigated the consequences
of lncRNA variants and their role in teratozoospermia. Therefore, this study aimed to
combine WGS and RNA expression profile data to identify exclusive variants found only
in teratozoospermic men that are also mapped to lncRNAs with a deregulated expression
in teratozoospermia. Subsequently, this study assessed the impact of these variants on the
structure, functionality, and interactions of lncRNAs. In summary, out of the 1166 exclusive
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variants identified, 64 variants on 23 lncRNAs displayed a strong likelihood of influencing
lncRNA functionality. Additionally, 7 SNPs affected the structure of 4 lncRNAs, while
37 SNPs were found to affect the interactions between 17 lncRNAs and 151 miRNAs. The
affected miRNAs’ overlapping target genes were primarily associated with cancer and
processes such as cell proliferation, apoptosis, programmed cell death, etc.

3.1. Impact of Variants on the Functionality of lncRNAs

At first, we assessed the impact of variants on the functionality of lncRNAs. Among the
variants identified with potential functional roles, only one had previously been associated
with a specific disease. Specifically, the variant rs3217986, mapped on CDKN2B-AS1 (AN-
RIL), has been associated with cutaneous melanoma [41] and coronary artery disease [42].
Regarding the other lncRNAs on which these variants were mapped, LINC00592 has been
demonstrated in several studies to play a role in various cancer types through transcription
regulation [43,44]. Other lncRNAs identified as potentially involved in cancer include
FRMD6-AS1 [45,46] and LINC00466 [47,48], which have also been shown to promote tumor
growth in vivo alongside [49] LINC00877 [50], LINC01091 [51], NNT-AS1 [52–54], ZNF252P-
AS1 [55], LZTS1-AS1 [56], and OTUD6B-AS1 [57,58]. Of particular significance is also
the fact that the host gene of NNT-AS1, NNT, encodes an inner mitochondrial membrane
protein and produces large amounts of NADPH. NNT deficiency has been reported to
cause complete germ line loss and azoospermia [59]. Additionally, a separate study has
associated NNT mutations with impairments in gonadotropic function and genitalia [60].

3.2. Impact of Variants on the lncRNAs’ Structure

Variants can also have significant effects on the structure of lncRNAs. These alterations
can disrupt stable secondary structures within lncRNAs, potentially impacting base-pairing
interactions and binding sites for other molecules, or can influence alternative splicing,
resulting in distinct structural conformations of lncRNA isoforms [30–32,61]. It should
be noted that any of the structural alterations described above can significantly impact
functionality. These changes can alter binding affinity, subcellular localization, stability, and
the accessibility of functional domains within lncRNAs. Consequently, they can influence
lncRNAs’ role in gene regulation and cellular processes. In the present study, none of
the variants identified to affect lncRNAs’ structure had been previously associated with
male infertility or other diseases. Regarding the lncRNAs on which these were found,
PRMT5-AS1 is highly expressed in the testis, but its role and function have not been
extensively studied. Baytak et al. (2017) [62] suggested its involvement in lymphoma and
its potential impact on cell growth. Interestingly, however, its host gene, PRMT5, is essential
for germ cell development and the preservation of genomic integrity [63]. Another study
also demonstrated that the spermatogonia-specific deletion of Prmt5 leads to germ cell
loss and male infertility [64]. LINC00944 is another lncRNA-harboring exclusive variant
that affects its structure. While this lncRNA has been associated with various cancer
subtypes, most studies have focused on its role in renal cell carcinoma [65,66], where it
functions as an oncogene [67]. Variants affecting structure were also found on COX10-AS1
and MIR663AHG.

3.3. Impact of Variants on miRNA–lncRNA Interactions and Processes and the Pathways Affected

Studying miRNA–lncRNA interactions is crucial due to their significant role in gene
regulation and their implications in disease development [35]. In this study, the variant
rs62560775, found on CDKN2B-AS1 (ANRIL), is linked to lung cancer [68]. Numerous
lncRNAs with variants identified in this study, including LINC01359 [69], LINC01305 [70],
SLC16A1-AS1 [71,72], and FIRRE [73,74], are associated with cancer. LINC01359 is also
deregulated in asthenozoospermia [75] and oligozoospermia [76], whereas the host gene of
SLC16A1-AS1, SLC16A1, is connected to spermatogenic defects [77]. Additionally, FIRRE,
located on the X chromosome, plays a role in the chromosomal organization and nuclear
position of the inactive X chromosome (Xi) in female cells [78].
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Furthermore, regarding miRNA–lncRNA interactions, we examined the gene targets
of affected miRNAs using GO and KEGG Enrichment analyses. Our findings revealed a
significant presence of gene targets within the Bcl-2 protein family complex. The BCL2
protein family plays a pivotal role in apoptosis regulation and maintaining cellular balance,
with members like BCL2 supporting cell survival and others like BAX promoting cell death.
These proteins also regulate mitochondrial membrane permeability [79]. In the context of
male infertility, our study validates prior research, highlighting the importance of BCL2
family proteins in sperm development and function [80]. Apoptosis is a dynamic process
in spermatogenesis affecting germ cell divisions, differentiation, and sperm formation [81].
Imbalances in BCL2 family protein levels can disrupt spermatogenesis and fertility. In
teratozoospermia, the dysregulation of the apoptotic machinery due to altered miRNA–
lncRNA interactions may result in spermatozoa with abnormal morphology “es-caping”
apoptosis, contributing to the condition.

KEGG pathway analysis has revealed a significant association between gene targets
affected by miRNAs and cancer, reinforcing the existing link between male infertility and
cancer. Previous studies have suggested a higher cancer risk in infertile men, suggesting
shared molecular pathways [82–87]. Our study, supported by GO Biological Process
Enrichment, identified the gene targets affected by miRNAs, including genes associated
with apoptosis, programmed cell death, cell proliferation, and differentiation—all critical
in cancer development [86]. Similarly, in male infertility, dysregulated apoptosis and cell
processes can lead to teratozoospermia. This condition can also result from disruptions in
cell proliferation and differentiation during spermatogenesis: a complex process involving
spermatogonial cell growth, meiotic divisions, and spermatid maturation [88]. While
common genetic pathways might link cancer and male infertility, their precise molecular
mechanisms require further investigation.

Finally, GO Biological Process Enrichment and KEGG analyses identified deregulated
signaling pathways in teratozoospermia, including TNF, FoxO, MAPK, and PI3K-Akt
pathways. More specifically, FoxO transcription factors regulate the cell cycle, apoptosis,
and oxidative stress response, impacting germ cell balance and sperm quality [89,90]. The
MAPK pathway is also essential for spermatogenesis, influencing proliferation, differentia-
tion, apoptosis, and sperm quality [91–93]. PI3K-Akt regulates the hypothalamus–pituitary–
gonad (HPG) axis, spermatogonia, somatic cells, and sperm autophagy, affecting germ
cell survival and spermatogenesis [94], while TNF, as an inflammation-related cytokine,
is linked to testicular dysfunction, impaired sperm function, and increased apoptosis, all
impacting sperm production and quality [95,96]. Additionally, our study revealed that
many affected miRNAs target kinases, which are essential for regulating these processes
and various sperm development stages in the testis [97,98].

3.4. Common Variants and lncRNAs with Multiple Pioritized Variants

In the present study, we also identified variants that affected both the function or
structure of lncRNAs and their interactions with miRNAs, as presented in Table 3. These
findings suggest the dual impact of the above variants on lncRNA functionality and
interactions, potentially contributing to teratozoospermia. Therefore, these variants hold
potential for future investigation as biomarkers, and conducting functional experiments
could help validate their impact on the functionality and structure of lncRNAs, unveiling
the molecular mechanisms underlying teratozoospermia.

Furthermore, we identified lncRNAs with multiple prioritized SNPs, as depicted in
Table 4. Among the above lncRNAs, COX10 antisense RNA 1 (COX10-AS1) stands out
as it harbors seven variants that are found only in teratozoospermic men and is the only
one that has been linked in the past with male infertility as it dysregulates not only in
teratozoospermia but also other types of male infertility, such as asthenozoospermia [75]
and oligozoospermia [76]. While its role in human diseases was previously poorly under-
stood, several studies have associated COX10-AS1 with various types of human cancers,
suggesting its involvement as an oncogene [99–101]. These studies have shed light on
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the complex interactions between COX10-AS1 and miRNAs, promoting cell proliferation
and inhibiting apoptosis in cancer cells [102,103]. The emerging evidence of COX10-AS1’s
significance in both male infertility and cancer highlights its potential as a crucial player in
these Biological Processes, warranting further investigation.

CDKN2B-AS1 (ANRIL) is also a captivating lncRNA with implications in various
cancer types, where it serves as a critical regulator of cell proliferation [61–63]. Additionally,
it has been linked to several non-malignant diseases, such as idiopathic pulmonary fibro-
sis, endometriosis, inflammatory bowel disease, intracranial aneurysm, diabetes mellitus,
coronary artery diseases, and atherosclerosis [64]. However, intriguingly, no studies to date
have associated this lncRNA with male infertility or proposed its role in spermatogenesis.
Despite its extensive involvement in different diseases, the absence of investigations re-
garding its connection to male fertility warrants further research to explore its potential
relevance in this context.

Among the identified lncRNAs mentioned above, several have also been associated
with cancer. LINC01116, for instance, has a well-established role in cancer development,
with numerous studies supporting its involvement in promoting cell proliferation, inva-
sion, migration, and apoptosis [104]. Similarly, HOXC-AS3 is extensively implicated in
tumorigenesis through the promotion of proliferation [105,106]. A1BG-AS1 has been linked
to cancer in some studies [107,108], while ARHGEF26-AS1 is a ferroptosis-related lncRNA
with a role in tumorigenesis [109,110]. Additionally, MIR663AHG has been found to be
downregulated in psoriatic tissues [111] and acts as a tumor suppressor, inhibiting the
development of colon cancer by cis-binding to miR663a/pre-miR663a [112].

On the other hand, the available studies are limited for some lncRNAs. RAP2C-
AS1, which has been implicated in esophageal cancer [113], AQP4-AS1, while also being
associated with retinal neurovascular dysfunction [114], possibly cancer [102], and DCTN1-
AS1, potentially contributing to Alzheimer’s disease development [103], has undergone
scarce investigations. Furthermore, no studies explore the role and function of STAU2-
AS1 and PRICKLE2-AS3. Importantly, for all the mentioned lncRNAs, no studies have
implicated their role in male infertility or spermatogenesis. While these lncRNAs have
been linked to cancer and other diseases, their involvement in male reproductive health
remains unexplored, presenting an avenue for further research to understand their potential
significance in male fertility and spermatogenesis.

4. Materials and Methods
4.1. Whole Genome Sequencing (WGS)—Identification of Exclusive Variants on
Teratozoospermic Men

Blood and semen samples were collected from Greek volunteers participating in the
Spermogene (Fertilaid) research program (Grant number T1E∆K-02787) in collaboration
with the “Embryolab IVF Unit” in Thessaloniki, Greece. This study obtained ethical
approval from the Ethics Committee of the University of Thessaly, and all participants
willingly provided written informed consent for their participation in the program.

All recruited volunteers underwent an andrological examination, and their semen
samples were subjected to comprehensive analysis. Sperm samples were collected via
masturbation, following a minimum abstinence period of two to three days. The semen
analysis followed the guidelines outlined in the fifth edition (2010) of the World Health
Organization (WHO). This analysis included evaluating parameters such as semen volume,
sperm count, motility, morphology, etc. Cell vision counting slides (Tek-Event) were
utilized for cell counting, and Nikon Eclipse TS100, E200, and Ts2 microscopes (Minato,
Japan) were employed for observation during semen analysis. WHO guidelines were
employed for the processing and classification of human sperm. To elaborate, the samples
underwent classification using the seminogram results and reference values stipulated in
the WHO guidelines. The classification categorized the samples into two groups: those with
morphology falling below the 5th percentile of fertile subjects and those with morphology
exceeding the 5th percentile of fertile subjects. It is important to note that this classification
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is in line with the latest version of the WHO guidelines, specifically the 2021 edition
(accessible at https://www.who.int/publications/i/item/9789240030787, accessed on
25 August 2023). This approach replaces the use of the terms “teratozoospermic” and
“normozoospermic”, respectively.

Then, genomic DNA was extracted from the blood samples of five individuals with
teratozoospermia and ten individuals with normozoospermia using the PureLink Genomic
DNA Mini Kit (Invitrogen, Waltham, MA, USA—Catalog number: K182002), following
the manufacturer’s instructions. The quality of the DNA was assessed using agarose gel
electrophoresis, while the quantity was determined using the Qubit 2.0 fluorometer and the
Qubit dsDNA BR Assay Kit (Invitrogen, Waltham, MA, USA—Catalog number: Q32850).
Subsequently, the DNA samples were divided into three sequencing pools. Two of the
pools contained DNA from the normozoospermic individuals, with each pool consisting
of DNA from five individuals. The third pool was created by pooling the DNA from
teratozoospermic individuals. The DNA within each pool was mixed in equimolar ratios,
resulting in a final concentration of 100 ng/µL and a total quantity of 2 mg.

After the completion of sample preparation, the DNA samples were shipped to Novo-
gene (Cambridge, UK) for sequencing. Paired-end libraries with 100 bp reads were con-
structed, and sequencing was performed using an Illumina HiSeq 3000 platform, aiming
for an average sequencing coverage of 30×. The quality of the generated FASTQ files
was initially assessed using FASTQC [115]. Subsequently, Trimmomatic [116] was used to
remove low-quality reads (with a minimum PHRED score of 30) and adapter sequences.
Following quality control, the reads were aligned to the GRCh37/hg19 human reference
genome obtained from the Ensembl database [117] using the Burrows–Wheeler aligner
(BWA) (version 0.7.17) [118]. Duplicate reads resulting from the polymerase chain reac-
tion (PCR) were identified and removed using Picard tools before further analysis. The
alignment results were then converted from the SAM to BAM format using SAMtools [119].
Next, the individual BAM files from the two normozoospermic pools were merged into
a single file representing normozoospermic individuals while also using SAMtools [119].
A variant calling was performed using freeBayes (version 1.3.6) [120], and the resulting
variants were stored in the variant call format (VCF). It should be noted that for BWA
and freeBayes, default parameters were used as proposed by the developers. To identify
unique variants specific to either normozoospermic or teratozoospermic individuals, the
VCF files from both groups were compared using BCFtools [119]. These unique variants,
which were not shared between the two groups (teratozoospermic and normozoospermic),
were subjected to further analysis, focusing on individuals diagnosed with teratozoosper-
mia. These exclusive variants found in teratozoospermic patients have the potential to
contribute to the pathogenic phenotype and provide valuable insights into the molecular
mechanisms underlying male infertility, particularly in the context of teratozoospermia.
After the detection of unique variants for teratozoospermic individuals, annotation was
performed using the VEP tool [121] provided by the Ensembl database. Among the types
of annotations performed, these included the genes and the transcripts affected, the type
of variants (coding/non-coding), the consequence of the variants (intronic, intergenic,
frameshift, missense, synonymous, etc.), and associated minor allele frequencies from the
1000 Genomes Project [122], etc.

4.2. RNA Expression Profiles—Identification of Differentially Expressed lncRNAs between
Normozoospermic and Teratozoospermic Men

Data were retrieved from the publication of Zhou and Wang (2020) [27] to identify
differentially expressed (DE) lncRNAs between teratozoospermic and normozoospermic
individuals. In summary, as described in the publication of Platts et al. (2007) [123], semen
samples were collected from thirteen normospermic and eight teratozoospermic men to
investigate the RNA expression profiles of human spermatozoa. RNA extraction was
performed on purified sperm cells obtained from ejaculate samples, and the extracted RNA
was subjected to hybridization using Affymetrix U133 (v2) Microarrays. The data from this
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study are available in the GEO database under the accession number GSE6872 [123]. Then,
based on the analysis of Zhou and Wang (2020) [27], DE lncRNAs were identified using
cut-off criteria with a p-value < 0.05 and [logFC] > 2 [27].

4.3. Identification of Exclusive Variants on DE lncRNAs and Variant Prioritization—Investigation
of Their Role and Consequence

Following the identification of variants exclusively found in teratozoospermic men
through whole-genome sequencing analysis and the identification of differentially ex-
pressed (DE) lncRNAs between teratozoospermic and normozoospermic men, these datasets
were integrated. Only the exclusive variants found in teratozoospermic men that mapped
onto DE lncRNAs were selected for further analysis, as variants occurring in lncRNAs had
the potential to influence the expression level, structure, and function of these lncRNAs
by interfering with the expression of their corresponding target mRNAs [124]. In this way,
they can contribute to the development of complex disorders, such as male infertility [21].
Additionally, these variants hold the potential to serve as valuable biomarkers [124].

Then, to further prioritize the exclusive variants on DE lncRNAs, a series of filters
were applied. Specifically, variants with potential functional roles were selected based on
information from the 3DSNP [29] and RegulomeDB databases [28]. RegulomeDB integrates
data from ENCODE, GEO, and other sources to identify the regulatory roles of non-coding
SNPs. Its main function is to assign scores to SNPs, allowing for the differentiation of
functional SNPs from a large pool of variants. Each SNP is assigned a rank from 1 to
7, with lower values indicating a higher likelihood of having a regulatory function [28].
Similarly, the 3DSNP database provides information on 3D-interacting genes, enhancer
states, promoter states, transcription factor binding sites, altered sequence motifs, and
conservation. It calculates a functional score for each SNP, with higher scores indicating
a greater likelihood of SNP functionality [29]. Thus, to assess the impact of variants on
lncRNA functionality, only variants meeting the criteria of a 3DSNP score > 10 and a
RegulomeDB Rank between 1a and 2c were used for further analysis. It is important to
note that when evaluating the functionality of variants and prioritizing them, we opted
for specific thresholds. These thresholds included a 3DSNP score greater than 10 and a
RegulomeDB Rank less than 3. These thresholds were chosen based on previous and similar
publications, where they have been associated with a relatively high level of evidence for
the potential regulatory functions of SNPs [125–128]. Additionally, the lncRNA structure
changes induced by variants were also investigated. The lncRNASNP v3 [33] database
utilizes data from RNAsnp [129] to evaluate the effects of variants on lncRNA’s secondary
structure. Thus, variants were filtered, retaining only those with a p-value < 0.2, indicating
their influence on lncRNA structure for subsequent analysis. In our analysis, a p-value
less than 0.2 meant that a variant had a notable effect on lncRNA structure. This threshold
aligns with the recommendations from the creators of lncRNASNP v3 [33] and is based on
calculations from RNAsnp [129]. In brief, the program computes base-pairing probabilities
for both the original (wild-type or WT) and altered (alternate or ALT) sequences containing
the SNP. It then assesses the structural distinction between these sequences using metrics
like Euclidean distance (d) and Pearson’s correlation coefficient (r) for RNA segments
spanning at least 50 nucleotides. The most significant structural change, either in terms
of the maximum base pairing distance (dmax) or minimum correlation coefficient (rmin),
is identified. Empirical p-values are calculated to gauge the likelihood of this change
occurring randomly. If the p-value for dmax falls below 0.2, it indicates that the SNP induces
a substantial and non-random alteration in RNA structure. Furthermore, considering
that lncRNAs interact with miRNAs to regulate gene expression, the lncRNASNP v3
database [33] was employed to identify exclusive variants on teratozoospermic men that
result in the gain or loss of miRNA target sites on the aforementioned DE lncRNAs. This
specific database was selected as it represents the intersection of results from MiRanda,
TargetScan, and Pita, providing the final miRNA targets of lncRNAs. Subsequently, the gene
targets of the affected miRNAs were identified using experimental interactions obtained
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from miRTargetLink 2.0 [36]. To gain further insights into the role of these gene targets and
identify deregulated pathways in teratozoospermia resulting from exclusive variants on
DE lncRNAs that affect their interaction with miRNAs, Gene Ontology (GO) Enrichment
analysis [37,38] and KEGG pathway analysis [39] were conducted using ShinyGO 0.77 [130].
For both GO and KEGG analyses, it is essential to highlight that statistical significance was
reported after correcting for the false discovery rate (FDR) in order to account for multiple
comparisons. Specifically, we applied an FDR-adjusted p-value threshold of <0.05. It is also
important to note that only the overlapping gene targets of affected miRNAs were utilized
for both the Gene Ontology (GO) Enrichment analysis [37,38] and the KEGG pathways
analysis [39].

In summary, the methodology used in this study is presented in Figure 2.
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5. Conclusions

In conclusion, this study represents the first comprehensive investigation into the
impact of specific variants on lncRNAs’ function and structure, utilizing whole-genome
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sequencing and RNA expression profiles of patients with teratozoospermia. This research
is highly significant as it lays the foundation for future studies by identifying the candidate
lncRNAs and variants associated with teratozoospermia for the first time. The prioritized
variants found exclusively in teratozoospermic men hold the potential to serve as valuable
biomarkers pending further experimentation. Moreover, the identification of a link between
male infertility and cancer opens promising avenues for future research. However, the small
sample size of recruited patients is a limitation of this study, and therefore, the validation of
these findings in a larger sample is recommended. Additionally, functional experiments are
essential to confirm the impact of these variants on the structure and function of lncRNAs,
as the present study relied on bioinformatics tools. Such validations could strengthen the
credibility and applicability of the study’s outcomes. However, it should be noted that we
made concerted efforts to address the above-mentioned limitations by leveraging multiple
databases and implementing a stringent set of criteria and filters during variant analysis.

Therefore, this study makes a significant contribution to our understanding of tera-
tozoospermia by shedding light on important pathways that undergo deregulation due
to variants on lncRNAs. The identification of specific lncRNAs and variants serves as
a valuable foundation for enhancing teratozoospermia diagnosis, as a diverse range of
variants and previously unexplored lncRNAs have been uncovered, holding promise as
candidates for future research.

It is worth noting that this study represents a preliminary exploration into SNPs found
within differentially expressed lncRNAs and potentially associated with teratozoospermia.
Consequently, our findings should be interpreted with caution and validated in larger
cohorts. Nevertheless, it is important to recognize that smaller-scale studies, such as the one
presented here, can still yield valuable insights and lay the foundation for future research.
By identifying specific SNPs and drawing attention to lncRNAs that may contribute to the
pathogenesis of male infertility, especially in cases where limited information is available
regarding variants affecting lncRNA’s function and structure, studies of this nature can offer
valuable insights into the genetics of complex diseases and traits, such as teratozoospermia.
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