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Abstract: Angiogenesis is the development of new blood vessels from pre-existing ones. It is a
complex multifaceted process that is essential for the adequate functioning of human organisms. The
investigation of angiogenesis is conducted using various methods. One of the most popular and
most serviceable of these methods in vitro is the short-term culture of endothelial cells on Matrigel.
However, a significant disadvantage of this method is the manual analysis of a large number of
microphotographs. In this regard, it is necessary to develop a technique for automating the annotation
of images of capillary-like structures. Despite the increasing use of deep learning in biomedical image
analysis, as far as we know, there still has not been a study on the application of this method to
angiogenesis images. To the best of our knowledge, this article demonstrates the first tool based
on a convolutional Unet++ encoder–decoder architecture for the semantic segmentation of in vitro
angiogenesis simulation images followed by the resulting mask postprocessing for data analysis by
experts. The first annotated dataset in this field, AngioCells, is also being made publicly available.
To create this dataset, participants were recruited into a markup group, an annotation protocol was
developed, and an interparticipant agreement study was carried out.

Keywords: angiogenesis; endothelial cells; deep learning; semantic segmentation

1. Introduction

The formation of blood vessels in an adult organism occurs due to the process of
angiogenesis, which is the process of vessel formation from existing ones. In addition to
growth and development, angiogenesis includes renewal, regeneration, and an increase in
the branching of blood vessels [1–3]. Angiogenesis is one of the most important processes
that take place in the human body, without which its adequate function is impossible. Blood
vessels arose in evolution to allow haematopoietic cells to perform immune surveillance,
to supply oxygen and nutrients, and to dispose of waste. Vessels also produce instructive
signals for organogenesis in a perfusion-independent manner [2,4–6].

Angiogenesis occurs in the adult organism both in normal and pathological condi-
tions [6]. Normal physiological processes involving angiogenesis are the female reproduc-
tive cycle, placentation, wound healing, tissue regeneration, and hair renewal. However,
angiogenesis also contributes to pathological conditions [7]. Suboptimal vascular growth
can lead to a stroke, myocardial infarction, peptic ulcers, and neurodegenerative diseases.
Abnormal growth or remodelling of blood vessels underlies tumour formation, inflamma-
tion, pulmonary hypertension, and blindness [4,8].

All vessels are internally lined with endothelial cells (ECs), which form a monolayer
and are in a state of rest [2,4]. In a stable vessel of a healthy organism, ECs form a
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cobblestone monolayer and are in a relatively inactive state. Such a resting phenotype
is maintained until ECs pick up an angiogenic signal that causes significant changes in
their behaviour [9]. In response to tissue damage or lack of oxygen and nutrients, or in
pathological conditions, ECs become activated, and their further behaviour, particularly,
the formation of new vessels, depends on the cellular microenvironment and cytokines
secreted by both ECs and the microenvironment cells [4].

To date, two types of angiogenesis have been described: branching and nonbranch-
ing [2,10]. Nonbranching angiogenesis is the process of increasing the length of pre-existing
vessels, and branching angiogenesis is the formation of vessels by lateral capillary bud-
ding or the connection of existing vessels [2,4]. Different types of angiogenesis underlie
different pathological processes. The existing interest in the study of vessel formation
mechanisms is based on the possibility of creating test kits, therapies, and treatments of
different pathologies.

The study of angiogenesis is carried out using various experimental models including
the observation of the formation of vessels in various thin organs and structures of lower
animals or developing embryos of birds, the transparent chamber method, and the study of
the growth of vessels in the cornea of the eye of rodents and Danio rerio fish [11]. However,
one of the most popular and simple methods for studying angiogenesis in vitro is the
short-term culture of ECs on Matrigel, which is a gelatinous protein mixture obtained
from Engelbreth-Holm-Swarm mouse sarcoma cells. Endothelial cells migrate, differenti-
ate, and form capillary-like structures on Matrigel in the presence of different mediators.
The formation of tube-like vessels under these conditions can be used to assess compounds
that either inhibit or stimulate angiogenesis [12]. This Matrigel assay is quick and easy to
perform and also allows in vitro modelling of endothelial cell behaviour, including survival,
apoptosis, and the steps leading to capillary formation and invasion. It is also important for
investigating the effects of drugs or small molecules on angiogenesis in vitro before they are
developed into clinical therapies [13]. As a result of studies using this method, researchers
can obtain illustrative images of various stages of angiogenesis. By processing micropho-
tographs, they can estimate the length and number of formed vessels and the number and
area of “cell nodes”, which are clusters of cells that give points of growth to the vessels.
These parameters are important for understanding the stage of the angiogenesis process
and its mechanism. Establishing the mechanisms of angiogenesis and understanding
the behaviour of ECs as a result of the action of a mediator is important for the further
development of therapies. However, the evaluation of the obtained parameters causes a
number of difficulties for the researcher: a manual analysis of a large number of images,
which requires significant time and labour contribution, as well as the subjectivity of the
image analysis.

Currently, these kinds of images are analysed as follows: images are preprocessed to
correct uneven illumination using the polynomial method of background correction [14],
which allows for the creation of a clearer contrast between the cells and the background [15],
then, using contour detection and hierarchical image segmentation [16], the cells are
segregated, followed by skeletonization. Ten basic parameters of the network structure
are quantified by the skeleton: branches, closed networks, nodes, network areas, network
structures, triple-branched nodes, quad-branched nodes, total branch length, average
branch length, and the branch-to-node ratio [17,18]. The disadvantage of this approach
is the sensitivity and accuracy at the segmentation stage, e.g., when analysing, images
with insufficient illumination; defective images taken with a poor-quality microscope or
obtained out of the plane of focus; and images that contain various kinds of objects, such as
debris or single cells (of which there are many in the early stages of angiogenesis), which
do not contain important information.

Despite good results in medical image analysis being obtained through deep learning
methods [19–21], to the best of our knowledge, there has not been any research done
on the semantic segmentation of blood vessel images obtained by in vitro angiogenesis
simulation. In this paper, we propose segmenting the ECs of blood vessels on the image
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using the Unet++ architecture [22], then postprocessing to extract quantities. This approach
allows for the division of objects formed by ECs into two categories: nodes and tubes
(Supplementary Annotation Protocol (Schemes S1 and S2)), which leads to an increase in
the derived parameters from the image, such as tube length, tube coverage area, and node
area (Supplementary Figure S1).

Neural networks typically contain a huge number of trainable parameters and require
a large number of images for better performance. Annotating an appropriate number of
images from different stages of angiogenesis can be very challenging, especially when a
strict definition of objects and structures is required, and the lack of labelling data in this
area remains a significant obstacle to numerical image analysis. The creation of labelled data
requires a specialist’s involvement, although even experienced experts may show some
inconsistency in formally defining objects. Annotations have to be made on many images,
but since significant differences can be observed even within the same laboratory, which
can affect the learning process of the network architecture substantially, an annotation
protocol (AP) has been developed and its correctness has been tested with interparticipant
agreement (Section 4.3).

To the best of our knowledge, AngioCells is the first open data collection that enables
an automated picture analysis of the angiogenesis process, and we also publish it here.
The dataset is available at vessels.ispras.ru (accessed on 27 December 2022) under a Creative
Commons Attribution 4.0 International license [23].

2. Results
2.1. Encoder Selection

In 2015, network encoder–decoder architectures were introduced [24,25], including
Unet [26]. The decoder’s purpose is to convert full-resolution input feature maps from low-
resolution encoder features for pixelwise classification. The novelty of such architectures
is how the decoder upsamples lower-resolution input feature maps. In particular, the de-
coder uses the pooling indices calculated in the max-pooling step of the corresponding
encoder to perform nonlinear upsampling. The Unet architecture consists of a sequence of
nonlinear processing layers (encoder) and a corresponding set of decoder layers followed
by a pixelwise classifier. Ronneberger et al. [26] added skip connections to the encoder–
decoder image segmentation networks, e.g., SegNet, which increased the model’s accuracy
and solved the issue of vanishing gradients, much like in image recognition [27] and key-
point detection [28]. Each encoder typically comprises a few convolutional layers with
batch normalization, a ReLU nonlinearity, nonoverlapping max-pooling, and subsampling.
The max-pooling indices in the encoding sequence are used in the decoder to upsample
the sparse encoding caused by the pooling procedure. This type of network architecture
has proven itself in image segmentation competitions such as satellite image analysis [29],
medical image analysis [30,31], and others [32].

It is well known that to train the network without overfitting, the dataset must be rela-
tively large, comprising millions of images. In most cases, data sets for image segmentation
consist of a maximum of thousands of images; in our case, it was 275 annotated images,
since the manual preparation of masks is a very expensive procedure. There is a method to
train Unet on a relatively small training set. As a rule, the classification model (without
the last dense layers), trained on ImageNet as a feature extractor to build a segmentation
model [33], is taken as an encoder. Thus, the training procedure can be performed on the
untrained multiple layers of the decoder (sometimes only for the last layer) to take into
account the features of the data set. This training method is described in this subsection.

As an encoder in our Unet neural network, we considered the following classifiers:
EfficientNet-B7 [34], ResNeXt-101 [35], ResNet-152 [36], and Res2Net-101 [37]. The selection
of such a set of networks was due to the high accuracy in image classification on ImageNet
dataset competitions and the availability of weights in the public domain. Figure 1 presents
the result of training networks on all data types for a k-fold cross-validation. To analyse
the statistical significance of the proposed architectures with different encoders, the non-
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parametric statistical Wilcoxon signed-rank test [38] was used, with a typical rule being a
requirement that k > 20 [39], so k was chosen to be 25. Using the IoU3 (and IoU2) metric on
the validation samples, a pair of architectural performances was employed for the statis-
tical test. A pair of models was tested using the one-sided test: the null hypothesis (H0)
corresponded to the median of the first model of the pair being less than the median of the
second model of the pair. The significance level set for the test was α = 0.05 (or a confidence
level of 0.95). If the p-value of the test was less than the significance level α, then the null
hypothesis was rejected in favour of an alternative hypothesis (Ha): the median of the first
model out of the pair was greater than the median of the second model out of the pair (fur-
ther, the first model had greater performance than the second model). If the p-value of the
test was greater than the significance level α, then no assumptions were made. The results
of this comparison were as follows: Unet with EfficientNet-B7 had a greater performance
(IoU3) than the model with ResNeXt-101, ResNet-152, and Res2Net-101 with a confidence
level of 0.95 (Figure 1A); Unet with EfficientNet-B7 had a greater performance (IoU2) than
Res2Net-101 and ResNet-152 with a confidence level of 0.95 (Figure 1B). Later in this paper,
an architecture with EfficientNet-B7 as an encoder was used, as it had a greater perfor-
mance by the IoU3 metric compared to architectures from other encoders and a greater
performance by the IoU2 metric compared to two other architectures. Supplementary
Figure S2 shows Figure 1 with performance scores.

A B

Figure 1. Prediction scores for the validation data; each dot represents performance for kth model
of the 25-fold cross-validation; 4 encoders were considered: EfficientNet-B7, ResNeXt-101, ResNet-
152, and Res2Net-101. (A) Performance by IoU3 metric. The Wilcoxon signed-rank test: median
performance of Unet with EfficientNet-B7 was greater than for the model with ResNeXt-101, ResNet-
152, and Res2Net-101 with a confidence level of 0.95. (B) Performance by IoU2 metric. The Wilcoxon
signed-rank test: the median performance of Unet with EfficientNet-B7 was greater than for the
model with Res2Net-101, ResNet-152 with a confidence level of 0.95.

2.2. Optimization Loss Function

The choice of a loss function is extremely important in deep learning complex archi-
tectures for the semantic segmentation of images, as the resulting network performance
depends on it. To enhance the outcomes of their datasets, researchers have been experi-
menting with various domain-specific loss functions since 2012 [40]. The most commonly
used loss function for the task of image segmentation is the pixelwise cross-entropy (CE)
loss [41]. Therefore, it was selected for the encoder in Section 2.1 for our Unet.

The loss value should rise monotonically as more false positives and negatives are
expected. S. Asgari Taghanaki et al. showed that, for large objects, almost all considered
functions followed this assumption; however, for small objects, only some functions penal-
ized monotonically more for larger errors [41]. Therefore, the focal loss (FL) function was
selected to achieve a greater stability when training on both large (nodes and backgrounds)
and small (tubes) objects. In our case, the proportion of tubes, nodes, and backgrounds
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were Ntubes
N ' 0.05, Nnodes

N ' 0.26, and
Nbackground

N ' 0.69, respectively, where Nc is the number
of pixels marked as class c and N is the total number of pixels in the dataset. For the case
of a binary segmentation, the focal loss for class c can be written in the following form [42]:

FL(pt) = −αt(1− pt)
γ log(pt), (1)

where γ > 0 is a tunable focusing parameter. αt = 1− Nc
N was used to mitigate class

imbalance. For notational convenience, pt was defined as:

pt =

{
p if y = c
1− p otherwise.

(2)

In the above, y specifies the ground-truth class and p ∈ [0, 1] is the model’s estimated
probability for the class with label y = c, where c ∈ {0, 1, 2} (background, nodes, tubes).
Extending the focal loss to the multiclass case yields the sum of the FL for each class. We
found γ = 0.5 to work best in our experiments (Supplementary Figure S3). The resulting
model on the test on all data showed the following performance: IoU2 = 0.803± 0.016 and
IoU3 = 0.643± 0.014. As can be seen, this approach improved the performance of the
small object (tubes) detection network due to the modulating factor (1− pt)γ [40], which
confirmed the feasibility of using the focal loss in subsequent experiments.

2.3. Architecture Selection

In this study, in order to achieve the best network quality, two modern architectures
different from Unet were also considered—DeepLabV3+ [43] and Unet++ [22]. These two
methods, as well as Unet, were initialized using the EfficientNet-B7 encoder pretrained
on ImageNet, selected in Section 2.1. For a more detailed study, each of the models was
trained and tested on different data types (Table 1). The results of training and testing are
demonstrated in Figures 2 and 3. As you can see, Unet++ demonstrated not only the best
quality according to the IoU3 and IoU2 metrics, but also the greatest stability, judging by
the standard deviation charts. Note the Unet architecture and DeepLabV3+, trained on
the different data groups, were much inferior in quality to the Unet++ architecture. In this
regard, the final architecture of the neural network was Unet++ based on the pretrained
classifier EfficientNet-B7. Table 2 shows the performance results for an all groups–all
groups (training–test) pair. You can also notice that training on all data was more stable
than training on one type of subdatasets. Most likely, this was due to both the large number
of labelled images and the variety of data obtained: various stages of angiogenesis, photos
with a defect and uneven lighting when shooting, and high-quality data obtained from the
final stage of angiogenesis.

Table 1. Annotated images ratio of dataset for AI training and testing.

Number of Image–Mask Pairs

Data Type Training Set (68%) Testing Set (32%)

Good 77 37
Dark 36 18

Defective 53 26
Different 19 9

All 185 90



Int. J. Mol. Sci. 2023, 24, 1102 6 of 20

Unet Unet++DeepLabV3+

Figure 2. Performanceon test data belonging to different groups based on models trained on different
training data. The first row contains the mean values of IoU3. The second row contains standard errors
of mean IoU3. Each column corresponds to one of the selected network architectures—DeepLavV3+,
Unet, Unet++.

DeepLabV3+ Unet Unet++

Figure 3. Performanceon test data belonging to different groups based on models trained on different
training data. The first row contains the mean values of IoU2. The second row contains standard errors
of mean IoU2. Each column corresponds to one of the selected network architectures—DeepLavV3+,
Unet, Unet++.

Table 2. Performance depending on the model architecture. The training and testing were carried out
on 68% and 32% of the whole dataset, respectively.

Performance DeepLabV3+ Unet Unet++

IoU3 0.556± 0.008 0.635± 0.006 0.641± 0.003
IoU2 0.837± 0.003 0.888± 0.006 0.8915± 0.0017
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2.4. Fine-Tuning

As discussed in Section 2.1, training a deep convolutional neural network (CNN) from
scratch is challenging, especially in medical applications where annotated data are scarce
and expensive. An alternative to full training is transfer learning, where a network that
has been trained on a large dataset is tuned for another application. When the new data
set is small, the recommended approach to training the network is to leave the first layers
of the network untrained (frozen layers) and subject the last layers to training (unfrozen
layers) [44]. A CNN’s first layers are demonstrated to represent more low-level features,
whereas deeper layers are shown to identify more semantic and high-level features [45].
Therefore, training only the deepest layers (decoder) assumes that the basic characteristics
of the datasets (associated with the encoder) are similar and the more specific characteristics
of the datasets (associated with the decoder) need to be adjusted to get acceptable results
in a different application. This assumption may not be true in some medical applications,
such as microscope images of blood vessels, due to their specificity compared to data
from ImageNet.

M. Amiri et al. showed that, due to their dataset-specific patterns, the encoder training
when freezing the decoder exhibited better performance [46]. Therefore, this section looks
at improving network performance by unfreezing the encoder blocks one-by-one (fine-
tuning) from the beginning (first block) to the end (tenth block). By “block”, we mean a
set of layers that have a total number of parameters equal to ∼6M so that it is possible to
divide the encoder (∼63.8M) into 10 blocks. The process of fine-tuning is as follows:

1. The model obtained in Section 2.3 was taken, all layers were frozen, the first block
was unfrozen, and the network was trained using a fivefold cross-validation;

2. The best performing network (IoU3) from the previous experiment was taken, all
layers were frozen, the next block was unfrozen, and the network was trained using a
fivefold cross-validation;

3. Step 2 was repeated until the network with a fully fine-tuned encoder was obtained.

The obtained result is shown in Figure 4A. A similar experiment was carried out
where the unfreezing of the following block was also accompanied by a reset of the
weights to random values (Figure 4B), but this approach showed a lower performance:
IoU3 = 65.5± 0.5% versus IoU3 = 65.93± 0.11%. This procedure was also performed in
the reverse direction for the Unet architecture (from the 10th block to the 1st block in the
encoder), but in this case, there was almost no noticeable improvement (Supplementary
Figure S4). For comparison, the model performance results for each experiment are shown
in Table 3. Therefore, to solve this problem, we propose to use the Unet++ neural network
architecture based on the EfficientNet-B7 encoder, followed by a fine-tuning procedure
(proposed method).

Table 3. Model performance depends on the experiment.

Performance Focal Loss Architecture
Selection Fine-Tuning

IoU3 63.5± 0.6% 65.1± 0.8% 65.93± 0.11%
IoU2 88.8± 0.6% 89.6± 0.5% 89.77± 0.15%
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Fine-tuning direction

No random Random

(A) (B)

Figure 4. Average IoU3 and IoU2 scores depend on the number of trainable blocks in the EfficientNet-
B7 encoder. The arrow shows the direction of the fine-tuning blocks: from the first to the last.
(A) With fine-tuning, the block weights are not reset. Achieved performance: IoU3 = 0.703± 0.005
and IoU2 = 0.83± 0.01. (B) With fine-tuning, the weights of trainable block are reset. Achieved
performance: IoU3 = 0.538± 0.004 and IoU2 = 0.804± 0.010.

2.5. Qualitative Results

Three architectures were considered for the qualitative results: DeepLabV3+, Unet,
and our proposed method (Figure 5). We would like to note that DeepLabV3+ had
significant drawbacks. It demonstrated a wrong understanding of the layout of objects
in photographs and their division into “nodes” and “tubes”. Almost all structures in
the photographs were identified as tubes, even single cells and cell debris. Quite often,
on cellular structures after marking, you can see that the model labelled a thin area near
the nodes as tubes, while this area did not fall under the “tube” category. This defect in the
model was called “double marking”. All this meant that DeepLabV3+ did not recognize or
categorize objects. In addition, this model did not select objects along the contour and did
not repeat their shape, which affected the final numerical data on the length and size of the
objects of interest to us.

Compared to DeepLabV3+, the other models were better at understanding and sepa-
rating objects in photographs into “nodes” and “tubes”. This is evident due to the absence
of “double marking”, both as the nodes and tubes of all objects in the photographs. How-
ever, each of the models had disadvantages. Unet demonstrated the labelling of single cells
both in the structure of the node and in the background of the photographs as tubes; there
was also a “double marking” of some structures. Although rare, there was a “double mark-
ing”. The proposed method showed the best result. This was evident from the absence of
indicating single cells and small groups of cells freely located in the photographs as nodes
and the marking of long structures as tubes, as well as single cases of “double marking”
and labelling of single cells with constriction as tubes. However, like everything else, this
model had a serious drawback—the model did not mark nodes consisting of one cell and
located between clusters of tubes.
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Figure 5. Results of qualitative segmentation by the proposed method, Unet, and DeepLabV3+ (×100
magnification).

3. Discussion

The process of the formation of new vessels (angiogenesis) is one of the most important
processes in human physiology and pathology [7]. Angiogenesis stops in the postnatal
period and, under physiological conditions, is limited to the reproductive cycle in women
and cyclic processes in the hair follicles. However, without angiogenesis, the repair process
is impossible. Angiogenesis underlies many pathological conditions: neoplastic processes,
atherosclerosis, diabetes, endometriosis, and diseases associated with chronic inflamma-
tion [2,7]. Angiogenesis consists of several stages, each of which is associated with the
functional activity of ECs; it is divided into branching and nonbranching. Each type of
them has its own characteristics; however, the key stages in the process of vessel formation
are the proliferation and migration of ECs [2,5,7].

Angiogenesis has been studied all over the world for a long time [47]. Researchers
have been studying both the individual stages of angiogenesis and the entire process
using animal and cell models [11,48]. However, the most difficult step in the study of
angiogenesis remains the analysis of the obtained data.

Recently, methods and programs have been developed that make it possible to study
the processes of ECs’ proliferation and migration at a sufficiently high level and process
the data obtained in the course of angiogenesis experiments [48]. The primary methods for
assessing proliferative activity are: the assessment of cell number, the detection of DNA
synthesis by incorporating labelled nucleotide analogues, the measurement of DNA con-
tent, the detection of proliferation markers (KI-67 [49], PCNA [50]), and metabolic assays
(MTT assay) [51]. To investigate the migration activity of ECs, the wound healing assay and
the transwell cell migration assay (Boyden chamber assay) are used [48,52]. In comparison
to proliferation, the estimation of migratory activity is complicated by the fact that the
researcher needs to take microphotographs, which must be further processed (calculating
the number of migrating cells in the photographs, the area before and after cell migra-
tion). In many articles, the authors indicate that ImageJ was used for processing [53,54],
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and new programs are currently being developed, for example, MarkMigration software
(St. Petersburg, Russia) [55].

For a researcher in the field of angiogenesis, experiments to assess the process of the
formation of vascular networks are of the greatest interest and complexity. At present,
a method using various 3D scaffolds is widely used, an example of which is the matrix Ma-
trigel. However, like any method for assessing the formation of blood vessels, this method is
associated with technological difficulties, namely, accounting for the images obtained using
a microscope. Often, researchers have to process hundreds of microphotographs to obtain
the final result of the experiment, followed by further statistical processing of the data.
To process photographs, researchers use ImageJ [54,56] and the AxioVision image analysis
system [57] to measure the length and number of tubes, but this is a very time-consuming
and labour-intensive process. In addition, a significant problem for researchers of angiogen-
esis is the processing of photographs obtained during the experiment. Currently, the use of
time-lapse microscopy is a routine method. However, taking the multitude of photographs
obtained at different stages of the experiment into account remains a difficult task, as, in the
process of vessel formation, tubes alter their morphology, size, and branching. Currently,
there are a number of imaging systems with integrated software that allow the processing
of images with capillary-like structures, such as the Operetta High Content Imaging System
by PerkinElmer and the CellInsight CX7 HCA Platform by Thermo Scientific. However,
these systems have a number of disadvantages, including the high price of the systems and
the need to conduct experiments with fluorescent dyes, which increases the cost of research.
Additionally, not all systems allow you to mark several objects at once, in particular tubes
and nodes. Thus, it is necessary to create automated systems that allow the processing
of angiogenesis photographs, namely, to identify various objects in photographs, to issue
numerical data, and to be able to perform statistical analysis.

We developed and validated a fully automated pipeline to analyse microscope-derived
ECs images. We used a pretrained EfficientNet-B7 encoder to build a Unet++ deep learning
model and applied postprocessing steps to obtain quantities of angiogenesis in vitro.
The semantic segmentation model obtained in the series of experiments described in
Sections 2.1–2.4 showed its accuracy in the average macroscopic index IoU3 = 65.93±
0.11% for three classes and IoU2 = 89.77 ± 0.15% for two classes. The visualization
(Section 2.5) showed that a lot of areas where human and computational predictions
diverged were primarily due to the entanglement between the tube and the node, as well
as the segmentation of single cells with no important qualities in the background, which
was not deliberately marked up by the participants.

To the best of our knowledge, the study is the first to explore deep-learning-based
strategies for object segmentation. The main advantage of our method is that the sensitivity
of the assay does not depend on image quality, which allows for more consistent results
compared to existing methods of image analysis of the angiogenesis process. Indeed,
images taken with a microscope do not have to be “perfect” for a particular method.
For example, images may have a low contrast, the quality of which is affected by several
factors, including the settings of the microscope used to take the image [18].

To train the model, we collected 275 annotated images taken from an AxioObserver
Z1 microscope at a 100×magnification (phase contrast). It is the first angiogenesis process
dataset publicly available, as far as we know. We divided the dataset into four categories
(Good, Dark, Difficult, and Different) based on image quality and content. We suppose
this subdivision will help obtain a flexible and more predictive model in future studies.
The agreement coefficient showed that the annotated images generated by the participants
were not perfect but robust enough to be used as ground truth masks. The annotation
protocol was created during the discussion, after which the quality of the resulting masks
increased from weak in Phase 1 to close to perfect in Phase 2, and moderate in Phases 3
and 3∗. It is up to the researcher to create the model and decide on the use of the data.
In addition, we demonstrated that there was no significant difference in the quality of
markup between students and experts.
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Our annotated dataset is a step that brings us closer to the use of more advanced
methods for image analysis of the complex process of angiogenesis. Our approach allows
the image analysis to produce quantitative data, which will save experts from inefficient
and time-consuming work [58]. Image segmentation followed by skeletonization yielded
ten network structure parameters, including branches, closed networks, nodes, network
areas, network structures, triple-branched nodes, quad-branched nodes, total branch length,
average branch length, and the branch-to-node ratio. Among other things, the uniqueness
of our approach is defined by the division of objects formed by ECs into two categories,
namely nodes and tubes, which in turn allowed us to obtain parameters such as tube length,
tube coverage area, and node area (Supplementary Figure S1).

The definition and division of objects in photographs into nodes and tubes and the
determination of their length and area has a number of important functional characteristics.
Firstly, by the number, area and length of nodes and tubes formed by cells, and by the
number of branches from a particular node, the researcher can determine the type of
angiogenesis and the mechanism by which the tubes were formed. Secondly, the researcher
can establish the functional activity of ECs and, for example, understand the migration
potential of cells depending on specific conditions. Thirdly, the establishment of the area
and size of the tube may be useful for further study to determine the lumen in the vessel.
The determination of the node area can allow the researcher to understand the correctness
of the experiment and the influence of conditions on the functional characteristics of ECs,
including their proliferation and migration. For example, the presence of a large number
of large-area nodes and short tubes along the well edges may indicate that the researcher
made technical errors, such as when layering Matrigel or adding cells to wells. In addition,
the ability of the system to identify tubes and nodes separately is very important for
processing photographs of various stages of angiogenesis, as it will allow the recording of
new nodes, points of formation and branching of vessels, as well as their growth during the
experiment. Finally, by having a large number of different parameters and data available
and knowing the history of the influence of one or another factor on angiogenesis, it is
possible to predict the behaviour of cells in culture and in the process of angiogenesis.

The implementation of this approach enables the analysis of large image sets from
time-lapse microscopy, which, in turn, will enhance the mechanistic evaluation and improve
functional indices of angiogenesis (including pictures of different stages of angiogenesis)
and other biologically important branching processes, e.g., the formation of biological
neural networks. Moreover, it paves the way for obtaining the necessary data to determine
the kinetics of vascular formation, quantify the rate of network formation and stabilization,
and understand the potential mechanisms underlying vascular dysfunction. In the future,
these data can be used to create predictive models both for the fundamental study of the
mechanisms underlying angiogenesis under normal and pathological conditions and for
various test systems for which immediate data acquisition is important.

4. Materials and Methods
4.1. Dataset Description

A unique dataset consisting of 275 photographs capturing the process of blood vessel
growth was used in this study. Preliminary experiments were undertaken to grow vessels
from endothelial cells:

ECs of the EA.Hy926 cell line were used (ATCC, Manassas, VA, USA). They reproduced
all basic morphological, functional, and phenotypic characteristics of ECs [59–61]. The cells
were cultured according to the manufacturer’s protocol (ATCC, Manassas, VA, USA).
The cells were subcultured every 3–4 days by a 5 min treatment with Versene (BioloT,
St. Petersburg, Russia). All cells and experiments with cell culturing were performed in
conditions of a humid atmosphere at 37 °C and 5% CO2. Cellular death percentage was
evaluated by trypan blue dye (Sigma, Aldrich Chem. Co., St. Louis, MO, USA) inclusion.
Cell viability in all experiments was≥96%. To assess the formation of tubelike structures by
EA.Hy926 cells, the wells of a 24-well plate were pretreated with a Matrigel Growth Factors
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Reduced matrix (BD, Franklin Lakes, NJ, USA). Matrigel, a secretion product of mouse
sarcoma cells of the Engelbreth-Holm-Swarm line, represents a mixture of extracellular
matrix proteins, such as laminin and type IV collagen and also contains comparatively
minor levels of TGFβ, EGF, IGF, bFGF, and PA [62]. In the wells of a 24-well plate, 400 µL
of DMEM/F-12 and 25 µL of fetal calf serum (FCS) were added. Then, 1.5 × 105 ECs
(EA.Hy926 cells) in 500 µL of DMEM/F-12 were added to each well (Sigma-Aldrich Chem.
Co., St. Louis, MO, USA). The results of ECs culturing in the presence of 2.5% FCS (BioloT,
St. Petersburg, Russia) were taken as a baseline (the length and number of tubes: 99.00
(85.00; 118.47) µm and 115 (104; 122)) and the results of ECs culturing in the presence of
10% FCS were used as a positive control (the length and number of tubes were 113.78
(90.49; 141.24) µm and 197 (181; 209), p < 0.001). The plates were incubated for 24 h
(37 °C, 5% CO2). The experiments were repeated twice in 3 iterations for each position.
In most of the experiments, the obtained data were recorded at the endpoint after 24 h; in
some experiments, data were recorded at the endpoint after 10 h (the length and number
of tubes were 76.5 (63.66; 96.82) µm and 58 (49; 69), p < 0.001) to follow the process of
vessel formation. In each well of the plate, photographs of five random visual fields were
taken by the AxioObserver Z1 microscope (Carl Zeiss, Oberkochen, Germany) at a 100×
magnification (phase contrast). All angiogenesis experiments have been described and
published previously [57,63–65]. Thus, as a result of the experiments, 275 micrographs
were obtained and selected for further analysis using a neural network.

The selected images were divided into 4 categories as shown in Figure 6: “Good”—
photos of good quality, convenient for marking and training model, “Dark”—images
obtained in experiments with altered illumination due to replaced microscope glass,
“Defective”—images with foreign objects against the background, shadows and defocus-
ing, “Different stages”—a few photos in which the process of vessel formation was not
completed, for example, when tubes were not fully formed and were not closed into nodes.
The last category of images was the most difficult to assess, since it was not obvious when
the formed entity could be considered a full-fledged structure in the form of a node or tube,
and when it could not. Images were used to mark up incoming data for further training.

B D EC

200 μm

A

200 μm 200 μm 200 μm 200 μm

Good Dark Defective Different

Figure 6. Original dataset consisting of 4 image categories (A) Good, Dark, Defective, and Different.
(B) Image of good quality, easily recognisable structures; ECs were incubated for 24 h. (C) Image
with altered light, darker than normal; ECs were incubated for 24 h. (D) Image with extraneous
objects, such as shadows and defocus; ECs were incubated for 24 h. (E) Image from the early stages
of angiogenesis; ECs were incubated for 10 h. Phase contrast, 100×.
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4.2. Participant Training and Data Collection

The study workflow is illustrated in Figure 7. There were two groups of people
involved in the labelling process: students (S) whose field of study was not related to
angiogenesis and experts (E) with knowledge of the subject. New participants were added
over the course of the project and the number of people in the project varied periodically.

ma
sks

ima
ges

Figure 7. Illustration of workflow. (A) The original dataset. (B) Labelling was conducted using the
online service CVAT with communication through Telegram. During the discussion, the annotation
protocol—a set of rules describing the definitions of tubes and nodes for marking—was formed.
(C) During the data-labelling process, the agreement coefficient was measured periodically to verify
that the obtained data were correct. Each member of the labelling group had one identical “hidden”
image periodically added to the set of 10 images, and then the labelling of that image from all
participants was compared. (D) The result was a dataset with a total of 275 images.

The training of the annotation group was organised. Phase 1 was an initial consultation:
an explanation by experts of the general rules about the difference between tubes and
nodes for students, as well as instructions for working with the CVAT (Computer Vision
Annotation Tool) service for annotation for all participants. CVAT is a computer vision open-
source tool for interactive video and image annotation [66]. The interface is convenient for
users because it has a web working mode and is compatible with teamwork. The primary
functions of the tool are: object detection, image classification, and segmentation. For our
purposes, the last one was the most important. For participants’ training, the images were
taken from the original dataset (Figure 7A), as well as for the following data collection.
Next, each student was given two images: one identical Good image for further agreement
coefficient measurement to determine the similarity of the markings (Figure 8. Phase 1, see
Section 4.3 for more details), and one individual Defective image for their own practice in
labelling. The mark-up process was conducted independently—students did not consult
with each other. This was followed by a discussion of their errors with experts: both
general ones in the Good image, and more difficult ones in the Defective image. As a result,
during the discussion, an annotation protocol was formed: a set of rules according to which
nodes and tubes were marked (Supplementary Annotation Protocol (Schemes S1 and S2)).
Special attention was paid to the protocol, as many points in the mark-up of structures
were not obvious.

In the Phase 2, another pair of images was uploaded for each participant, one of the
images was Good, the second was Defective; the comparison was made from the Good
image, the second image was added for participants’ practice only. During the labelling
process, the participants conferred among themselves and discussed controversial points
within their social net workspace (Figure 7B). In addition, participants were actively using
the rules from the annotation protocol. Due to the improvement of the agreement coefficient
for Phase 2 in comparison with Phase 1 (0.86± 0.02 vs. 0.69± 0.10, Table 2), it was decided
that the training of the participants was successful and it was possible to start preparing
the dataset.
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Phase 2 Phase 3 Phase 3*Phase 1

Phase 1

Une Unet+

Phase 2 Phase 3 Phase 3*

Figure 8. Cohen’s kappa pairwise matrix between students (S) and experts (E) for 4 phases of marking:
(Phase 1): shared image from the Good group, prior to the creation of the annotation protocol,
the markup was independent—participants did not confer, κ̄ = 0.69± 0.10. (Phase 2): shared image
from the Good group, immediately after creation of the annotation protocol, participants conferred,
κ̄ = 0.87± 0.02. (Phase 3): shared hidden image from the Good group during the labelling process,
independent mark-up, κ̄ = 0.77± 0.05. (Phase 3*): the same conditions as in Phase 3, but with a
hidden image from the Different group, which was more difficult to analyse, κ̄ = 0.75± 0.03. Purple
cells without text show that the image was not marked by a particular member of the annotation
group. The solid black line divides student–student, expert–expert, and student–expert pairs.

After that, the final Phase 3 began: obtaining labelled images for the dataset. In total,
each participant was given 3 sets of 10 images. Each set contained a different number of
various types of images. An interim measurement of the coefficient of agreement was also
periodically carried out to make sure that the annotated data were correct. The participants
did not confer and used the annotation protocol. The same images for agreement measure-
ment were mixed into the set of each of the participants in different places in the sequence
(Figure 7C) . In this phase, participants were unaware that a comparison of images was
being made, unlike in the first and second phases. These images were “hidden”.

As a result of the labelling process, the number of image–mask pairs was 275, as shown
in Figure 7D: Good—114, Dark—54, Defective—79, Different—28. In the evaluation, all the
images were randomly split into two sets: 68% for training and 32% for testing. As shown
in Table 1, the training set consisted of 77 Good, 36 Dark, 53 Defective, and 19 Different
images annotated and sampled for building AI models.

4.3. Measuring Annotation Interparticipant Agreement

As already mentioned above, during the training of the participants of the mark-up
group and the dataset creation, the agreement coefficient was measured periodically: first
in the training stage to make sure that the participants understood the mark-up rules,
during the dataset data collection to monitor the correctness of the resulting data, and also
to compare the quality of markings.

Phase 1: after an initial consultation from the experts, the students were given two
images, one from the Defective group and one from the Good group, with the image
from the Good group being used to measure the agreement coefficient. The purpose of
this was to analyse how fine the consent was between participants, and also to discuss
errors and subsequently form the annotation protocol, a set of more explicit rules for
marking angiogenesis images. Students marked up the images without consulting each
other. The mean agreement was: 0.69± 0.10.

Phase 2: after the annotation protocol was created, all participants were again given
two new images, one from the Defective group and one from the Good group. Participants
were able to confer by discussing difficult aspects and also used the annotation protocol.
The agreement coefficient was again measured on the Good image. The average agreement
was: 0.87 ± 0.02. It is worth noting that this time the students’ agreement was much
higher, especially for those participants whose scores were lower than the others in Phase
1. In addition, the mark-up of the experts and the mark-up of the students matched well.
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Finally, the quality of the markup and the value of the agreement between the participants
led to the conclusion that it was possible to start labelling images for dataset.

Phase 3: As previously mentioned, once the process of obtaining the dataset had
begun, the agreement coefficient was measured twice: once on the image of the class Good
and a second time on the image of the class Different (in Figure 8 Phase 3 and Phase 3*,
respectively). At this phase, participants were unaware that a comparison was taking place,
and the images were deliberately shuffled into sets of photographs at different locations in
the sequence. It should be mentioned that in the process of obtaining the prepared marked
images for training the network, the quality was still at a high level, although lower than
in Phase 2. This is explained by the fact that the participants were discussing errors with
each other, whereas in Phase 3 they were already marking independently. The average
agreement in Phase 3 was 0.77± 0.05 and in Phase 3* it was 0.75± 0.03. Although marking
photos from the different phases was much more difficult, it did not greatly affect the
quality of agreement between participants: the agreement for both images matched within
one standard deviation (more details in Table 4). This demonstrated that the quality of the
received images was satisfactory, and that the annotation protocol worked effectively for
difficult cases too.

Table 4. Arithmetic means of Cohen’s kappa between different marking groups.

Agreement
Study Phase 1 Phase 2 Phase 3 Phase 3*

κ̄SS 0.69± 0.10 0.86± 0.02 0.76± 0.05 0.74± 0.03
κ̄EE − 0.90± 0.01 0.83± 0.01 0.80± 0.02
κ̄SE − 0.88± 0.02 0.78± 0.05 0.76± 0.03

κ̄ 0.69± 0.10 0.87± 0.02 0.77± 0.05 0.75± 0.03

Pairwise interparticipant agreement was measured using Cohen’s kappa [67] (kappa)
statistic. The general form of the equation can be written as:

κ =
p0 − pe

1− pe
(3)

where p0 denotes the observed probability of agreement, and pe denotes the probability of
the expected agreement due to chance. Possible values for κ statistics range from −1 to 1,
with 1 indicating perfect agreement, 0 indicating completely random agreement, and −1
indicating “perfect” disagreement [68]. Landis and Koch [69] provided guidelines for
interpreting kappa values, with values from 0.0 to 0.2 indicating a slight agreement, 0.21 to
0.40 indicating a fair agreement, 0.41 to 0.60 indicating a moderate agreement, 0.61 to 0.80
indicating a substantial agreement, and 0.81 to 1.0 indicating an almost perfect or perfect
agreement. Nevertheless, we recognise that qualitative cutoffs vary depending on the study
methods and research question. In our case, the equation for κ can be written as follows:

κ =
N ∑Nc−1

c=0 |Ic ∩ Jc| −∑Nc−1
c=0 |Ic| · |Jc|

N2 −∑Nc−1
c=0 |Ic| · |Jc|

(4)

where I and J denote two participants with corresponding masks, composed of c binary
channels, where Nc = 3 is the number of classes being considered, and N = 2584× 1936—
total number of pixels on an image.

Our analysis compared the impact of experience level and feedback on annotation
quality. As advised in [68,70], we used the mean kappa to obtain a final measure for
3 or more participants. For each phase, we measured four average kappa values as in
Naumov et al.’s [71] work: the first was averaged over expert–expert pairs (κ̄EE), the second
over student–student pairs (κ̄SS), the third over student–expert pairs (κ̄SE), and the fourth
over all pairs (κ̄). The first two values provided information about the agreement between
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the two groups, while the third value showed to what extent the experts agreed with the
students. We tended to use κ̄ as the final measure of expert agreement. The paired Cohen’s
kappa for each pair of experts are shown in Figure 8. The average κ values between the
different groups are presented in Table 4. We interpreted the agreement in Phase 1 as weak
(mean kappa: 0.77), in Phase 2 as close to perfect (mean kappa: 0.87), and in Phases 3 and 4
as moderate (mean kappa values of 0.77 and 0.75).

4.4. Evaluation Model Performance

To calculate the model’s performance, we used a standard measure commonly used
to solve the object category segmentation problem, called intersection-over-union (IoU).
The original equation for the binary problem can be given as:

IoUc =
|Tc ∩ Pc|
|Tc ∪ Pc|

(5)

where Tc and Pc are the two masks of the true label and prediction model for the corre-
sponding c binary channels. c can take the values {background, tubes, nodes}. In this paper,
we used the following two metrics:

IoU3 =
1
3

[
IoUbackground + IoUtubes + IoUnodes

]
(6)

IoU2 =
1
2

[
IoUbackground + IoUcells

]
(7)

where cells = tubes ∪ nodes. IoU3 allowed us to understand how well the resulting model
differentiated all three classes and also how well it understood the difference between tubes
and nodes. IoU2 allowed us to understand how well the boundaries between cells and the
remaining background were defined.

5. Conclusions

Extensive and universal work was demonstrated: a dataset with labelled masks
was created from the original angiogenesis images, the correctness of which was veri-
fied repeatedly by checking the agreement coefficient between participants using Cohen’s
kappa statistic. A neural network model of the Unet++ architecture based on a pretrained
EfficientNet-B7 encoder was developed and tested on the data. The quality of the model was
improved by optimizing the loss function fitting and the fine-tuning process. The segmenta-
tion results obtained with this model were impressive, both in the case of the identification
of only two classes (background and cells; IoU2 = 89.77± 0.15%) of objects as well as three
(background, nodes, and tubes; IoU3 = 65.93± 0.11%). The use of this model significantly
improves the efficiency of angiogenesis data by providing a more convenient and faster
method of analysis, as opposed to manual processing. The advantages of this system allow
its use for the further determination of the kinetics and mechanisms of vascular formation,
which is important for the fundamental study of the angiogenesis process, the study of the
influence of various factors, and for creating a predictive model of such structures’ growth
(for example, Doppler) and test systems that can be introduced into diagnostics and used
for the treatment of pathologies, which are based on the process of vascular formation.
However, we believe that creating a more perfect prediction system needs further training
with a larger set of micrographs of various stages of angiogenesis.

Supplementary Materials: The are available online at https://www.mdpi.com/article/10.3390/
ijms24021102/s1.
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