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Abstract: Disulfidptosis is a novel cell death mode in which the accumulation of disulfide bonds
in tumor cells leads to cell disintegration and death. Long-stranded noncoding RNAs (LncRNAs)
are aberrantly expressed in hepatocellular carcinoma (HCC) and have been reported to carry signifi-
cant potential as a biomarker for HCC prognosis. However, lncRNA studies with disulfidptosis in
hepatocellular carcinoma have rarely been reported. Therefore, this study aimed to construct a risk
prognostic model based on the disulfidptosis-related lncRNA and investigate the mechanisms associ-
ated with disulfidptosis in hepatocellular carcinoma. The clinical and transcriptional information of
424 HCC patients was downloaded from The Cancer Genome Atlas (TCGA) and divided into test
and validation sets. Furthermore, 1668 lncRNAs associated with disulfidptosis were identified using
Pearson correlation. Six lncRNA constructs were finally identified for the risk prognostic model using
one-way Cox proportional hazards (COX), multifactorial COX, and lasso regression. Kaplan–Meier
(KM) analysis, principal component analysis, receiver operating characteristic curve (ROC), C-index,
and column-line plot results confirmed that the constructed model was an independent prognostic
factor. Based on the disulfidptosis risk score, risk groups were identified as potential predictors
of immune cell infiltration, drug sensitivity, and immunotherapy responsiveness. Finally, we con-
firmed that phospholipase B domain containing 1 antisense RNA 1 (PLBD1-AS1) and muskelin
1 antisense RNA (MKLN1-AS) were highly expressed in hepatocellular carcinoma and might be
potential biomarkers in HCC by KM analysis and quantitative real-time PCR (RT-qPCR). This study
demonstrated that lncRNA related to disulfidptosis could serve as a biomarker to predict prognosis
and treatment targets for HCC.

Keywords: hepatocellular carcinoma; risk prognostic model; long-stranded noncoding RNAs;
disulfidptosis; PLBD1-AS1; MKLN1-AS

1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the
second leading cause of death from cancer [1]. Nearly 850,000 patients develop liver cancer
each year and, by 2030, the number of deaths due to HCC is expected to reach 1 million
per year worldwide [2,3]. Hepatocellular carcinoma (HCC) is the most common form of
liver cancer, accounting for about 90% of all primary tumor cases [2]. The main risk factors
for the development of HCC include cirrhosis, hepatitis B virus (HBV) infection, hepatitis
C virus (HCV) infection, alcohol abuse, and metabolic syndrome [4]. The treatment of
HCC consists of five main modalities, including surgical resection, liver transplantation,
chemoembolization, and use of the multi-kinase inhibitor sorafenib [4]. Among these,
surgical resection is the most common treatment for patients with hepatocellular carcinoma;
however, approximately 70% of patients will develop recurrent HCC after surgical resection,
so the prognosis of such patients is typically poor [5]. Therefore, the identification of reliable
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and specific therapeutic targets and prognostic models is important for improving the early
diagnosis rate of hepatocellular carcinoma, evaluating the prognosis, and developing new
treatment strategies.

Disulfide is a relatively stable product that is mainly responsible for maintaining
the stability of protein structures [6]. A recent study has proposed a novel type of cell
death, disulfidptosis, which differs from apoptosis, autophagy, ferroptosis, and cuproptosis.
It refers to the fact that, in glucose-starved tumor cells, solute carrier family 7-member
11 (SLC7A11) overexpression leads to a massive depletion of nicotinamide adenine dinu-
cleotide phosphate (NADPH), which in turn triggers an abnormal accumulation of disulfide
bonds [7]. This accumulation disrupts the normal binding of disulfide bonds between
cytoskeletal proteins, leading to conformational changes in cytoskeletal proteins and rapid
tumor cell death [8]. Disulfidptosis may yield a new field of tumor therapy in the future,
but its role in HCC remains unclear.

Long-stranded noncoding RNAs (lncRNAs) are a heterogeneous set of nonprotein
coding transcripts that are more than 200 nucleotides in length [9]. A large number of
lncRNAs are aberrantly expressed in hepatocellular carcinoma compared with normal
liver tissue, and they may play critical roles in hepatocarcinogenesis and metastasis [10,11].
For example, retrotransposon Gag like 1 (HuR1) interacts with tumor protein p53 (p53)
and represses the transcriptional regulation of downstream genes such as cyclin kinase
inhibitor (p21) and bcl2-associated X (Bax) in Hepg2 cells, promoting the proliferation
of hepatocellular carcinoma cells [12]. Epigenetically induced myc interacting lncRNA 1
(EPIC1) promotes the development of the hepatocellular carcinoma cell cycle by interacting
with myc proto-oncogene, bHLH transcription factor (MYC), and overexpression of EPIC1
correlates with a poor prognosis in hepatocellular carcinoma patients [13]. The lncRNA
WD repeat containing antisense to TP53 (WRAP53) is an independent prognostic biomarker
that predicts a high rate of recurrence in patients with HCC [14]. However, few studies
have focused on the use of lncRNAs associated with disulfidptosis genes for predicting
prognosis in HCC patients.

Therefore, this study aims to identify the lncRNAs associated with disulfidptosis in
HCC and predict the survival of patients by constructing a risk prognostic model. Our
study demonstrates the role of disulfidptosis patterns in HCC for prognosis prediction and
provides novel insights for the diagnosis, treatment, and prognosis of HCC.

2. Results
2.1. Construction of the Prognostic Model Associated with Disulfidptosis lncRNAs for HCC

To explore sulfur-disulfide-related lncRNAs in hepatocellular carcinoma, we screened
a total of 1668 lncRNAs associated with sulfur disulfide in hepatocellular carcinoma based
on human relevance. Table 1 lists the top 100 lncRNAs associated with disulfidptosis genes.
We also plotted the Sanger diagram (Figure 1A). The results suggest that disulfidptosis plays
an important and complex role in hepatocellular carcinoma. Subsequently, 249 prognostic
lncRNAs associated with disulfidptosis were obtained by using one-way Cox proportional
hazards (COX) regression analysis (Figure 1B). Based on the lasso regression, we finally
identified six more effective and predictive lncRNAs associated with disulfidptosis: phos-
pholipase B domain containing 1 antisense RNA 1 (PLBD1-AS1), growth-arrest-associated
lncRNA 1 (GASAL1), AC128687.2, muskelin 1 antisense RNA (MKLN1-AS), AC026412.3,
and long intergenic nonprotein coding RNA 1269 (LINC01269), respectively. We drew a
clustered heat map and constructed a risk prognosis model (Figure 1C–E). In addition, we
plotted the positive and negative correlations between the expression of these six lncRNAs
and the expression of the ten disulfide death genes; the results are shown in Supplementary
Figure S1.
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Table 1. Top 100 lncRNAs associated with disulfidptosis gene in hepatocellular carcinoma.

Disulfidptosis lncRNA Cor p-Value Regulation

NCKAP1 FGD5-AS1 0.755540944 2.54 × 10−70 positive
NCKAP1 AC092614.1 0.700809965 1.58 × 10−56 positive
NCKAP1 Z68871.1 0.697550131 8.32 × 10−56 positive
NCKAP1 NORAD 0.697398002 8.99 × 10−56 positive
NCKAP1 AC005670.3 0.695765397 2.05 × 10−55 positive
NUBPL AC008549.1 0.688460193 7.66 × 10−54 positive

NDUFA11 SNHG25 0.68845343 7.68 × 10−54 positive
NCKAP1 EBLN3P 0.674755577 5.15 × 10−51 positive
NCKAP1 AC004596.1 0.670828403 3.12 × 10−50 positive
NCKAP1 FAM111A-DT 0.663170449 9.68 × 10−49 positive
NCKAP1 AC073046.1 0.658844394 6.44 × 10−48 positive
NCKAP1 NRAV 0.658106969 8.87 × 10−48 positive
NCKAP1 FBXL19-AS1 0.656078366 2.13 × 10−47 positive
NCKAP1 AC112220.2 0.642313785 6.81 × 10−45 positive
NCKAP1 NNT-AS1 0.641857367 8.21 × 10−45 positive
NCKAP1 LINC01560 0.641104761 1.11 × 10−44 positive
NCKAP1 AC007406.4 0.638614637 3.05 × 10−44 positive
NUBPL AC010501.2 0.638601193 3.07 × 10−44 positive
LRPPRC ZNF337-AS1 0.637634279 4.53 × 10−44 positive
NCKAP1 LINC02035 0.636883618 6.12 × 10−44 positive
LRPPRC MCM3AP-AS1 0.635449648 1.08 × 10−43 positive
NUBPL TPRG1-AS1 0.632600955 3.35 × 10−43 positive

NCKAP1 AC108463.2 0.629554128 1.10 × 10−42 positive
NCKAP1 AC010834.3 0.62874749 1.51 × 10−42 positive
LRPPRC FGD5-AS1 0.628682804 1.55 × 10−42 positive
NCKAP1 NRSN2-AS1 0.627176632 2.78 × 10−42 positive
NCKAP1 LINC01278 0.626164716 4.10 × 10−42 positive
NCKAP1 AL157392.3 0.624970416 6.49 × 10−42 positive
NCKAP1 STARD7-AS1 0.623197317 1.28 × 10−41 positive
NCKAP1 OIP5-AS1 0.623017826 1.37 × 10−41 positive
LRPPRC AC092614.1 0.621999965 2.01 × 10−41 positive

GYS1 NRSN2-AS1 0.621082258 2.85 × 10−41 positive
NCKAP1 CTBP1-DT 0.619754599 4.70 × 10−41 positive
NUBPL LINC01124 0.619531729 5.11 × 10−41 positive

NCKAP1 AC011462.5 0.616702842 1.47 × 10−40 positive
NCKAP1 AC107027.3 0.613268075 5.23 × 10−40 positive
NCKAP1 RNF213-AS1 0.612672379 6.51 × 10−40 positive
NCKAP1 SMARCA5-AS1 0.61225062 7.59 × 10−40 positive
NCKAP1 LINC00205 0.609943603 1.76 × 10−39 positive
NUBPL GCC2-AS1 0.609278159 2.24 × 10−39 positive

NCKAP1 ZEB1-AS1 0.60887102 2.60 × 10−39 positive
LRPPRC AC005670.3 0.608849702 2.62 × 10−39 positive
NCKAP1 MCM3AP-AS1 0.608419664 3.06 × 10−39 positive
NDUFS1 OIP5-AS1 0.604600905 1.20 × 10−38 positive
NCKAP1 HCG18 0.603891569 1.55 × 10−38 positive
NCKAP1 ZNF32-AS2 0.600052829 5.99 × 10−38 positive
LRPPRC AC016747.1 0.599723623 6.73 × 10−38 positive
NCKAP1 LINC01521 0.599402932 7.52 × 10−38 positive
NCKAP1 AC097448.1 0.599076405 8.43 × 10−38 positive
NCKAP1 AC006008.1 0.598792563 9.31 × 10−38 positive
NCKAP1 AC107959.3 0.598162326 1.16 × 10−37 positive
NDUFA11 TP53TG1 0.596806014 1.86 × 10−37 positive
NCKAP1 SBF2-AS1 0.596758995 1.89 × 10−37 positive
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Table 1. Cont.

Disulfidptosis lncRNA Cor p-Value Regulation

NCKAP1 WAC-AS1 0.59524344 3.19 × 10−37 positive
NCKAP1 ZNF337-AS1 0.594297989 4.41 × 10−37 positive
NDUFA11 AC108673.3 0.594176279 4.60 × 10−37 positive
NCKAP1 AP001469.2 0.593039476 6.79 × 10−37 positive

GYS1 STARD7-AS1 0.590300693 1.73 × 10−36 positive
LRPPRC HCG18 0.588923912 2.75 × 10−36 positive
LRPPRC AL133243.2 0.588483387 3.19 × 10−36 positive
NDUFS1 PAXIP1-AS2 0.587674426 4.18 × 10−36 positive
LRPPRC AC114763.1 0.585416633 8.90 × 10−36 positive
NCKAP1 AC073254.1 0.58450427 1.20 × 10−35 positive
NUBPL AL132800.1 0.584445842 1.23 × 10−35 positive
GYS1 AC090409.1 0.584364815 1.26 × 10−35 positive

NCKAP1 AP003392.1 0.584330402 1.28 × 10−35 positive
GYS1 AC005261.1 0.583205211 1.85 × 10−35 positive

NCKAP1 WARS2-AS1 0.582826349 2.10 × 10−35 positive
LRPPRC EBLN3P 0.580224203 4.94 × 10−35 positive

GYS1 AL353748.3 0.579802946 5.67 × 10−35 positive
LRPPRC AC073046.1 0.578759756 7.96 × 10−35 positive
LRPPRC SNHG16 0.577307032 1.28 × 10−34 positive

GYS1 WDFY3-AS2 0.577261915 1.29 × 10−34 positive
NCKAP1 AC026412.3 0.577055681 1.38 × 10−34 positive
NCKAP1 EIF3J-DT 0.575128924 2.58 × 10−34 positive
SLC7A11 AC016717.2 0.574785212 2.88 × 10−34 positive
NCKAP1 NIPBL-DT 0.573977047 3.73 × 10−34 positive
NCKAP1 PAXIP1-AS2 0.572860551 5.33 × 10−34 positive
LRPPRC AC007406.4 0.57199109 7.02 × 10−34 positive

NDUFA11 SNHG9 0.570739778 1.04 × 10−33 positive
NCKAP1 AC026979.4 0.569894433 1.36 × 10−33 positive
NCKAP1 AC016705.2 0.56982153 1.40 × 10−33 positive
NDUFS1 AC135050.5 0.569725317 1.44 × 10−33 positive
NCKAP1 AC005034.5 0.569677444 1.46 × 10−33 positive

GYS1 LINC01772 0.569075281 1.77 × 10−33 positive
NCKAP1 WDFY3-AS2 0.56880377 1.92 × 10−33 positive
LRPPRC NORAD 0.568364614 2.21 × 10−33 positive
NCKAP1 AC025171.2 0.567681518 2.74 × 10−33 positive
NCKAP1 AC114763.1 0.566813614 3.59 × 10−33 positive
LRPPRC CTBP1-DT 0.566805009 3.60 × 10−33 positive
NCKAP1 AL499602.1 0.566769896 3.64 × 10−33 positive
NCKAP1 LINC00342 0.566560491 3.89 × 10−33 positive
NCKAP1 AL133243.2 0.565705344 5.07 × 10−33 positive
NCKAP1 AC120114.1 0.565556097 5.31 × 10−33 positive
LRPPRC AC073254.1 0.562259089 1.47 × 10−32 positive

GYS1 WARS2-AS1 0.561505107 1.86 × 10−32 positive
NCKAP1 LINC00265 0.560909226 2.23 × 10−32 positive

GYS1 AP002761.3 0.560771952 2.33 × 10−32 positive
NCKAP1 NPTN-IT1 0.560266675 2.71 × 10−32 positive
NCKAP1 TRAPPC12-AS1 0.559882531 3.05 × 10−32 positive

Note: instructions of the prognostic model for lncRNAs associated with disulfidptosis in hepatocellular car-
cinoma (NCKAP1), NUBP iron–sulfur cluster assembly factor, mitochondrial (NUBPL); NADH: ubiquinone
oxidoreductase subunit A11 (NDUFA11), glycogen synthase 1 (GYS1), 3-oxoacyl-ACP synthase, mitochondrial
(OXSM), leucine-rich pentatricopeptide repeat containing (LRPRC), ribophorin I (RPN1), and solute carrier family
3 member 2 (SLC3A2).
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Figure 1. Construction of the prognostic model for lncRNAs associated with disulfidptosis in
hepatocellular carcinoma. (A) Pearson correlation identification of the coexpression of disulfidptosis
genes in hepatocellular carcinoma derived from the lncRNAs Sanger map. (B) One-way regression
analysis of lncRNAs associated with disulfidptosis in hepatocellular carcinoma. (C,D) Lasso analysis
of lncRNAs associated with disulfidptosis in hepatocellular carcinoma. Among them, the two dashed
lines in (C) indicate two special λ values; one is lambda. Min and the other lambda. 1se. (D) reflects
the importance of each variable, with different colored lines representing different variables as the
penalty term increases λ as the quantity increases. (E) Clustering heatmap of 10 disulfidptosis genes
associated with 6 lncRNAs analyzed.

2.2. Assessment and Validation of the Risk Prognostic Models for Hepatocellular Carcinoma
Associated with Disulfidptosis lncRNAs

To evaluate and validate the risk prognostic model based on lncRNAs associated with
disulfidptosis in hepatocellular carcinoma, we randomly divided The Cancer Genome Atlas
(TCGA) into a training set and a validation set in a ratio of 6:4. We plotted the distribution
of risk scores, the overall survival rate of patients, and the gene expression profiles of the
six lncRNAs in the risk prognostic model for the whole TCGA dataset (Figure 2A,D,G,J),
as well as the TCGA training (Figure 2B,E,H,K) and validation sets (Figure 2C,F,I,L), as
shown in Figure 2. The results indicate that patients had significantly lower survival and
higher mortality with increasing risk scores. We further evaluated the predictive ability of
the risk prognostic model across the entire dataset, training set, and validation set through
Kaplan–Meier (KM) analysis, and the results indicated that the prognosis of the high-risk
population was significantly lower than that for the patients with low-risk scores in all
three groups (Figure 2G–I).
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tween high- and low-risk populations using 2D and 3D principal component analysis 
(PCA). The results of the two-dimensional PCA analysis demonstrated that the first two 
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the first two components of the disulfidptosis genes were 19.96% and 13.19%, respectively, 

Figure 2. Grouping and assessment of the risk prognostic models. (A) Scatterplot of risk scores
for patients in the entire TCGA dataset. (B) Scatterplot of risk scores for patients in the TCGA
training set. (C) Scatterplot of risk scores for patients in the TCGA validation set. (D) Scatterplot
of survival status for patients in the TCGA entire dataset. (E) Scatterplot of survival status for
patients in the TCGA training set. (F) Scatterplot of survival status of patients in the TCGA validation
set. (G) Kaplan–Meier survival plot for patients in the entire TCGA dataset. (H) Kaplan–Meier
survival plot for patients in the TCGA training set. Among them, the dashed line in the middle of
subfigures (A–F) is also known as the median value, mainly used to distinguish between high- and
low-risk populations. The left side of the median is low risk, represented by blue, and the right side
is high risk, represented by red. (I) Kaplan–Meier survival plot of patients in the TCGA validation
set. (J) Cluster analysis plot of the risk prognostic model for these 6 lncRNAs in patients of the TCGA
entire dataset. (K) Cluster analysis plot of the risk prognostic model for these 6 lncRNAs in patients
in the TCGA training set. (L) Cluster analysis plot of the risk prognostic model for these 6 lncRNAs
in patients in the TCGA validation set.

To further validate the grouping ability of our constructed risk prognostic model, we
explored the ability of the four groups—the whole gene, the disulfide gene, all lncRNAs
associated with the disulfide gene, and the six screened lncRNAs—to discriminate between
high- and low-risk populations using 2D and 3D principal component analysis (PCA).
The results of the two-dimensional PCA analysis demonstrated that the first two principal
components of all the genes used to differentiate between high- and low-risk populations
were 3.15% and 1.73%, respectively, for a total of 4.88%. The proportions of the first
two components of the disulfidptosis genes were 19.96% and 13.19%, respectively, for a
total of 33.15%. The proportions of lncRNAs associated with disulfidptosis were 3.59%
and 1.97%, for a total of 5.56%. The proportions of the six lncRNAs in our constructed risk
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prognostic model were 25.61%, 19.2%, 15.06%, 14.44%, 13.22%, and 12.45%, respectively;
the first two principal components accounted for 44.81%, and the six lncRNAs accounted
for 99.98% in total. Based on the above results, we can conclude that our constructed risk
model had the largest variance contribution, and the six lncRNAs basically included all the
populations. From the 2D and 3D PCA analysis plots (Figure 3, Supplementary Figure S2,
and Supplementary Table S1), it can be more intuitively seen that our constructed risk
prognostic model was capable of significantly differentiating between high- and low-risk
populations among the patients. In summary, our results show that the first three sets
of models had very poor ability to distinguish between high- and low-risk populations,
whereas the proposed risk diagnostic model could very accurately classify the populations
into high- and low-risk populations (Figure 3A–D).
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Figure 3. The ability of PCA to assess the grouping of risk prognostic models. (A) The ability of PCA
to analyze whole genes to distinguish between high- and low-risk populations. The first two prin-
cipal components of all genes used to differentiate between high- and low-risk populations were
3.15 percent and 1.73 percent. (B) The ability of PCA to analyze disulfidptosis genes to distinguish
between high- and low-risk populations. The first two components of the disulfidptosis genes were
19.96% and 13.19%. (C) PCA analysis of the ability of disulfidptosis-associated lncRNAs to distin-
guish between high- and low-risk populations. The first two components of lncRNAs associated
with disulfidptosis were 3.59% and 1.97%. (D) PCA analysis of the ability of our constructed risk
prognostic model to distinguish between high- and low-risk populations. The first two components
of these six lncRNAs in our constructed risk prognostic model were 25.61% and 19.2%.
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To further validate whether our constructed risk prognostic model could serve as an
independent prognostic factor and its predictive performance, we also conducted single-
factor regression, multifactor regression, receiver operating characteristic curve (ROC),
and C-index analyses for evaluation. The results of the single-factor regression analysis
suggested that our risk prognostic model had a hazard ratio (HR) of 1.120 (1.074–1.167),
with a very significant and statistically significant p < 0.001, such that the risk model might
be an independent prognostic factor (Figure 4A). The results of the multifactorial regression
analysis corroborated the previous results that the proposed risk model was independent
of other clinical factors and was an independent prognostic factor for predicting patients
with hepatocellular carcinoma (HR value of 1.142, p < 0.001) (Figure 4B). The results of
the ROC analysis reinforced the fact that the risk prognostic model was independent of
other clinical factors, and it evaluated patients with hepatocellular carcinoma at 1 year
with a predicted area under curve (AUC) value of 0.751, those at 3 years with a predicted
AUC value of 0.643, and those at 5 years with a predicted AUC value of 0.660. Both the
abovementioned results and the C-index results confirmed that the risk prognostic model
constructed based on disulfidptosis-associated lncRNAs was independent of the clinical
factors and might be considered as an independent prognostic factor for the prediction of
patients with hepatocellular carcinoma (Figure 4C–E).
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Figure 4. Validation of the predictive performance of the risk prognostic models. (A) One-way regres-
sion analysis to validate the predictive performance of the risk prognostic model constructed with
lncRNAs associated with disulfidptosis in hepatocellular carcinoma. (B) Multifactor regression analy-
sis validating the predictive performance of the risk prognostic models constructed with lncRNAs
associated with disulfidptosis in hepatocellular carcinoma. (C) ROC analysis to validate the predictive
performance of risk prognostic models constructed by lncRNAs associated with disulfidptosis in hep-
atocellular carcinoma. (D) C-index validation of the predictive performance of risk prognostic models
constructed with lncRNAs associated with disulfidptosis in hepatocellular carcinoma. The dotted line
represents a C-index value of 0.5, and the model on the dotted line indicates a good predictability of
the risk prognostic model. (E) ROC analysis to validate the predictive performance of risk prognostic
models constructed by lncRNAs associated with disulfidptosis in hepatocellular carcinoma.
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2.3. Clinical Subgroup Validation of the Risk Prognostic Model for Hepatocellular Carcinoma
Associated with Disulfidptosis lncRNAs

TheKM method is currently the most commonly used method for survival analysis,
proposed by Kaplan and Meier. We performed KM analysis in different clinical subgroups
to further validate our constructed risk prognostic model and explore the correlation be-
tween this risk score and clinical characteristics. The clinical correlation results suggested
that there was no statistically significant correlation between the risk score and age and
gender, and the correlation between three clinical characteristics—namely T-stage, tumor
grade, and pathological staging of the tumor—and the risk model was statistically signifi-
cant (p < 0.05) (Figure 5A–C). In addition, we further validated the predictive performance
of our constructed risk model by clinical grouping. The results suggested that the p-values
of the KM analysis results for patients whose pathological grading was located in the
Stage I–IV grading and whose tumor grading was classified in the M0-, N0-, and T2-stage
subgroups were all less than 0.05, further confirming that the risk prognostic model con-
structed based on disulfidptosis-associated lncRNAs can be considered as an independent
prognostic factor for the prediction of hepatocellular carcinoma (Figure 5D–G).
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Figure 5. Clinical subgroup validation of the risk prognostic models and correlation analysis of clinical
features. (A) Tumor grading characteristics of the risk prognostic model. (B) Pathology grading
features of the risk prognostic model. (C) Tumor T-grading characteristics of the risk prognostic
model. (D) Kaplan–Meier survival curve analysis of M0-staged patients. (E) Kaplan–Meier survival
curve analysis of N0-staged patients. (F) Kaplan–Meier survival curve analysis of patients with
pathologic grading Stage I-IV. (G) Kaplan–Meier survival curve analysis graph of patients with
T-stage. * p-value < 0.05, ** p-value < 0.01.

2.4. Functional Enrichment Analysis of the Risk Prognostic Model Associated with Disulfidptosis
lncRNAs in Hepatocellular Carcinoma

To further explore the functional signaling pathways that may be enriched in patients
in the risk prognostic model, we performed Gene Ontology (GO), Kyoto Encyclopedia
of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) analyses. The
GO results suggested that biological process (BP) was mainly associated with nuclear
division, mitotic nuclear division, extracellular matrix organization, extracellular structure
organization, and external encapsulating structure organization; molecular function (MF)
was mainly associated with receptor ligand activity, endopeptidase activity, tubulin binding,
extracellular matrix structural constituent, glycosaminoglycan binding, and microtubule
binding; and cellular component (CC) was mainly related to the collagen-containing
extracellular matrix, apical part of cell, apical plasma membrane, spindle, microtubule,
and basal part of cell (Figure 6A,B). The KEGG results suggested that these genes were
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mainly enriched in the phosphatidylinositol3-kinase (PI3K)-protein kinase B (Akt) signaling
pathway, cell cycle, cytokine–cytokine receptor interaction, proteoglycans in cancer, focal
adhesion, protein digestion and absorption, motor proteins, the extracellular matrix (ECM)-
receptor interaction, Hippo signaling pathway, and other pathways (Figure 6C,D). The
GSEA results suggested that basal cell carcinoma, cytokine–cytokine receptor interaction,
ECM receptor interaction, and other pathways were active in the high-risk population; fatty
acid degradation, Clycine serine, and threonine metabolism were active in the low-risk
population; and proteasome and primary bile acid biosynthesis pathways were generally
active (Figure 6E,F).
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Figure 6. Signaling pathways that may be enriched in high- and low-risk populations. (A) Circular
graph of GO pathway enrichment results. (B) Bar graph of GO pathway enrichment results. (C) Bub-
ble diagram of KEGG pathway enrichment results. (D) Bar graph of KEGG pathway enrichment
results. (E) GSEA enrichment results of a high-risk population. (F) GSEA enrichment results of
low-risk population.

2.5. Immunosignature Characterization of the Risk Prognostic Model Associated with
Disulfidptosis lncRNAs in Hepatocellular Carcinoma

To further explore the immune characteristics of the population in our constructed
risk prognostic model, we mapped Figure 7A,B with ssGSEA. The results indicated that
there was a significant difference in the tumor immune infiltration characteristics of the
high- and low-risk populations. In addition, we also mapped the immune profiles of
individual genes to further validate our risk prognostic model (Supplementary Figure S3).
In addition, we also explored the immune cell scoring and tumor microenvironment
between the two groups, the results of which confirmed that the tumor microenvironment
(TME) scores of the patients in the high-risk group were lower than those in the low-risk
group and that the patients in the high-risk group had higher tumor purity; furthermore,
the relative immune cell content in these patients was lower, and the prognosis was poorer
(Figure 7C,D).
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sis. (B) Immune score analysis. (C) Immune cell percentage in high- and low-risk groups. (D) Tumor
microenvironment analysis of both high- and low-risk groups. * p-value < 0.05, ** p-value < 0.01,
*** p-value < 0.001.

The tumor mutational burden (TMB) score is commonly used to assess the im-
munotherapy response of patients in risk prognostic models. The TMB results suggested
that the high-risk group had higher TMB scores and may have better immunotherapy
outcomes (Figure 8A). We also analyzed the results of the 15 genes with the highest mu-
tation frequencies in the high- and low-risk groups (Figure 8B,C). The results suggested
that the five most frequently mutated genes in the high-risk population were TP53, catenin
beta 1 (CTNNB1), titin (TTN), mucin 16, cell-surface-associated (MUC16), and piccolo
presynaptic cytomatrix protein (PCLO). Tumor immune dysfunction and rejection (TIDE)
is commonly used to assess the likelihood of tumor immune escape in patients, and our
results demonstrate that the outcomes for the high-risk population could be improved
through immunotherapy (Figure 8D).
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Figure 8. Immunosignature analysis of the risk prognostic models. (A) TMB scoring for both high-
and low-risk groups. (B) Waterfall plot of the top 15 mutated genes common to the high-risk group.
(C) Waterfall plot of the top 15 mutated genes common to the low-risk group. (D) TIDE analysis of
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scores. (F) KM survival analysis of the four groups with high TMB score and high risk, high TMB
score and low risk, low TMB score and high risk, and low TMB score and low risk. *** p-value < 0.001.

2.6. Potential Therapeutic Agents in Hepatocellular Carcinoma

To explore drug sensitivity in the high- and low-risk populations, as well as potential
drugs for treating patients with hepatocellular carcinoma, we used the pRRophetic algo-
rithm to predict drug sensitivity in these patients. The results showed that the high-risk
group may be more sensitive to 90 drugs. These drugs may be considered as potential drugs
for the treatment of liver cancer patients; specifically, these included ABT737, Afatinib,
AIG-5198, Alpelisib, AMG-319, AZD4547, and Cisplatin (Figure 9).

2.7. Construction of Line Graphs for the Risk Prognostic Modelling

To revalidate our constructed risk prognostic model, we constructed column-line plots
for a particular patient with hepatocellular carcinoma and evaluated the model in terms of
the patient’s 1-, 3-, and 5-year survival rates. Our column-line calibration results suggested
that the risk prognostic model constructed based on disulfidptosis-associated lncRNAs had
good predictive performance (Figure 10).
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2.8. Exploring Potential Prognostic Therapeutic Targets in Hepatocellular Carcinoma

To further evaluate and validate the potential of the six lncRNAs employed in con-
structing the risk prognostic model as tumor markers, we explored the prognostic value
of these six lncRNAs using KM analysis (Figure 11). The results suggested that two
lncRNAs—PLDB1-AS1 and MKLNS1-AS—were the most statistically significant (p < 0.0001)
(Figure 11A,B). Therefore, we selected these two lncRNAs to further explore their expres-
sion in hepatocellular carcinoma. The RT-qPCR results suggested that they were both
differentially expressed in hepatocellular carcinoma cell lines with statistical significance
compared to cells in normal liver tissue (LO2) (Figure 11C,D). This also reaffirmed that our
risk prognostic model constructed based on disulfidptosis-associated lncRNAs might be an
independent prognostic factor for predicting hepatocellular carcinoma patients.
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3. Discussion

The recurrence rate and therapeutic efficacy of HCC are important issues in the field
of tumor therapy. Despite the availability of several therapeutic approaches, including the
application of systemic therapy and immunotherapy, the prognosis is generally poor for
HCC patients. The development of sequencing technology has provided an opportunity to
screen specific biomarkers associated with HCC progression. Disulfidptosis—that is, the
accumulation of disulfide bonds in tumor cells leading to cell disintegration and death—has
aroused extensive research interest among scholars as a novel mode of cell death [7,15].
However, the roles of lncRNAs associated with disulfidptosis in hepatocellular carcinoma
have not yet been clarified. In this study, we explored the lncRNAs associated with
disulfidptosis in HCC and constructed a novel risk prognostic model based on lncRNAs to
provide a more accurate tool for prognostic assessment of hepatocellular carcinoma patients.

To explore the critical role of disulfidptosis in cancer and the interactions between
disulfide apoptosis and lncRNAs, we identified and validated a set of key lncRNAs associ-
ated with disulfidptosis in HCC, including PLBD1-AS1, GASAL1, AC128687.2, MKLN1-AS,
AC026412.3, and LINC01269. These lncRNAs may be involved in the regulation of disul-
fidptosis through multiple pathways. For example, the RT-qPCR results in our study
suggested that PLBD1 was highly expressed in hepatocellular carcinoma cells compared to
normal hepatocytes, consistent with the findings of Luo [16]. PLBD1-AS1 may promote the
development of hepatocellular carcinoma by activating autophagy by affecting the TP53-
and CHMP4B-mediated DNA damage response [17]. GASAL1 was overexpressed in Hepg2
and Huh7. Knockdown of this expression may inhibit the proliferation and migration
ability of hepatocellular carcinoma cells by regulating miR-193b-5p, which, in turn, affects
ubiquitin specific peptidase 10 (USP10) [18]. Compared with LO2, AC026412.3 was also
highly expressed in a variety of hepatocellular carcinoma cells (Hepg2, Huh7, and Hep3B),
which may be associated with poor prognosis in hepatocellular carcinoma patients [19].
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Elevated MKLN1-AS has been demonstrated to be one of the causes of poor prognosis in
hepatocellular carcinoma patients, which is also consistent with our findings [20]. Through
RT-qPCR, we further confirmed by RT-qPCR that MKLN1-AS expression was significantly
elevated in hepatocellular carcinoma cells compared with normal hepatocytes. Both in vivo
and in vitro experiments confirmed that MKLN1 may promote the development of hep-
atocellular carcinoma by affecting yes1-associated transcriptional regulator (YAP1) [21].
The discovery of these lncRNAs broadens our understanding of the pathogenesis of HCC.
AC128687.2 and LINC01269 have rarely been reported in the study of hepatocellular carci-
noma and deserve to be followed up through in-depth experimental investigations.

Functional enrichment analysis revealed multiple biological processes and signaling
pathways in which these six lncRNAs may be involved, including the PI3K-Akt signal-
ing pathway and cell cycle regulation, which are closely related to the development of
liver cancer. These results provide important clues to reveal the potential mechanisms of
these lncRNAs in liver cancer development, which may contribute to future functional
experimental studies and provide new therapeutic targets for the treatment of liver cancer.

We subsequently integrated the six key disulfidptosis-related lncRNAs into a risk
prognostic model. In the testing and validation sets, the model successfully categorized
hepatocellular carcinoma patients into high- and low-risk groups, demonstrating its ex-
cellent predictive performance regarding patient prognosis. More importantly, the risk
model constructed based on the six disulfidptosis-associated lncRNAs was an independent
prognostic factor for HCC. Further analyses indicated significant correlations between the
risk scores and clinical characteristics of hepatocellular carcinoma patients, including T-
stage, tumor grade, and pathological staging. This suggests that the risk prognostic models
constructed based on these lncRNAs have strong clinical correlations and are expected to
provide personalized survival risk assessments in different subgroups of hepatocellular
carcinoma patients, which provides strong support for the development and adjustment of
therapeutic regimens.

Given the important role of the TME in tumorigenesis and progression, interactions
between cancer cells and immune cells regulate all aspects of tumor development. Thus,
disulfidptosis-associated lncRNA mechanisms may influence tumor progression through
immune-related pathways. Through immune infiltration analysis, we observed significant
differences in tumor immune infiltration between the high- and low-risk groups. The
high-risk group may have a poorer tumor immune environment, but their higher TMB
scores may make them more sensitive to immunotherapy. This suggests that the proposed
risk prognostic model can also provide important information for immunotherapy decision
making, including potential guidance for the individualized treatment of hepatocellular
carcinoma patients. On this basis, a drug sensitivity analysis showed that drugs such as
ABT737, Afatinib, and Alpelisib may be potential choices for the treatment of hepatocellular
carcinoma patients in the high-risk group. As a B-cell lymphoma-2 (Bcl-2) anti-apoptotic
protein inhibitor, ABT737 has been shown to have potent anti-tumor effects against several
types of tumors, including HCC [22]. Studies in ovarian cancer patients have shown that
ABT737 can enhance the sensitivity of cancer cells to Cisplatin by modulating mitochondrial
autophagy and glucose metabolism [23,24]. Afatinib is mainly used for the treatment of ad-
vanced non-small-cell lung cancer, but recent studies have shown that Afatinib can enhance
the sensitivity of HCC tumors through signal transducer and activator of transcription 3
(STAT3)/ CD274 molecule (PD-L1) pathway cells with PD-L1 expression, and its combi-
nation with anti-PD1 therapy significantly increased the immunotherapeutic efficacy of
HCC [25]. Alpelisib is a selective phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit alpha (PIK3CA) inhibitor, which is effective in treating PIK3CA-mutated HCC by
inhibiting the mitogen-activated kinase-like protein (MAPK) and AKT cascade response. In
addition, Alpelisib presented synergistic efficacy in PIK3CA mutant HCC in combination
with mechanistic target of rapamycin kinase (mTOR) or cyclin-dependent kinase (CDK)
4/6 inhibitors [26].
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Although this study has achieved important progress in revealing the mechanisms
underlying disulfidptosis and lncRNA regulation in HCC, some limitations remain. First,
we identified coexpressed lncRNAs associated with disulfide bond death and constructed
a prognostic model based on six lncRNAs, but further exploration of the association
between core lncRNAs and HCC prognosis as well as validation of the generalization of
the prognostic model in clinical samples are still needed. Second, our study focused on the
regulatory mechanism of lncRNAs, and more detailed functional and mechanistic studies
are still required. Furthermore, while we found that MKLN1-AS was associated with
expression of the disulfide death genes (GYS1, NCKAP1, and OXSM), how the regulation
between them works remains to be studied. For this, we plan to construct knockdown and
overexpression lncRNA cell lines in a follow-up study to explore and verify the obtained
results in depth at the cellular and animal levels through molecular biology experiments
such as RT-qPCR, Western blot, luciferase reporter gene, and so on. This is a direction of
our future research that needs to be deepened. In addition, while we explored the immune
profile of the population associated with the risk prognostic model and the relationships
between immune infiltration and individual genes, more experiments are required to
demonstrate how these lncRNAs are related to immune infiltration (e.g., with respect to
M0 macrophages). In addition, the relationship between disulfidptosis and the therapeutic
strategy and prognostic assessment of HCC needs to studied in more depth. In the future,
we intend to conduct more experimental validation and clinical studies in order to further
clarify the biological functions and potential mechanisms of these lncRNAs in the context
of hepatocellular carcinoma.

4. Materials and Methods
4.1. Data Acquisition

The TCGA project was jointly launched by the National Cancer Institute and the
National Human Genome Research Institute in 2006, aiming to use genome sequencing
and bioinformatics to analyze gene mutations responsible for cancer. RNA-seq data,
clinical information, and mutation information of 424 HCC patients (including 374 liver
cancer and 50 normal liver tissues) were downloaded from TCGA on 12 July 2023 (https:
//portal.gdc.cancer.gov/repository). The clinical data included age, gender, histologic
grade, pathological stage, pathological T-stage, pathological M-stage, pathological N-
stage, survival time, and survival status. Practical extraction and report language (perl)
is a computer programming language that can process text files and retrieve relevant
information from them. Transcripts per million (TPM) is a metric commonly used in RNA
sequencing studies. We used perl scripts to collate the transcriptomics data downloaded
from TCGA into TPM expression matrices for all genes. Next, we used perl scripts on the
collated gene expression matrix to differentiate between mRNAs and lncRNAs in order to
obtain separate mRNA and lncRNA expression matrices [27–29].

4.2. Identification of lncRNAs Associated with Disulfidptosis in HCC

We adopted the same research criteria as in several previous studies. A total of 10 disul-
fidptosis genes were obtained from the previously published literature: GYS1, NDUFS1,
OXSM, LRPRC, NDUFA11, NUBPL, NCKAP1, RPN1, SLC3A2, and SLC7A11 [30–33].
Subsequently, we performed Pearson correlation analysis of the disulfidptosis genes and
lncRNA genes to obtain lncRNAs associated with disulfidptosis in hepatocellular carcinoma
using a threshold of |Pearson| ≥ 0.3 and p < 0. 001.

4.3. Construction of a Predictive Model for HCC Based on Disulfidptosis-Related lncRNAs

We used the survival package in R 4.3.1 to conduct one-way Cox proportional risk
regression in order to identify lncRNAs associated with disulfidptosis in hepatocellular
carcinoma (p < 0.05). Subsequently, lasso regression using the glmnet package in R was
conducted for further screening, allowing us to obtain lncRNAs significantly different from
overall survival period (OS), adjusting the parameter setting to lambda. min [34]. Finally,

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
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multifactorial Cox regression was computed using the survival package in R, allowing for
identification of the lncRNAs used to construct the disulfidptosis risk prognostic model.
We divided the samples in the TCGA dataset according to a ratio of 6:4, which were
randomized into training and test sets. We assessed the risk scores of liver cancer patients
according to the following formula [35]:

risk scores =
n

∑
i=1

coef(mfrlncRNA i)× expr(mfrlncRNA i)

Patients with hepatocellular carcinoma were categorized into high- or low-risk groups
based on the median risk score.

4.4. Validation of the Risk Prognostic Models and Construction of Column-Line Diagrams

Principal component analysis is the most widely used data dimensionality reduction
algorithm, commonly used to distinguish sample categories. PCA and risk score correlation
analysis were conducted to validate the ability of the risk model to distinguish between
high- and low-risk groups [36]. Consistency index (C-index) and ROC curves were used to
assess the accuracy of the risk model. A Kaplan–Meier analysis was performed between the
high- and low-risk groups to assess whether the risk score could serve as an independent
predictor of clinical prognosis [37]. Univariate and multivariate Cox regression analyses
were carried out to calculate the prognostic value of the prognostic model regarding various
clinical characteristics [38]. Finally, calibration curves were calculated using the calibration
“rms” package, and prognostic plots were constructed for patients with hepatocellular
carcinoma at 1, 3, and 5 years using clinical characteristics (age, sex, grade, T-stage, M-stage,
and N-stage) and risk scores to assess the predictive ability of the bisulfite-death-associated
lncRNAs-associated risk-based prognostic model. We also constructed prognostic plots of
patients with liver cancer at 1, 3, and 5 years.

4.5. Immune Infiltration and Functional Analysis

Expression data (ESTIMATE) were utilized to estimate the content of stromal and im-
mune cells in malignant tumor tissues, thus allowing for assessment of tumor purity [39,40].
Immune infiltration results for high- and low-risk patients were assessed by seven algo-
rithms, including TIMER, CIBERSORT, quantTIseq, xCell, MCPcounter, and EPIC [41–43].
In addition, we used the Maftool package to analyze and visualize the frequency of mutated
genes and common TMB genes in the high- and low-risk groups. The TIDE and TME scores
were used to explore whether there existed differences in immune response and tumor
microenvironment infiltration between the different groups of patients [44].

4.6. Biological Function Enrichment Analysis

To explore potential functional pathways or differences in the biological function of
lncRNAs associated with disulfidptosis in hepatocellular carcinoma patients, we performed
functional enrichment analyses using the cluster profiles in the GSEA [45]. Pathways with
p < 0.05 were considered statistically significant.

4.7. Drug Sensitivity Analysis

To explore potential drugs that may be effective in liver cancer patients, we also
assessed drug sensitivity in liver cancer patients using the pRRophetic algorithm, with the
threshold set at p < 0.001 [46]. The lower the IC50 value, the higher the sensitivity to the
drug, and the better the guidance regarding the patient’s clinical use of the drug.

4.8. Cell Culture

Three hepatocellular carcinoma cell lines (Huh7, Hepg2) and normal liver tissue cells
(LO2) were purchased from the cell bank of the Shanghai Institutes for Biological Sciences,
Chinese Academy of Sciences (Shanghai, China). The Huh7, Hepg2, and LO2 cells were
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cultured in Dulbecco’s modified eagle’s medium (DMEM) medium with 10% fetal bovine
serum (FBS). Both survived in cultures incubated at 37 ◦C in a 37 ◦C incubator containing
5% CO2. All media were changed once every two days.

4.9. Quantitative Reverse Transcription PCR (RT-qPCR)

Total RNA was extracted from normal liver tissue cells (LO2) and two types of hepato-
cellular carcinoma cells (Hepg2 and Huh7) according to the instructions of the Trizol kit.
The total RNA extracted was reverse transcribed into cDNA using a reverse transcription
reagent according to the instructions of the reagent vendor. Quantitative Real-time PCR
were performed using a SYBR-GREEN kit (Yeasen Biotechnology, Shanghai, China). The
qPCR upstream and downstream primers were as follows: GAPDH(F): ACCCAGAA-
GACTGTGGATGG; GAPDH(R): TTCAGCTCAGGGATGACCTT; PLBD1-AS1(F): GTG-
GATTCCATCCTAGAGGCTGTG; PLBD1-AS1(R): TTCCTGCTTTCTGTCCTTCATTTCAG;
MKLN1-AS(F): ACTGGGTCTGAGGTGTAAGC; and MKLN1-AS(R): TGATGACACT-
GTCCAGGCTT. All results were calculated using the 2−∆∆CT method after normalizing
to GAPDH.

4.10. Statistical Analysis

Statistical analysis was performed using the GraphPad Prism 9 software. A t-test was
conducted to assess the difference between the two groups of data. All data are expressed
as mean ± SEM. p < 0.05 was considered statistically significant.

5. Conclusions

In this study, we constructed a risk prognostic model based on six disulfidptosis-
related lncRNAs. KM, PCA, ROC, C-index, and column-line plot analyses confirmed that
the proposed risk prognostic model may be useful for independent prognostic determina-
tion. The KM and RT-qPCR analysis results confirmed that PLBD1-AS1 and MKLN1-AS
may be potential biomarkers for hepatocellular carcinoma.
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