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Abstract: Phytochelatins (PCs) are small cysteine-rich peptides capable of binding metal(loid)s via
SH-groups. Although the biosynthesis of PCs can be induced in vivo by various metal(loid)s, PCs
are mainly involved in the detoxification of cadmium and arsenic (III), as well as mercury, zinc, lead,
and copper ions, which have high affinities for S-containing ligands. The present review provides
a comprehensive account of the recent data on PC biosynthesis, structure, and role in metal(loid)
transport and sequestration in the vacuoles of plant cells. A comparative analysis of PC accumulation
in hyperaccumulator plants, which accumulate metal(loid)s in their shoots, and in the excluders,
which accumulate metal(loid)s in their roots, investigates the question of whether the endogenous PC
concentration determines a plant’s tolerance to metal(loid)s. Summarizing the available data, it can be
concluded that PCs are not involved in metal(loid) hyperaccumulation machinery, though they play a
key role in metal(loid) homeostasis. Unraveling the physiological role of metal(loid)-binding ligands
is a fundamental problem of modern molecular biology, plant physiology, ionomics, and toxicology,
and is important for the development of technologies used in phytoremediation, biofortification,
and phytomining.

Keywords: metal and metalloid accumulation in plants; metal and metalloid detoxification; metal
and metalloid transport; phytochelatins; phytochelatin synthase; stress

1. Introduction

Metals and metalloids are natural components of the earth’s crust. Some metals, such
as copper (Cu), manganese (Mn), nickel (Ni), zinc (Zn), and iron (Fe), are essential for
most living organisms, while the biological roles of cadmium (Cd), mercury (Hg), lead
(Pb), and arsenic (As), with rare exceptions, are unknown and they are toxic even at fairly
low concentrations in the environment [1–3]. When essential elements are supplied in
supraoptimal quantities, multiple toxic effects on a large number of physiological processes
can be observed, as was shown for Cd, Pb [4,5], Ni [6,7], As [8], Zn [9] and other metals and
metalloids [2,3], which is often accompanied by impaired growth and morphogenesis [10].
Due to human activity, the release of metal(loid)s into the environment has increased
significantly in recent decades, including contamination resulting from mining, the inten-
sive use of fertilizers, the combustion of liquid and solid fuels, and the development of
metal smelting production [1,11]. Unlike organic compounds which can be decomposed
by microorganisms, metals and metalloids do not decompose and, therefore, accumulate
in the environment and are absorbed by plants, which are the main source of their entry
into food chains [12]. The ability of plants to detoxify metals and metalloids, which are
naturally accumulated in the soil due to the processes of rock weathering, is an ancient
and widespread trait in plants [13]. They use various strategies to detoxify metals and
metalloids: sequestration, exclusion, and chelation [3].

In addition to transporters, that mediate metal(loid) translocation across biological
membranes [14–17], a key role in metal(loid) detoxification, transport, and homeosta-
sis belongs to low-molecular-weight ligands capable of forming stable complexes with
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metal(loid)s. These include sulfur-containing ligands (for example, glutathione and phy-
tochelatins), nitrogen-/oxygen-containing ligands (S-adenosyl-L-methionine derivatives,
histidine, and other amino acids), and oxygen-containing ligands (e.g., phenols and or-
ganic acids) [18,19]. The metal fraction that can be exchanged between different ligand
molecules is termed the labile pool, the maintenance of which is regarded as a key function
of low-molecular-weight ligands [18,20,21].

Different plant species, as well as populations, can differ significantly in their ability to
accumulate metals and metalloids in roots and shoots. Unlike excluders, that accumulate
metal(loid)s primarily in their roots, hyperaccumulators are plant species in which the
metal(loid) concentration in their shoots (per gram of dry weight) exceeds 100 µg of Cd,
thallium (Tl), or selenium (Se); 300 µg of Cu, cobalt (Co), or chromium (Cr); 1000 µg
of Ni, As, Pb, or rare-earth elements; 3000 µg of Zn; or 10,000 µg of Mn under natural
growth conditions, which is much higher than in non-accumulating species [22]. Plants
from different populations of the hyperaccumulators Noccaea caerulescens [23–26] and
Arabidopsis halleri [27–29] vary in their tolerance to, and capacity to hyperaccumulate, Zn,
Cd, Ni, or Zn, Cd, Pb, respectively.

The mechanisms of metal(loid) hyperaccumulation can potentially be controlled at
four levels: (1) at the level of metal(loid) uptake from soil by plant root systems, (2) at the
level of radial transport of metal(loid)s in roots, (3) at the level of their translocation to
the aboveground organs via the xylem, and (4) at the level of accumulation in leaves in a
non-toxic form [17,19,30]. Studying the molecular mechanisms of metal(loid) detoxification,
as well as the mechanisms that determine the selective accumulation of metal(loid)s in
various plant organs, is an important task of modern molecular biology, plant physiology,
ionomics, and toxicology.

The phytochelatin-mediated detoxification of metal(loid) ions has been firmly es-
tablished as a fundamental detoxification mechanism in plants. For the first time, low-
molecular-weight, cysteine-rich polypeptides, capable of binding metal(loid) ions via the
SH groups of cysteine residues, were found independently in Schizosaccharomyces pombe [31]
and in Rauvolfia serpentina cell cultures [32]. Such peptides were called cadistins A and B [31]
or phytochelatins (PCs) [32]. To date, PCs have been found not only in angiosperms and
gymnosperms, but also in algae, liverworts, fungi, microorganisms, and some
animals [14,33–37], which indicates their appearance at the early stages of evolution [38].
Phytochelatins were found in various foods of plant origin, which makes it important to
study their impact on the human body [39].

Based on the available literature data, this review summarizes the modern concepts
of various PC families in different plant species, PC biosynthesis, and PC participation
in metal(loid) uptake and sequestration in the vacuole, as well as in the long-distance
transport of metal(loid)s. In addition, we will try to answer the intriguing question of
whether PCs are involved in the mechanisms of hyperaccumulation. For convenience,
“metals” and “metalloids” will be referred to as “metals” throughout the text of the review.
We apologize in advance to all authors whose papers were not cited in our review due to
its limited scope.

2. Structure and Accumulation of Phytochelatins in Plants
2.1. Metal(loid)-Induced Phytochelatin Production in Plants

The structure of PCs has been determined for a wide range of plant species from
different families (Tables 1 and 2).
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Table 1. Classification of phytochelatins.

PC Family Peptide Structure Identification

Phytochelatins
PCn-Gly (γGlu-Cys)n-Gly PCn

Iso-phytochelatins
PCn-Ser (γGlu-Cys)n-Ser iso-PCn(Ser)
PCn-Ala (γGlu-Cys)n-Ala iso-PCn(Ala)

PCn-βAla (γGlu-Cys)n-βAla iso-PCn(βAla)
PCn-Glu (γGlu-Cys)n-Glu iso-PCn(Glu)
PCn-Gln (γGlu-Cys)n-Gln iso-PCn(Gln)
PCn-Asn (γGlu-Cys)n-Asn iso-PCn(Asn)
PCn-Cys (γGlu-Cys)n-Cys iso-PCn(Cys)

des-Gly-PCn (γGlu-Cys)n des-Gly-PCn
des-γGlu-PCn-Gly Cys-(γGlu-Cys)n−1-Gly des-γGlu-iso-PCn(Gly)
des-γGlu-PCn-Ser Cys-(γGlu-Cys)n−1-Ser des-γGlu-iso-PCn(Ser)
des-Cys-PCn-Glu Glu-(γGlu-Cys)n−1-Glu des-Cys-iso-PCn(Glu)

Table 2. The structure of phytochelatins identified in different plant species depending on the
metal(loid) concentration in the medium and the duration of exposure.

Species Plant Material Metal(loid)
Concentration

Duration of
Exposure PC Structure Ref.

Amaranthaceae

Amaranthus hypochondriacus Leaves 100 mg/kg Cd 3 months PC2–4 [40]

Pfaffia glomerata Roots 25, 50, 100 µM As 28 days PC2–4 [41]

Spinacia oleraceae Roots, leaves 1, 3, 5, 9 mg/L Cd 1, 3, 5, 7, 9, 14 days PC2–4 [42]

Apiaceae

Datura innoxia Cell culture 250 µM Cd up to 2 h PC2–5 [43]

Apocynaceae

Rauvolfia serpentina Cell culture 200 µM Cd 1–9 h PC2–5 [44]

Asteraceae

Dittrichia viscosa Roots, shoots 5, 10, 15 mg/L Cd 10 days
PC2–4, iso-PC2–3(Cys),

des-γGlu-iso-PC2–3(Gly),
des-Gly-PC2–3

[45]

Eupatorium cannabinum

Roots

11 mg/L As 20 days

PC2–4, des-Gly-PC2–4,
γGlu-iso-PC3(Gly)

[46]
Leaves PC3–4, des-Gly-PC2,

des-γGlu-iso-PC2(Gly)

Helianthus annuus Roots, stems, leaves 66 µmol/L As 1–96 h PC2–3 [47]

Brassicaceae

Arabidopsis halleri

Roots 25 µM Cd
100 µM Cd

7 days

PC2–4
PC2–5

[48]
Shoots 25 µM Cd

100 µM Cd
n.d. *
PC2–4

Arabidopsis thaliana

Seedlings

30 µM Cd 1 day PC2–4 [49]

30, 90 µM Cd 3, 9 days PC2–4 [50]

20 µM Cd 3 days PC2–4 [51]

10 µM Cd 5 days PC2–4 [52]

Roots, leaves 5 µM Cd 1, 3, 7, 14, 21 days PC2–5 [53]

Roots, shoots 10, 25 µM Cd 7 days PC2–5 [48]

Leaves 7.5 mg/kg Cd
970 mg/kg Zn 24 days PC2–3 [54]
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Table 2. Cont.

Species Plant Material Metal(loid)
Concentration

Duration of
Exposure PC Structure Ref.

Roots, shoots
10 µM Cd
5 µM Cu

150 µM Zn
12 days PC2–5 [55]

Roots, shoots 20 µM Cd 72 h PC2–4 [56]

Roots, shoots
1 µM Hg,

0.1 µM
phenylmercury

4 days PC2 [57]

Cell culture

200 µM Cd 1, 4, 8, 11, 24,
48 h

PC2–4(5), iso-PC3–4(Ser), iso-
PC3(Glu), iso-PC3–4(βAla),

iso-PC3–4(Gln)

[58]50 µM Cd 1 day PC2–5, iso-PC3–4(βAla)

400 µM Cd 1 day
PC2–5, iso-PC3–4(Ser), iso-

PC3(Glu), iso-PC3–4(βAla),
iso-PC3–4(Gln)

Armoracia rusticana Roots 1000 µM Cd 3 days PC3–4 [59]

Brassica chinensis Roots 200 µM Hg 3 days PC2–4 [60]

Brassica juncea
Roots, shoots 50, 200 µM Cd 7 days PC2–4 [61]

Roots, leaves 500, 1000,
2000 mg/kg Pb 45 days PC2–3 [62]

Brassica oleracea Seedlings 90 µM Cd 21 days PC2–6 [44]

Noccaea caerulescens
(Thlaspi caerulescens)

Roots, shoots 1–50 µM Cd 4 days PC2–3 [63]

Roots
shoots

25, 100 µM Cd
25, 100 µM Cd

7 days
7 days

PC2–4
n.d. [48]

Roots, shoots 5–500 µM Cd 14 days PC2–4 [64]

Sinapis alba Leaves 0.5, 1 mg/L Pd 2 weeks PC2–4 [65]

Thlaspi arvense Roots, shoots 1–50 µM Cd 4 days PC2–3 [63]

Caryophyllaceae

Silene vulgaris

Cell culture 20 µM Cd 3 days PC2–4 [44]

Roots
0.3, 1, 45,

135, 180 µM Cd 3 days PC2–4 [66]

40 mmol m−3 Cd 21 days PC2–3 [67]

Crassulaceae

Sedum alfredii Shoots 500 µM Cd 8 days PC2–4 [68]

Cucurbitaceae

Cucumis sativus Roots 10–250 µM Sb 28 days PC2, 3 [69]

Fabaceae

Arachis hypogaea Roots 10 µM Cd 30 days PC2–4 [70]

Glycine max Roots 20 µM Cd 4 days iso-PC2–7(βAla) [71]

Pisum sativum Roots
20 µM Cd 3 days PC2–3, iso-PC3(βAla) [72]

1–120 µM Cd 1–9 days PC2–4, iso-PC2–4(βAla) [73]

Lamiaceae

Clinopodium vulgare

Roots

20 mg/kg Cd
250 mg/kg Pb
400 mg/kg Cu
400 mg/kg Zn

95, 105 days

All metals: PC2–5,
iso-PC2(Ala); Cu:

iso-PC2(Glu), iso-PC2–4(Cys);
Cu, Cd, Pb:

des-γGlu-iso-PC2–3(Gly); Cu,
Cd, Pb: des-Gly-PC2

[74]

Shoots

20 mg/kg Cd
250 mg/kg Pb
400 mg/kg Cu
400 mg/kg Zn

95, 105 days
All metals: PC2–5Cu, Cd, Pb:

des-γGlu-iso-PC2–3(Gly)
Cu, Cd, Pb: des-Gly-PC2
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Table 2. Cont.

Species Plant Material Metal(loid)
Concentration

Duration of
Exposure PC Structure Ref.

Perilla frutescens Roots, stems, leaves 2, 5, 10 mg/L Cd
14 days PC2–4

[75]
21 days PC2–3

Marchantiaceae

Marchantia polymorpha Gametophyte
10–36 µM Cd 6–120 h PC2–4 [76]

10, 20, 36 µM Cd 72 h PC2–4 [77]

Poaceae

Agrostis tenuis Cell culture 20 µM Cd 3 days PC2–4 [44]

Avena sativa Roots 10 µM Cd 4 days PC2–3 [78]

Holcus lanatus Roots 5, 15, 40, 800 µM As 7 days PC2–4 [79]

Lolium perenne Roots, shoots
20, 80 µM Cd 9 days PC2–6 [80]

20, 80 µM Cd 216 h PC2–6 [81]

Oryza sativa

Roots 10 µM Cd
20 µM As 7 days PC2–3, iso-PC2(Ser),

iso-PC(Glu) [82]

Roots,
stems, leaves 50, 100 µM Cd 7 days

PC2–4, iso-PC2–3(Gln),
iso-PC2–3(Asn), iso-PC2(Cys),

des-γGlu-iso-PC3(Ser),
des-Cys-iso-PC2(Glu),

des-Gly-PC2–4, iso-PC2–4(Ser),
iso-PC2–4(Glu)

[83]

Roots, shoots 100 µM As 10 days PC2–4 [84]

Roots, shoots 50 µM Cd 14 days PC2–4 [85]

Panicum maximum

Roots

100 µM Cd 9 days

PC2–4, des-Gly-PC2–4,
iso-PC2–3(βAla),

des-γGlu-iso-PC2(Gly)

[86]
Stems

PC3, 5, 6, iso-PC2–4(βAla),
des-Gly-PC4,

des-γGlu-iso-PC2–3(Gly)

Leaves PC6, iso-PC4(βAla)

Phragmites australis Roots 100 µM Cd 21 days PC2–4 [87]

Secale cereale
Roots 50, 250 µM Cd 3, 6, 12, 24 h,

3, 7, 14 days
PC2–3, iso-PC2–3(Ser),

des-Gly-PC2–3
[88]

Shoots 50 µM Cd
250 µM Cd

7,14 days
7 days

PC2–3, iso-PC2–3(Ser),
des-Gly-PC2–3

Triticum aestivum

Roots
1 µM Cd

12 days
PC2–3, iso-PC2–3(Ser)

[89]
30 µM Cd PC2–4, iso-PC2–4(Ser)

Roots
1 mM Cd 10, 20 days

PC2–4, des-Gly-PC2–3
[90]

Shoots PC2–4

Triticum turgidum var. durum Roots
1 µM Cd

12 days
PC2–3, iso-PC2–3(Ser)

[89]
30 µM Cd PC2–4, iso-PC2–4(Ser)

Triticum vulgare
Roots

50, 250 µM Cd

3, 6, 12, 24 h,
3, 7, 14 days PC2–3, iso-PC2–3(Ser),

des-Gly-PC2–3
[88]

Shoots 7,14 days
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Table 2. Cont.

Species Plant Material Metal(loid)
Concentration

Duration of
Exposure PC Structure Ref.

Zea mays

Roots

50 µM Cd 3, 6, 12, 24 h,
3, 7, 14 days

PC2–4, iso-PC2(Glu),
des-Gly-PC2–3

[88]

0.01 µM Cd
0.05, 0.1 µM Cd
0.5, 1, 10 µM Cd

3 µM Cd

1 day
1 day
1 day

2, 4, 6 h; 1, 2 days

PC2
PC2–3
PC2–4
PC2–4

[91]

3 µM Cd 1–7 days PC2–4, des-Gly-PC2–4,
iso-PC2–4(Glu) [92,93]

Roots
38 µM Cd 5 days

PC2–5, iso-PC2–5(Ser)
[94]

Shoots PC2–3, iso-PC2–3(Ser)

Roots

10, 15, 25 µM Cd 14 days

PC2–3, PC7, 8, PC10,
PC4, 9 (10 and 15 µM Cd), PC5
(25 µM Cd), PC6 (10 and 25

µM Cd) [95]

Leaves PC2,3,6,8,10
PC4 (25 µM Cd)

Seedlings 20 µM Cd 3 days PC2–4 [44]

Pontederiaceae

Pontederia crassipes
(Eichhornia crassipes)

Seedlings 20 µM Cd 3 days PC2–4 [44]

Roots 1, 2.5, 3.5 ppm Cd 45 days PC2–4 [96]

Proteaceae

Banksia seminuda Roots 10–250 µM Sb 120 days PC2, 3 [69]

Hakea prostrata Roots 10–250 µM Sb 120 days PC2, 3 [69]

Pteridaceae

Pteris cretica Fronds 100 mg/kg As 1 year PC2 [97]

Rubiaceae

Rubia tinctorum Cell culture 100 µM Cd 3 days PC2–4, des-Gly-PC2–4 [98]

Salicaceae

Salix atrocinerea
Roots

18 mg/L As 1, 3, 10,
30 days

PC2–3, des-Gly-PC3,
des-γGlu-iso-PC2–3(Gly) [99]

Leaves des-Gly-PC2–4

Solanaceae

Nicotiana rustica Leaves 20 µM Cd 7 days PC3–4 [100]

Nicotiana tabacum
Cell culture 250 µM Cd 3 days PC4–5 [101]

Seedlings 30, 90 µM Cd 3, 9 days PC2–4 [50]

Solanum lycopersicum
(Lycopersicon esculentum)

Cell culture

100 µM Cd 2 h PC3–5 [102]

100, 300 µM Cd 1–12 days PC2 [103]

600 µM Cd 36 h PC3–4 [104]

10, 50,
100 µM Cd 4 days PC2–4 [105]

100 µM Cd 7 days PC2–4 [106]

Roots 3 µM Cd 7 days PC3 [107]

Seedlings 90 µM Cd 21 days PC2–6 [44]

Roots, leaves 25, 100 µM Cd 14 days PC2–4 [108]

Vitaceae

Vitis vinifera Roots 100 mg/L Hg 3 days PC2–4 [109]

* n.d.—not determined.
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The basic structure of PCs is (γ-Glu-Cys)n-Gly, where n = 2–11 but usually does not
exceed 4–5 (Table 1) [14,33,110–115]. Other possible structures of PCs will be discussed
below. The degree of PC polymerization, as well as PC accumulation in plants, largely
depends on the physicochemical properties of the metal ions, the duration of exposure, and
the metal concentration [44,53,75,76,92,116–119]. Phytochelatins with a longer chain were
usually synthesized only after a lag period [44,75,76,120].

The kinetics of Cd uptake and PC induction during the first 4 h of incubation, and at
different levels of N and P, was recently studied on the diatom Thalassiosira weissflogii [121]
and traced for 14 and 21 days, respectively, in the roots and shoots of Spinacia oleracea [42]
and Arabidopsis thaliana [53]. For example, when S. oleracea plants were grown in hydro-
ponics at 3–9 mg/L Cd, glutathione and PC3 were predominant on most of the days,
and the concentrations of PC2, PC3 and PC4 in the leaves usually reached a peak af-
ter 7 or 9 days of exposure, but subsequently decreased during the following days [42].
The concentration of PCs in the roots and leaves of A. thaliana plants significantly in-
creased after 3 days of exposure to 5 µM Cd in a nutrient solution, compared to that
after 1 day of exposure. After 7, 14, and 21 days of exposure, PC concentration in the
roots of Cd-treated A. thaliana slightly increased and then remained at a similar level,
whereas PC concentration in the leaves reached a peak after 7 days of exposure and
subsequently decreased [53]. The kinetics of PC accumulation was also traced for the
roots, stems, and leaves of As-treated Helianthus annuus [47], roots and leaves of As-treated
Salix atrocinerea [99], roots of Cd-treated Pisum sativum [73] and Zea mays [88,91–93], roots
and shoots of Cd-treated Secale cereale and Triticum vulgare [88], and gametophytes of Cd-
treated Marchantia polymorpha [76] (Table 2).

Various metal(loid) ions can induce PC biosynthesis. When different metal(loid)s
were added to R. serpentina cell cultures at high, but non-lethal, concentrations, PC biosyn-
thesis was induced in the presence of Pb2+, Zn2+ (1 mM); Cd2+, Ni2+, tin (Sn2+), SeO3

2−,
bismuth (Bi3+) (100 µM); silver (Ag+), Cu2+, gold (Au+) (50 µM); AsO4

3- (20 µM); antimony
(Sb3+) and tellurium (Te4+) (10 µM) [44]. Similar results were obtained for cell cultures of
Rubia tinctorum [98]. Recently, the induction of PC biosynthesis was shown in Sinapis alba
under treatment with platinum (Pt), rhodium (Rh), and palladium (Pd) [65], and in Z. mays
seedlings in the presence of vanadium (V) [122]. Although PC biosynthesis can be induced
in vivo by various elements, they are mainly involved in the detoxification of Cd and As
(III) [14,54,99,123–127] and, to a lesser extent, Hg [57,60,109,128,129], Pb [62,74,130–133],
Zn [54,55,74,133,134], Cu [55,74,119,135,136], and Sb(V) [69], which is partly determined by
the stability of the metal complexes with S-containing ligands. Boron (B) [137], magnesium
(Mg), calcium (Ca), and sodium (Na) [138] did not induce the biosynthesis of PCs. The
possible role of PCs in response to drought, low temperatures, salinity, and other stress
factors is also discussed, which, however, requires additional studies [139–141]. Since PCs
are S-containing compounds, the amount of PCs decreases under sulfur (S) deficiency [142].

Different metals induce the biosynthesis of PCs to a different degree in various species.
Ahner and Morel [143], comparing the accumulation of PCs in the algae T. weissflogii,
Tetraselmis maculate, and Emiliania huxleyi under the treatment with Cd, Cu, Zn, and Pb,
showed that the induction of PC production can be not only metal-specific, but also taxon-
dependent. The concentration of PCs in Emiliania huxleyi was similar in the presence of
Cd and Cu [143], while in Dunaliella tertiolecta, PC induction was observed at a higher
concentration of Zn compared to Cd [144]. In Sedum alfredii, PC production was induced
in vivo in the presence of Cd and Pb, but not Zn [145], whereas in Pfaffia glomerata, it was
induced in the presence of As, but not Hg or Pb [41]. In Clinopodium vulgare, the biosynthesis
of PCs was induced by Cd, Cu, Zn, and, to a lesser extent, Pb [74], and in A. thaliana, it was
induced by Cd, Zn, and to a lesser extent, Cu [55,134].

Since under field conditions, especially in polluted areas, plants are often exposed to
excessive amounts of more than one metal(loid), synergism or antagonism between the
elements in their effect on plants can be observed depending on metal physicochemical
properties, as well as environmental factors and biological characteristics of plant species.
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For example, after 14 days of incubation of Triticum aestivum in the presence of Cd or Pb,
an increase in PC concentrations was observed, being most prominent in the case of Cd.
Under the combined treatment, the metals had a synergistic effect on PC biosynthesis, but
an antagonistic effect on the biosynthesis of glutathione [146]. The concentrations of PCs,
cysteine, and glutathione in the roots of Cd-treated Oryza sativa increased in the presence of
silicon (Si) [147], whereas in the roots of Cr-treated plants, an increase in the concentration
of PCs, but not glutathione, was observed in the presence of Ca [148]. In the roots and
shoots of Nicotiana tabacum, Cr (50 µM) did not induce the production of glutathione or
PCs, but their concentration increased in Cr-stressed plants when they were supplied with
Se (2 µM) and molybdenum (Mo) (1 µM) [149]. The concentration of glutathione and PCs
also increased in As-treated O. sativa in the presence of Si and TiO2 nanoparticles, whereas
the nanoparticles alone did not affect the biosynthesis of PCs [150]. Differences between
separate and combined effects of metals have also been shown for other ligands [19,151]
and, in general, require more thorough studies.

2.2. The Structure of Phytochelatin Complexes with Metal(loid)s

Various analytical methods are used to identify PCs and their complexes with
metals [38,56,74,83,120,152–154], and their advantages and disadvantages are discussed in
the review by Ahmad and co-authors [155]. The most numerous studies are devoted to
the role of glutathione and PCs in the detoxification of Cd, since Cd ions have the highest
affinity for these ligands compared to other metals (Mn, Fe, Cu, Zn) [156]. In spectrophoto-
metric studies, log K7.4 values for Cd complexes with ligands (1:1) were 4.8 for glutathione,
6.2 for PC2, 7.5 for PC4, and 5.5 for PC6 [157]. Potentiometric and spectroscopic studies
showed that the affinity of Cd complexes increased from glutathione to PC4 almost linearly
from the micromolar (log K7.4

GSH = 5.93) to the femtomolar range (log K7.4
PC4 = 13.39), and

additional chain elongation did not significantly increase the stability [120]. The thermo-
dynamic stability of PC complexes with other metals decreased in the following order:
Zn2+ ≥ Cu2+ ≥ Fe2+ > Mg2+ > Ca2+ [158]. Hence, PCs are more efficient for metal chelation
than glutathione.

The structure of PC complexes with metal(loid)s can differ both for different metals
and for complexes with different degrees of polymerization [38,120,152]. For example,
all peptides can form 1:1 Cd-ligand complexes, but 1:2 Cd-ligand complexes were found
for glutathione, PC2, and, partially, for PC3. Moreover, binuclear species, Cdx-ligandy,
were identified for the series PC3−PC6 under Cd excess [120]. In the leaves of As-tolerant
Holcus lanatus, the As(III)-PC3 complex was the predominant one, although reduced glu-
tathione, PC2, and PC3 were found in the extract, whereas the As hyperaccumulator
Pteris cretica only synthesized PC2 and formed predominantly the GS-As(III)-PC2 com-
plexes [97]. In the roots, stems, and leaves of As-treated H. annuus, complexes of arsenite
with glutathione, As(III)–PC3, and GS–As(III)–PC2 complexes were detected. The roots
also contained As(III)–(PC2)2 and monomethylarsonic PC2 complexes [47].

PC complexes with metals are stable and less toxic than free metal ions [14,113,114].
For example, PC–Cd complexes are approximately 1000 times less toxic to enzymes than free
Cd ions [159]. Therefore, even nanomolar amounts of Cd, which can get into the nutrient
solution from contaminated chemicals, can induce PC biosynthesis [160]. However, the
amount of PCs as well as the stability of the resulting complexes of PCs with metals depend
on the pH [46,161,162]. At the pH of the cytosol (7.2–7.5), the complexes are stable, whereas
at the pH of the vacuolar sap (4.5–6.0), they break up [161], which plays an important role
in PC-mediated metal detoxification. The formation of stable complexes of PCs with metals
in the cytoplasm prevents metal binding to the sulfhydryl groups of proteins, and therefore,
the toxic effects on metabolic processes are reduced.

2.3. Classification of Phytochelatins and Their Accumulation in Different Plant Organs

The presence of the γ-Glu bond in PCs indicates that they are not primary gene prod-
ucts [44] and therefore are classified as a separate third class of metallothioneins [163,164].
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Instead of glycine, at the C-terminus of the polypeptide there can be glutamine (Gln),
glutamic acid (Glu), serine (Ser), alanine (Ala), β-alanine (β-Ala), asparagine (Asn), or
cysteine (Cys), or the C-terminal amino acid may be absent. In addition, there have
been found several PC derivatives that lack either Glu or Cys residues from the γ-Glu-
Cys structure [45,83,86,99]. Thus, several families of PCs have been currently identi-
fied [83,110,112,165] (Table 1). Some of them are probably specific for some families of
angiosperms. Thus, homophytochelatins (homoPCs), with C-terminal β-Ala, have been
currently found mainly in legumes [71–73,166], and hydroxymethylphytochelatins (hydrox-
ymethylPCs), with C-terminal Ser, have been detected in cereals [82,83,88–90,94,116,152].
PCs with C-terminal Glu were found in the roots of Z. mays [88,92,93,167], as well as
the roots and shoots of O. sativa [82,83,152]. In addition, PCs with C-terminal Gln, Asn,
and Cys were found in the roots and shoots of O. sativa [83]. Phytochelatins that do
not contain a C-terminal amino acid, and have the structure γ-Glu(Cys)n, have been
isolated, for example, from the roots of Z. mays [88,92,93], Capsicum annuum [118], the
roots and shoots of T. aestivum, S. cereale [88], O. sativa [83,152], Dettrichia viscose [45],
Panicum maximum [86], Betula pubescens [168], S. atrocinerea [99], as well as from the root
culture of R. tinctorum [98,169] (Tables 1 and 2). Phytochelatins with C-terminal Ala, Glu,
Gln, Ser, Asn, or Cys, and other PC derivatives, have also been proposed to be called
iso-phytochelatins (iso-PCs) [83,170].

In the cell culture of A. thaliana, both PCs and all types of iso-PCs were found, which in-
dicates the presence of iso-glutathione [58], which acts as an acceptor of γ-Glu-Cys residues
during the biosynthesis of PCs [171]. However, in intact plants of A. thaliana [48–56], as well
as in other Brassicaceae species [44,48,59–63], only PCs were found (Table 2). Therefore,
the presence of iso-PCs in intact plants from this family remains debatable. Phytochelatins
(PC2–5) and various iso-PCs were found in C. vulgare from the Lamiaceae family [74],
whereas homoPCs were found in cereals [86], which suggests a wider distribution of iso-
PCs in nature. However, it is still unknown why such a diverse group of PCs is synthesized
in various taxa.

In addition to the differences in the terminal amino acid and the degree of polymeriza-
tion, sulfur in PCs can be present in different oxidation states (thiol versus disulfide form),
and metals can theoretically interact with various functional groups of peptides [165]. Since
at pH values close to neutral thiol groups are predominantly in the thiolate form (-S−), it is
assumed that metal binds mainly to them, although the participation of carboxyl groups
cannot be excluded [60,120,130,154].

The accumulation of PCs in different plant organs can vary significantly. For exam-
ple, in B. pubescens, Halimione portulacoides, and Sarcocornia perennis growing on polluted
soil [168,172], in Brassica juncea under long-term treatment with Cd [173], as well as in
Cd-treated Perilla frutescens [75], the concentration of PCs in the leaves was higher than in
the roots. At the same time, in Spartina maritima growing on polluted soil [172], Cd-treated
T. aestivum [90], Cd- and Zn-treated A. thaliana [134], C. vulgare exposed to Cd, Cu, Zn,
Pb [74], As-treated Eupatorium cannabinum and S. atrocinerea [46,99], and in Pb-treated
Brassica juncea [62], a higher level of PCs was observed in the roots. In O. sativa seedlings
exposed to 50 or 100 µM Cd, a significant variation in the concentrations of various PC
derivatives was observed in the roots, stems, and leaves [83], whereas under the exposure
to As (V) (100 µM), no significant differences in the concentrations of PCs in the roots and
shoots were found [84]. In addition to species-specific features, such differences can be
caused by different metal concentrations, duration of exposure, and growth media, which
should be taken into account in a comparative analysis of the data obtained by different au-
thors. At the same time, the PC concentration did not always correlate with the metal(-loid)
concentration, which is a reflection of the existence of other metal detoxification mecha-
nisms that can be acting simultaneously and with different efficiency in different species,
such as, for example, binding to the material of cell walls [174], metallothioneins [35,37,175],
or other ligands [19]. Significant differences in the concentration of PCs may also be a
reflection of plant cultivar characteristics, which, for example, was shown in a comparative
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analysis of the accumulation of PCs and iso-PCs in the roots of plants of twelve O. sativum
cultivars exposed to As [152] and two Brassica parachinensis cultivars exposed to Cd [176].

3. Biosynthesis of Phytochelatins and Its Regulation
3.1. Glutathione as a Precursor of Phytochelatins

Biosynthesis of PCs requires L-glutamate (Glu), L-cysteine (Cys), and glycine (Gly).
Metals affect various stages of PC biosynthesis, from S assimilation to glutathione biosynthe-
sis [37,177]. PCs are synthesized from reduced glutathione, which is one of the reasons for the
decrease in the pool of intracellular glutathione [44,177]. A Cd-induced decrease in the con-
centration of glutathione was observed, for example, in Pontederia (Eichhornia) crassipes [96],
Arachis hypogaea [70], P. sativum seedlings [72], in the roots of Pistia stratiotes [178],
O. sativa [83,85], and Z. mays [88,179,180], and in suspension-cultured cells of
Solanum lycopersicum [102], while an As-induced decrease in the concentration of glu-
tathione was shown in the roots of S. atrocinerea [99] and O. sativa [84]. However, in
the hyperaccumulators A. halleri, N. caerulescens, and S. alfredii [48,181], the accumulator
P. frutescens [75], in the roots of Phragmites australis [87] and Cajanus cajan [182], in the roots
and shoots of Solanum lycopersicum [108], and in the liverwort M. polymorpha [76,77], in the
presence of Cd an opposite pattern was observed. The effect of Cd, as well as other metals,
on the content of glutathione may differ depending on the plant organ, the duration of
exposure, and the concentration of the metal in the medium [42], which may partly explain
the conflicting results obtained for B. juncea [61,183,184] and A. thaliana [48,55]. In addition,
the metal’s effect may depend on the endogenous content of glutathione. Thus, the glu-
tathione concentration in M. polymorpha gametophytes was constitutively low compared to
higher plants, but a significant increase in its level was observed under the treatment with
Cd [76,77].

The biosynthesis of glutathione from Glu, Cys, and Gly is an ATP-dependent, two-step
process (Figure 1) [177,185,186]. The first reaction for the formation of γ-Glu-Cys from Glu
and Cys takes place in the chloroplasts and is catalyzed by glutamate cysteine ligase (EC
6.3.2.2), previously known as γ-glutamylcysteine synthase [177,186–189], which is encoded
by the GSH1 (GCS) gene [190,191] (Figure 1). The reaction catalyzed by this enzyme is con-
sidered as the rate-limiting step in the biosynthesis of glutathione [103,126,185,186,189,191].
The second stage of the biosynthesis of glutathione from γ-Glu-Cys and Gly can occur both
in the chloroplasts and in the cytosol, and is catalyzed by glutathione synthetase (EC 6.3.2.3),
which is encoded by the GSH2 (GS) gene (Figure 1) [177,186,189,192]. Glutathione that is
synthesized in the chloroplasts enters the cytosol, where it is involved in the biosynthesis
of PCs, via the chloroquine resistance-like transporters (CLT1–3) (Figure 1) [188].

The biosynthesis of γ-glutamylcysteine from L-cysteine and L-glutamate (Glu) (stage 1)
takes place in chloroplasts and is catalyzed by glutamate cysteine ligase encoded by the
GSH1 gene. The formation of glutathione (GSH) from γ-glutamylcysteine and L-glycine
(Gly) (stage 2) can occur both in the chloroplasts and in the cytosol (the latter is not shown
in the scheme) and is catalyzed by glutathione synthetase encoded by the GSH2 gene.
Glutathione is transported from the chloroplast to the cytosol via the CLT1–3 transporters.
The biosynthesis of phytochelatins (PCs) with the participation of phytochelatin synthase
(PCS), the activity of which increases (+) in the presence of metal ions (Men+), takes place in
the cytosol (stage 3). Phytochelatin synthase is encoded by the PCS genes, whose expression
can change under plant exposure to metals. In some plant species, iso-phytochelatins were
found, which are synthesized with the participation of iso-GSHs. In the cytosol, metal ions
bind to phytochelatins, with the formation of various complexes that differ in the structure
and degree of polymerization of phytochelatins. The ATP-dependent transport of low-
molecular-weight metal complexes with phytochelatins (LMW Me-PC complexes) across
the tonoplast is carried out by ABCC1/2/3 transporters. In the vacuole, high-molecular-
weight complexes of metals with phytochelatins (HMW Me-PC complexes) can be formed,
with the participation of acid-labile sulfide (S2-) presumably coming from chloroplasts. Due
to the acidic pH values of the vacuolar sap, it is likely that these complexes can be partially
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destroyed, and metal ions can bind to organic acids (OAs), forming, for example, citrates
and malates. The proposed processes are indicated by dotted lines.

Figure 1. Phytochelatin-mediated pathway of metal detoxification in plants.

Glutathione is present in almost all cell compartments. It is a strong reducing
agent and is easily oxidized, participating in many processes, including metal
binding, inactivation of reactive oxygen species, and regulation of redox homeostatic
processes [33,34,53,123,126,177,185,186,193,194]. Glutathione exists in reduced and oxi-
dized form. Glutathione reductase catalyzes the conversion of the oxidized form into
the reduced one [186,192]. The ratio between these two forms is an indicator of redox
balance and its maintenance at a certain level is crucial for plant survival [33]. Cadmium-
induced decrease in the concentration of glutathione was accompanied by an increase
in the activity of glutamate cysteine ligase, glutathione synthetase [195–198], glutathione
transferase [199,200], and ATP-sulphurylase [183,201,202]. Thus, the induction of PC
biosynthesis by metals can be achieved due to an increase in the activity of glutamate
cysteine ligase and glutathione synthetase, involved in the biosynthesis of glutathione [203].
The increase in the activity of glutathione biosynthesis enzymes correlated with an increase
in the expression of the GSH1 and GSH2 genes [99,108,150,192,204,205]. However, along
with an increase in the concentration of thiol-peptides under the action of Cd, Cu, and Zn,
no stimulation of the expression of the AtGSH1 and AtGSH2 genes was found in A. thaliana,
which, as suggested, points to the existence of only post-transcriptional control [55]. Similar
results were obtained, for example, when studying the effect of Cd on PmGSH1 expression
in P. maximum [86]. At a high concentration of glutathione, its biosynthesis is regulated by
a negative feedback, as well as by other mechanisms [177].
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The mutants of S. pombe and A. thaliana with a reduced concentration of glutathione
were characterized by PC deficiency and hypersensitivity to Cd [113,206–208], Hg, and
As [209]. Treatment of Glycine max with L-buthionine-sulfoximine (BSO), an inhibitor
of glutathione biosynthesis, led to a decrease in the PC accumulation after 5 days of
incubation in the presence of As (III) and As (V), and an increase in As translocation into
the leaves [194]. Transgenic B. juncea plants, overexpressing the GSH1 and GSH2 genes,
contained more glutathione and PCs, were more tolerant to Cd, and accumulated more Cd
than wild type plants [210,211]. However, not in all studied plant species did an increase
in the level of glutathione lead to an increase in metal tolerance [177]. Nevertheless, the
intracellular level of glutathione is one of the important regulators of PC biosynthesis, and
the activation of glutathione biosynthesis in the presence of Cd can also occur as a result of
the metal-induced production of reactive oxygen species [192]. Therefore, metal tolerance
of the excluder species is determined not only by PC biosynthesis, but also by the ability to
maintain the intracellular concentration of glutathione at an optimal level.

3.2. Phytochelatin Synthase Is a Key Enzyme in the Biosynthesis of Phytochelatins

PC biosynthesis from reduced glutathione is catalyzed by the key enzyme
γ-glutamylcysteine dipeptidyl (trans)peptidase (phytochelatin synthase, PCS) (EC 2.3.2.15),
belonging to clan CA of the papain-like cysteine proteases [14,33,212,213], whose activity is
regulated at the transcriptional and post-transcriptional levels [112,214]. The enzyme is
around 95,000-Mr tetramer, with a Km of 6.7 mM for glutathione [112]. The biosynthesis of
PCS seems to be constitutive in plant cells and cell cultures [99,212]. Even at a low metal
concentration, PCSs in prokaryotes and eukaryotes are able to provide the basic level of
PCs in the cell, which indicates their role in maintaining ion homeostasis and regulating the
availability of metal ions in the cell [46,76,215,216]. The reaction catalyzed by this enzyme
is an autotransferase reaction, in which up to 10 dipeptidyl residues can be transferred, as
was demonstrated for plant cells [72,105,124,217].

Phytochelatin synthases are evolutionarily conserved in different species of higher
plants and charophytes [218] and consist of 452–545 amino acid residues with a charac-
teristic but variable C-terminal domain called the Phytochelatin_C domain [112,219,220].
It contains numerous Cys residues involved in metal binding and determining the in-
creased stability of the protein as well as broad metal specificity [36,52,57,138,219–223].
Different regions of the C-terminal domain of AtPCS1 in A. thaliana are important for
its activation by Cd, Hg, Zn, and As (III) ions [54,219,221,224]. At the same time, the
mechanism of AtPCS1 activation under the action of phenylmercury (PheHg) and Hg
may be similar [57]. Deletion of the last 10 amino acid residues of the C-terminal domain
of AtPCS1 led to an increase in As(III)-dependent PC biosynthesis, which indicates the
involvement of some amino acid residues in this region in the inhibition of PCS activation
by As ions [221]. The existence of a Cd- and Zn-dependent mechanism of enzyme inhibition
to prevent its overactivation has recently been revealed. It involves two twin-Cys motifs
in the C-terminus of MpPCS in M. polymorpha [36]. Phylogenetic analysis has shown that
the N-terminal domain of PCS, known as the Phytochelatin domain [112,219], is more
conservative and has catalytic activity, in which Cys-56, His-162, and Asp-180 residues
play an important role [36,52,212,219,220,223–226]. The position of these specific amino
acid residues may slightly vary between PCSs from different plant species. For example,
the catalytic triad in BnPCS1 from Boehmeria nivea is represented by the residues Cys-58,
His-164, and Asp-182 [203]. In A. thaliana, Glu-52 in AtPCS1 plays an important role in
providing plant tolerance to As and Sb [227].

Despite the fact that PC biosynthesis occurs in the cytosol, PCS has also been found
in some organelles. It has been shown that AtPCS1 is localized in the cytosol of root and
shoot cells [228,229]. However, its distribution in plant organs is tissue-specific. Cell-
type specific expression of AtPCS1-GFP in the roots of cad1-3/pAtPCS1-AtPCS1cds-GFP
line was detected in the rhizodermal cells in the mature and elongation zones, and the
outer-most layer of the lateral root cap cells in the meristematic zone [57]. In the shoots
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of A. thaliana, AtPCS1-eGFP expression was found mainly in the epidermal cells [228,229],
while in Vicia sativa, VsPCS was localized in the cytoplasm of mesophyll protoplasts [52]. It
has been shown that ZmPCS1 from Z. mays is also a cytoplasm-localized protein [230]. The
revealed patterns may be related to the fact that rhizodermal cells are the first to contact
with metals, while in shoots, metals often accumulate in the epidermal cells, which results in
a decrease in their concentration in the mesophyll, and, consequently, in the manifestation
of their toxic effects [19,174]. In S. pombe, SpPCS1 was localized in mitochondria [231], in
Saccharum officinarum SoPCS was found in the cytosol and mitochondria [232], in O. sativum
OsPCS1 and OsPCS2 were localized in the cytosol [233], whereas BnPCS1 in B. nivea [203]
and AtPCS2 in A. thaliana [234] were found in the cytoplasm and nucleus. The data obtained
confirm the possible involvement of PCS in the maintenance of ion homeostasis not only in
the cytosol, but also in various organelles. They also indirectly indicate the participation of
this enzyme in various processes in the cell.

Most plant PCSs are of plastid origin, since they are functionally similar to cyanobac-
terial PCSs, which, however, do not contain a C-terminal domain [212,235]. For example, a
comparative analysis of PCSs from the gametophytes of M. polymorpha and the cyanobac-
terium Geitlerinema sp. strain PCC 7407 showed a similar pronounced transpeptidase
activity under the action of Cd [76]. It is hypothesized that the mature full-length PCS in
higher plants may have evolved from the cyanobacterial protein by the acquisition of more
Cys residues in the N-terminal domain and by fusion with a C-terminal domain either from
their own genomes or from that of another species [235]. From an evolutionary point of
view, these data justify the opinion that the high metal concentration in the environment
at the dawn of life could have contributed to the appearance of a metal detoxification
mechanism involving PCSs in some ancient groups of organisms [236].

The molecular mechanism of PC biosynthesis was first proposed in 1989 by Grill et al. [217],
who suggested that at the first stage, prior to the transpeptidase reaction, Gly is cleaved
from glutathione. Then, at the second step, the remaining γ-Glu-Cys forms a peptide bond
either with glutathione to form PC2 or with another PC molecule acting as an acceptor,
resulting in the formation of the PCn+1 oligomer [217]. It was later confirmed that AtPCS1
is a dipeptidyltransferase, which undergoes γ-Glu-Cys acylation at two sites, with the
release of Gly, during step I of the catalysis that is necessary for net PC synthesis, but the
requirements for each acylation reaction are distinguishable. Kinetic studies have shown
that one of the substrate binding sites has a high affinity, and the other has a low affinity,
for glutathione [237]. In a medium lacking Cd ions, acylation of glutathione occurs at the
first site [212,237], which contains a sequence conserved in all PCSs, including Cys, His,
and Asp residues, and is metal-independent [238]. Acylation at the second site occurs
only in the presence of metal ions, resulting in metal-dependent catalysis [212,238]. The
proposed model of the work of eukaryotic PCS suggests that the residues Cys-56, His-162,
and Asp-180 in the N-terminal domain are required for the catalytic process, and a certain
sequence of the C-terminal domain is responsible for the interaction with the Metal-GS2
complex for the amplification of the catalytic process. The initial PCS reaction step (step
I) at site I, when one free glutathione molecule is taken as a substrate, releasing Gly and
acylating the enzyme with the remaining γ-EC residue, is catalyzed by residues localized
in the N terminal domain and is metal-independent. The second reaction is supposedly
carried out in site-II and is metal-dependent. This second step involves the transfer of a
γ-EC residue to a second glutathione molecule (to form the Metal-GS2 complex), or PCn,
resulting in a net synthesis of a PCn+1 molecule [38,212,222,235,238].

To the greatest extent, PCS is activated by Cd ions via metal binding to a specific acti-
vation site [112,225,239,240]. For other metal ions, their activating effect in vitro decreased
in the following order: Cd2+ > Ag+ > Bi3+ > Pb2+ > Zn2+ > Cu2+ > Hg2+ > Au+ [112,124,217].
However, the ability of different metals to activate PCS remains an object for studies, and
the results obtained are not always unambiguous. Thus, Vatamaniuk et al. [237] showed
that AtPCS1 is capable of synthesizing PCs in the presence of Cu2+, Zn2+, Mg2+, Ni2+, or
Co2+, whereas Oven et al. [171] did not observe the activity of AtPCS1 and GmhPCS1 after
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the treatment with Mg2+, Ni2+, or Co2+. Purified AtPCS1 and LjPCS1 were activated, in
decreasing order, by Cd2+, Zn2+, Cu2+, and Fe3+, but not by Co2+ or Ni2+, in the presence
of 5 mM glutathione and 50 mM metal ions [241]. Mo, Co, and Ni ions did not activate
OsPCSs [223]. One of the reasons for such differences in the experiments with intact plants
may be the heterogeneous distribution and accumulation of metals in plant tissues [174],
which determines the different availability of metals for PCS [177]. In addition, PCS par-
alogs characterized in different species displayed functional differentiation in terms of
the amount of PCs produced and the specificity of metal-mediated activation, as well as
differential regulation of transcription in response to metals [82,215,242,243].

The effect of metals on the activity of PCS can differ not only between species, but
also between different isoforms of the enzyme within species. For example, in Oryza sativa,
OsPCS1 was activated to a greater extent by As3+ than by Cd2+, while for OsPCS2, the
pattern was the opposite [82,233], and the replacement of even one amino acid residue in
the C-terminal domain can affect the metal selectivity of the enzyme [223]. The involvement
of various isoforms of PCS in the response to metals requires more thorough study. For
example, it was shown that, in contrast to AtPCS1, AtPCS2 was not stimulated by Cd
ions, leading to the assumption that only AtPCS1 determines the synthesis of PCs, metal
tolerance, and plant ability to accumulate metals [215,244]. However, the results of other
studies indicate that AtPCS2 may be involved in the response of plants to Cd during long-
term incubation at a higher metal concentration [198]. It is also assumed that the activation
of PCS may be mediated by H2O2, which is formed as a result of metal-induced oxidative
stress [115,245], which in turn is consistent with the data on the possible involvement of PCs
in the neutralization of H2O2 and superoxide radicals [35,235]. In addition, PCS activity
can be regulated by phosphorylation and dephosphorylation of the enzyme. In vitro
experiments demonstrated that PCS activity increased after its phosphorylation by casein
kinase 2 (CK2) and decreased after treatment with alkaline phosphatase. Site-directed
mutagenesis experiments on AtPCS1 indicate that Thr-49 near the catalytic site in the
N-terminal domain is the site for phosphorylation [246]. Thus, the activity of PCS and
the amount of available glutathione can be considered as important mechanisms for the
regulation of PC synthesis.

The biosynthesis of iso-PCs has not been sufficiently studied yet [247]. It is possible that
PCs with C-terminal Ser or Glu are synthesized through ATP-dependent ligation from γ-EC
and Ser or Glu, like in glutathione biosynthesis, or through post-synthetic modifications of
glutathione, like in the transpeptidation during the PC biosynthesis. It is assumed that in
O. sativa seedlings, OsPCS2 can catalyze the conversion of glutathione to γ-EC in the cytosol
under the action of Cd, after which γ-EC can be used as a substrate for the subsequent
synthesis of hydroxymethyl-glutathione or γ-Glu-Cys-Glu [82]. Homoglutathione can
be a substrate in the biosynthesis of homoPCs [72,171,241]. However, homoglutathione
was found only in the leaf blades of P. maximum, while homoPCs were also found in the
stems and roots [86]. It was assumed that the biosynthesis of homoPCs was carried out
with the participation of homophytochelatin synthase [72,171], while later it was shown
that homoPCs can be synthesized with the participation of typical PCS [241]. Therefore,
the biosynthesis and transport of iso-PCs require further research. The presence in many
plant species of PCs that do not contain a C-terminal amino acid (Table 2) is the result
of its cleavage from PCs, homoPCs, and hydroxymethylPCs by peptidase, or due to the
hydrolytic activity of PCS [72].

3.3. Phytochelatin Synthase Genes in Living Organisms: Identification and Expression

Genes encoding PCSs have been found in species from distant taxa, including
bacteria [235], fungi [124,231,248], Metazoa (ciliates, flatworms and annelids, echinoderms,
chordates) [124,249–251], algae [236], and higher plants. Over the past two decades, from
the pioneering works [225,248,252], numerous PCS gene orthologues have been identified
and characterized. Many plant species have more than one copy of functionally active PCS
genes. PCS genes have been identified in a number of plant species (Table 3).
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Table 3. Phytochelatin synthase genes identified in plant species from different families.

Family Species Genes References

Bryophytes

Marchantiaceae Marchantia polymorpha MpPCS [33]

Pteridophytes

Pteridaceae Pteris vittata PvPCS1 [253]

Angiosperms

Alliaceae Allium sativum AsPCS1 [254]

Amaranthaceae Salicornia europaea SePCS1 [141]

Arecaceae Phoenix dactylifera PdPCS1 [255]

Asteraceae

Helianthus annuus HaPCS [256]

Lactuca sativa LsPCS1, LsPCS2 [257,258]

Tagetes patula TpPCS1 [259]

Brassicaceae

Arabidopsis halleri AhPCS1, AhPCS2 [48]

Arabidopsis thaliana AtPCS1, AtPCS2 [215,225,244,252,260]

Brassica juncea BjPCS1 [173]

Brassica napus BnPCS [261]

Brassica rapa BrPCS1, BrPCS2 [133]

Noccaea caerulescens NcPCS1, NcPCS2 [48]

Noccaea japonicum NjPCS [262]

Ceratophyllaceae Ceratophyllum demersum CdPCS1 [84]

Chenopodiaceae Suaeda salsa SsPCS [263]

Convolvulaceae Ipomoea pes-caprae IpPCS1 [226]

Fabaceae

Cajanus cajan CcPCS1 [182]

Lotus japonicus LjPCS1, LjPCS2, LjPCS3 [264]

Medicago sativa MsPCS1, MsPCS2 [135,265,266]

Vicia sativa VsPCS1 [52]

Moraceae Morus notabilis MnPCS1, MnPCS2 [243]

Nelumbonaceae Nelumbo nucifera NnPCS1 [267]

Poaceae

Arundo donax AdPCS1, AdPCS2, AdPCS3 [213]

Cynodon dactylon CdPCS1 [268]

Orysa sativa OsPCS1, OsPCS2 etc. [82,233,269–271]

Panicum maximum PmPCS2 [86]

Paspalum vaginatum PvPCS1, PvPCS2 [272]

Phragmites australis PaPCS [273]

Saccharum officinarum SoPCS [232,274]

Triticum aestivum TaPCS1 [248,275]

Zea mays ZmPCS1 [230]

Rosaceae Malus hupehensis MhPCS [276]

Salicaceae
Populus tomentosa PtPCS [277]

Populus trichocarpa PtPCS1 [278]

Solanaceae
Nicotiana tabacum NtPCS1 [279]

Solanum lycopersicum SlPCS [108,280]

Urticaceae Boehmeria nivea BnPCS1 [203]

PCS genes have also been identified in the yeast Schizosaccharomyces pombe (SpPCS1) [225,231],
the nematodes Caenorhabditis elegans (CePSC1) [249] and Ancylostoma ceylanicum (AcePCS) [250],
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the tunicate Ciona intestinalis (CiPCS) [251], and other species [38], which has made it possible
to carry out phylogenetic analyses [36,52,124,213,226,232,236,255,270].

From an evolutionary point of view, the absence of the PCS gene in the genome of
the model moss Physcomitrium patens is of interest, which indicates the leading role of
other mechanisms of metal detoxification in this species [281] and is consistent with a very
low level of PCs in the Cd-tolerant moss Leptodictyum riparium [200]. However, in the
liverwort M. polymorpha, not only the presence of one copy of the PCS gene was shown [36],
but also the participation of MpPCS in the detoxification of Cd, but not As (III) or other
divalent cations [12]. It is assumed that PCS genes probably have a bacterial origin and
were subsequently inherited to different groups of organisms, in some cases multiple times.
It was suggested that multiple horizontal gene transfer events from bacteria to eukaryotes
occurred within the PCS gene family. The complex evolution of the PCS genes involves
several gene duplications and losses, or independent insertions of the full-length PCS genes,
in plants and green algae [236].

The presence of several cis-regulatory elements in the promoter regions of PCS genes,
including stress-responsive elements, may explain the influence of metals and other stress
factors on PCS gene expression [220]. MYB40 transcription factor was shown to regulate
the expression of PCS. In A. thaliana plants, treatment with As(V) induced the expression of
AtMYB40, which led to the increased expression of AtPCS1 [282]. The level of expression
of PCS genes can differ in plant organs and change differently in metal-treated plants. In
A. thaliana [260], Lactuca sativa [257], B. juncea [173], B. parachinensis [176], C. cajan [182],
Salicornia europaea [141], and Tagetes patula [259], the PCS gene expression was higher in
the roots than in the shoots, while in H. annuus [256] the opposite pattern was observed.
For O. sativa, a higher level of OsPCS expression was shown in the roots [85], but the
level of OsPCS1 and OsPCS2 expression in different organs can vary significantly [82,270],
which can also be partly determined by the use of different varieties and plant growth
conditions. The expression level of SoPCS changed differently in the roots and shoots
of S. officinarum with an increase in the concentration of Cd in the medium [274]. The
Cd-induced increase in the amount of BnPCS1 mRNA in the leaves of B. nivea was sig-
nificantly higher than in the roots and stems [203], which is consistent with the data for
NnPCS1 [267]. In Cd-treated Paspalum vaginatum, the expression of PvPCS1 and PvPCS2 in
the leaves decreased within 6 h and was up-regulated after 24 h of exposure. In the roots,
PvPCS1 expression showed significant up-regulation after 6 h of treatment, whereas the
expression of PvPCS2 decreased after 6 h of Cd treatment and then returned to control
levels [272]. In Medicago sativa, the expression level of MsPCS increased with Ni concentra-
tion to a greater extent in the roots than in the shoots [283]. An increase in the SlPCS and
OsPCS expression was observed mainly in the roots of As-treated S. lycopersicum [205] and
O. sativa [150]. Therefore, the differences in the PCS gene expression may be associated with
the physiological characteristics of plant species, which determine their different ability
to accumulate metals in different organs, as well as with different durations of exposure
and metal concentrations tested, and plant varietal characteristics, which, for example,
was shown in the analysis of the expression of the AtPCS1 and AtPCS2 genes [198,244].
The effect of a variable-valence metal on PCS gene expression may depend on its valence.
For example, six putative PCS genes were expressed differentially in O. sativa seedlings
exposed to Cr(VI) or Cr(III) [284]. In addition, the level of expression of different PCS
genes in one organ can also vary, which was clearly shown by a comparative analysis of
the expression of three AdPCS1-3 genes in Arundo donax roots under the treatment with
Cd [213].

The expression of different PCS genes within plant species can be induced by different
metals. In O. sativa, the expression of OsPCS7 was induced by Hg and Pb, the expression of
OsPCS9 was induced by Cd and Zn [269], and the expression of OsPCS5/-15 was induced
by Cd and As [271]. The studies of Cd, Cu, Zn, and Ni effects on different Azolla species
revealed that PCS1 gene expression was species- and metal-specific, and the expression level
depended on both the duration of exposure and metal concentration in the medium [285].
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The relative expression of the MnPCS1 and MnPCS2 genes increased in the roots, stems,
and leaves of Morus notabilis after 24 h of incubation, being significantly stronger under the
action of Cd than Zn [243]. In the leaves of S. lycopersicum, the expression of the SlPCS1 gene
was induced to a greater extent by Cd and Pb compared to Cu [280], while the induction
of the MhPCS gene expression in M. hupehensis decreased in the series Cd >Cu >Pb [276],
which, however, is consistent with a significant increase in PCS expression in the presence
of Cd in other plant species [203,274]. Therefore, despite the constitutive expression of
PCS genes, the level of expression of these genes is usually higher in the presence of Cd
compared to other metals.

The expression level of PCS genes is not only metal- and organ-specific, but also
depends on the level of S in the medium. The use of Na2SO4 as an additional source of
S led to an increase in the level of OsPCS expression and of PC content in the roots of
O. sativa [85]. Later, it was shown that under the combined treatment with Cd and S, the
expression level of not only MsPCS1, but also MsGS in the roots of M. sativa increased,
which was accompanied by an increase in the concentrations of glutathione and PCs [266].
The stimulating effect of S on the accumulation of glutathione and PCs was also shown
in Cd-treated Fagopyrum tararicum [286] and in the roots of Pb-treated T. aestivum [275],
which confirms the important role of S in metal detoxification. However, in P. maximum, no
change in the expression of the PmGSH1 and PmPCS2 genes in leaves was found under the
combined treatment with Cd and S, which was accompanied by multidirectional changes
in the content of PCs in the roots and shoots compared with the Cd treatment [86]. The
data obtained confirm that further research in this direction is necessary.

Different species of arbuscular mycorrhizal fungi can influence PC production in
plants in response to Cd. For example, mycorrhizal inoculations significantly promoted the
expression of the CcPCS1X1, CcPCS1X2, and CcPCS1X4 genes, more in the roots than in
the leaves of C. cajan, indicating that symbiosis with arbuscular mycorrhizal fungal species
could enhance Cd tolerance by modulating the expression of PCS genes in plants [182].

In most of the species studied, the increase in the level of PCS expression led to an
increase in plant tolerance to Cd [50,52,203,213,230,243,252,254,261,268,273,277,287,288].
However, this effect was dependent on the concentration of Cd in the medium [50]. A signifi-
cant increase in Cd tolerance in transgenic A. thaliana was observed with the overexpression
of the BnPCS1 gene from B. nivea [203], the BnPCS gene from Brassica napus [261], the NnPCS1
gene from Nelumbo nucifera [267], the VsPCS1 gene from V. sativa [52], or the ZmPCS1 gene from
Z. mays [230]. The elevated expression of CdPCS1 from Cynodon dactylon [268], AtPCS1 from
A. thaliana [50,287], or PtPCS from Populus tomentosa [277] also increased metal tolerance of
transgenic N. tabacum plants compared to the wild type plants. Transgenic N. tabacum lines
overexpressing the NtPCS1 gene in the sense or antisense direction were characterized by
increased tolerance to Cd and As [279]. Overexpression of MnPCS1 and MnPCS2 from
M. notabilis in A. thaliana and N. tabacum enhanced the tolerance in most transgenic plants
not only to Cd, but also to Zn [243]. Transgenic lines of B. juncea with an average level of
AtPCS expression showed increased tolerance to Cd and As [288]. In contrast, the cad1
mutant of A. thaliana, unable to synthesize PCS, was hypersensitive to Cd [49,225,248], and
its seeds did not germinate at a high Cd concentration in the medium [51], whereas the
cad1-3 mutant, the AtPCS1 null mutant lacking a functional PCS1 [49], was very sensitive
to Cd and As and, to a lesser extent, to Zn, Pb, Ag, Cu, and Hg [54,131,134,225,240]. The
OsPCS1 mutants of O. sativa were also sensitive to Cd and As [240]. In cad1-3 transgenic
mutants expressing the TaPCS1 [51] and MpPCS [36] genes, restoration of PC formation
and an increase in Cd tolerance were observed. Moreover, ectopic expression of ZmPCS1
repaired the defective phenotypes in the Cd-sensitive yeast mutant ∆ycf1 and A. thaliana
AtPCS1-deficient mutant atpcs1 under Cd stress, enhancing their Cd tolerance [230].

However, a number of studies have shown a decrease in the tolerance of transgenic
plants to Cd and Zn [36,207,213,271,289,290]. For example, an increased level of AtPCS1
expression in A. thaliana and N. tabacum led to a decrease in Cd tolerance [207,289,290].
Similar results were obtained on transgenic A. thaliana plants with overexpression of the
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OsPCS5/-15 genes [271]. Several explanations for such discrepancies have been proposed:
the supraoptimal content of PCs in relation to glutathione [207], the manifestation of metal-
induced oxidative stress in transgenic plants [289], as well as experimental differences,
such as the differences in the use of vectors and constructs [230]. Later, it was shown that
Cd-hypersensitive N. tabacum plants expressing the AtPCS1 gene from A. thaliana had a
high activity of PCS, but a significant decrease in the content of glutathione and in the
cytosolic and vacuolar PC pools, whereas in Cd-tolerant N. tabacum plants expressing the
CePCS gene from C. elegans, no dramatic change in the glutathione content was observed,
and the PC content was significantly higher [290]. It is also assumed that with the increased
expression of PCS, the rate of formation of PC complexes with Cd may exceed the capacity
to transport them into the vacuole, as a result of which they are accumulated in the cytosol.
This in turn can be a trigger for PC degradation, including due to the peptidase activity of
PCS, which leads to an increase in the Cd2+ concentration in the cytosol and an increase in
the toxic effect [12,290]. Interestingly, when three recently diverged PCS genes (AdPCS1-3)
from A. donax were overexpressed in A. thaliana Col-0 wild type plants, it resulted in either
enhanced (AdPCS2 and AdPCS3) or decreased (AdPCS1) sensitivity to Cd2+ [213]. It is
obvious that different activity of PCS, different endogenous levels of PCs/glutathione and
degrees of PC polymerization, as well as different efficiency of the translocation of metal
complexes with PCs into the vacuole in transgenic plants [50,289–291], can significantly
affect their metal tolerance. Taken together, the data obtained indicate the presence of a very
fine regulation of the PC-dependent mechanism of metal detoxification in different plant
species, which undoubtedly should be taken into account when creating transgenic plants.

3.4. Other Functions of Phytochelatin Synthase

The constitutive expression of PCS [292] and the presence of homologues of the PCS
gene(s) in plants growing in ecosystems geographically remote from metal-contaminated
sites, as well as in representatives of various kingdoms of living organisms, suggest that
PCS has a wide range of different functions [124]. In addition to a response to metal-
induced stress, PCS is a cysteine peptidase that regulates the catabolism of glutathione
and glutathione conjugates in the cytosol [228,242,293]. As a result, the glycine residue is
cleaved off from the conjugates, similarly to how it occurs during the biosynthesis of PCs.
Phytochelatin synthase is also involved in maintaining Fe homeostasis in charophytes [218],
AtPCS1 is involved in the control of pathogen-induced callose deposition [229,291,294], and
AtPCS2 is involved in response to salinity [295]. As to the latter, it is worth mentioning that
an increase in the activity of PCS, the expression of the SePCS1 gene, and the concentration
of PCs was shown for the salt-tolerant halophyte species S. europaea in response to combined
and separate Cd and NaCl treatments [141].

3.5. Hormonal Regulation of the Biosynthesis of Phytochelatins

There is a limited number of studies on the hormonal regulation of PC biosynthesis,
which are discussed in detail in a review by Pál et al. [296]. In plants, there is hormonal
regulation of glutathione biosynthesis, which, as a result, affects the biosynthesis of PCs.
No direct relationship was found between the levels of glutathione/PCs and auxins [55].
However, after the treatment with an auxin inhibitor, a decrease in the content of cysteine,
glutathione, and PCs was observed in the roots of O. sativa [297]. Mutant and transgenic
plants of A. thaliana and N. tabacum with reduced endogenous levels of cytokinins had
higher levels of glutathione and PCs, as well as a higher tolerance to As compared to the
wild type [298]. Ethylene was shown to induce the expression of the genes involved in the
biosynthesis of glutathione [296]. The expression of BnPCS1 in B. nivea [203] and StPCS1
in the roots of Solanum tuberosum [299,300] was induced by exogenous abscisic acid, but
not by salicylic acid. However, there are very few direct studies on the effects of ethylene,
abscisic and jasmonic acids, as well as gibberellins on PC biosynthesis, which is a promising
direction for future research.
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4. Transport and Physiological Role of Phytochelatins
4.1. Phytochelatins in Hyperaccumulators and Excluders

It is generally accepted that glutathione and PCs are involved in the mechanisms
of metal detoxification and transport, but not in the mechanisms of metal hyperaccumu-
lation [14,68,113,301–304]. In the shoots of the hyperaccumulators A. halleri, S. alfredii,
and N. caerulescens, a low concentration of PCs was observed or they were completely
absent [48,181,305,306]. Interestingly, when N. caerulescens plants were grown in hydro-
ponics in the presence of Cd (5–500 µM), PC biosynthesis was induced both in roots and
shoots, whereas in plants growing in their natural habitat at an old Cd/Pb/Zn mining
and smelter site in Plombières (Belgium), the PCs were practically not detected [64]. In
the roots and shoots of Dianthus carthusianorum plants from a non-metalliferous soil, a
higher level of PCs was found in response to Cd compared to the plants from a metallif-
erous soil [307]. A similar phenomenon was found in S. alfredii [181], Silene vulgaris [66],
and D. viscose (at 5 mg/L Cd) [45]. The treatment with BSO almost completely arrested
the biosynthesis of PCs, but did not enhance the sensitivity to Cd in N. caerulescens or
in D. carthusianorum plants from metallicolous populations [64,307]. Consequently, the
high tolerance of hyperaccumulators and metallophytes to Cd is not associated with the
increased biosynthesis of PCs [63,64,302,307,308]. It was assumed that hypertolerance may
be partly determined by a constitutively high concentration of glutathione in hyperaccu-
mulator plants [193,309]. However, in some cases, the differences in the concentration of
glutathione between the plants from non-metalliferous and metalliferous soils were not
detected or were ambiguous [45,307].

In general, the amount of Cd bound to S-containing ligands in the shoots of hy-
peraccumulators is quite low, as shown, for example, for N. caerulescens [305,310,311],
Noccaea praecox [312], and A. halleri [306,313]. Zinc did not induce the biosynthesis of PCs
in N. caerulescens, whereas the concentration of PCs increased with the concentration of
Cd, but decreased with an increase in the duration of incubation [305]. In the leaves of
S. alfredii, only 5% of the total amount of Cd was bound to PCs, which, however, does
not eliminate their participation in Cd detoxification [68,145]. Although the amount of
Cd complexes with S-containing ligands may depend on the duration of exposure [310],
a significant amount of Cd in hyperaccumulators is often bound to O-containing ligands,
possibly organic acids [306,310,311,313,314]. For Zn and Ni, histidine and nicotianamine
can play a leading role in metal binding [19], while for the elements with variable valencies,
the situation can be more complicated. For example, the ratio between Cu complexes
with S- and O-containing ligands may not only be species- and organ-specific, but may
also differ for complexes with Cu(I) and Cu(II), as was shown for the Cu accumulators
Persicaria capitata, Persicaria puncata, and Conyza cordata [315].

In contrast to the hyperaccumulators, in the non-accumulator Arabidopsis lyrata, the
highest amount of Cd was bound to S-containing ligands. This confirms the involvement
of glutathione and PCs in Cd detoxification in non-tolerant plant species [313]. Since
the post-translational activation of PCS depends on the availability of metal ions or their
complexes with glutathione [171], the more efficient PC biosynthesis in the roots of ex-
cluders may be associated not only with a higher level of expression of the PCS gene,
but also with higher availability of metal ions in the roots of these species as compared
with hyperaccumulators [48]. Due to the highly efficient functioning of PC-independent
metal detoxification pathways in the shoots of hyperaccumulators, PCS is not activated
there, which, apparently, is energetically favorable considering the high energy cost of PC
biosynthesis [48,63].

4.2. Phytochelatin-Mediated Transport of Metal(loid)s into the Vacuole

As mentioned above, PC biosynthesis directly depends on the activity of glutathione
biosynthesis enzymes in the cytosol and chloroplasts (Figure 1) [186]. A significant amount
of PCs was found in the vacuoles of Nicotiana rustica [100] and A. thaliana [290]. Hence,
it was suggested that after binding Cd ions in the cytosol, PCs can be transported into
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the vacuole, where, due to the more acidic pH of the vacuolar sap, these complexes can
dissociate, and the peptides can be degraded by vacuolar proteases and leave the vacuole,
thus acting as a shuttle mechanism for Cd transfer (Figure 1) [100,113,114,117,155,316],
which, however, has not yet been directly confirmed. On the contrary, As-PC complexes
entering the vacuole can remain stable and prevent re-oxidation of arsenite due to the
acidic pH of the vacuole, which leads to the accumulation of high concentrations of As-PC
complexes there [79,114].

Three types of Cd-PC complexes, differing in molecular weight, have been identi-
fied. The low-molecular-weight (LMW) complex [100,117] and the medium-molecular-
weight (MMW) complex [159] differ in the degree of polymerization, and appear to be
formed immediately after PC biosynthesis in the cytosol (Figure 1). The high-molecular-
weight (HMW) complex, with the highest degree of polymerization, was isolated, for
example, from B. juncea [317], S. lycopersicum [318], Z. mays [93], A thaliana [49], and
Canavalia lineata [197]. A distinctive feature of this complex is the presence of acid-labile
sulfide (S2−), which increases its affinity for Cd ions, the number of Cd ions bound per
molecule, the stability of the complex, and its resistance against proteolytic degrada-
tion [38,115,129,155]. For example, upon the formation of an HMW Cd-PC complex in
Phaeodactylum tricornutum cells, the Cd/SCys ratio increased from 0.6 to 1.6 [319]. It was
shown that the enzymes of purine metabolism can take part in the reactions leading to the
formation of S2− in S. pombe [317,320]. It is assumed that in higher plants, S2− comes from
the chloroplasts [129]. The HMW complex is probably formed in the vacuole [115,321,322]
or at the tonoplast level [170] and facilitates more efficient metal binding and detoxification
(Figure 1).

Early experiments on tonoplast vesicles isolated from the roots of Avena sativa showed
that Cd-PC complexes are transported by ABC (ATP-binding cassette) transporters
(Figure 1) [78], one of the functions of which is to transport glutathione complexes with
various secondary metabolites and xenobiotics across the tonoplast [177,323–325]. Two
transmembrane domains (TMD) (or membrane-spanning domains, MSD) determine the
substrate specificity of the transporter, and two nucleotide-binding domains (NBD) are
responsible for the coupling of ATP hydrolysis and substrate transport [177,323–326]. Bind-
ing of ATP to NBD induces a conformational change in TMD, causing the substrate to enter
the niche in the membrane created by the transporter. After ATP hydrolysis and phosphate
release, a subsequent rearrangement of both domains occurs, which is accompanied by the
release of the substrate on the other side of the membrane, as well as the release of ADP [15].
The first identified protein that carries out the ATP-dependent transport of both PCs and
LMW Cd-PC complexes into the vacuole was HMT1 (heavy metal tolerance-factor 1), found
in LK-100, a mutant of S. pombe that is not capable of forming HMW Cd-PC complexes.
HMT1 belongs to the MRP (multi-drug resistance proteins) or ABCC (ATP-binding cassette
subfamily C proteins) subfamily [326], is located at the tonoplast, consists of one TMD
domain and one NBD domain, and is encoded by the HMT1 gene [321,322]. Later, HMT1
homologues were identified in C. elegans [327] and Drosophila melanogaster [328], but have
not yet been found in plants. It is assumed that HMT1 has a high substrate specificity for
glutathione [329], although yeast HMT1 in A. thaliana mutants was involved in the entry of
metal complexes with PCs into the vacuoles of root cells, limiting metal translocation into
the shoots [330].

In Saccharomyces cerevisiae, Cd is transported across the tonoplast mainly as a complex
with glutathione [331,332]. The Mg-ATP-dependent transporter YCF1 (yeast cadmium
factor 1) mediates the transport of Cd-GS2 [332,333], Hg-GS2 [334], and As-GS3 [335] into
the vacuole. YCF1 belongs to the ABCC type and is encoded by the ScYCF1 gene, the
increased expression of which leads to increased Cd tolerance in transgenic A. thaliana
plants [333]. In A. thaliana, the transport of Cd-PC complexes into the vacuole is carried
out by the tonoplast transporters AtABCC1/2/3 (Figure 1) [304,336–338]. The expression
of the AtABCC3 gene is regulated by Cd, and the activity of the AtABCC3 transporter
depends on metal concentration and is coordinated with the activities of AtABCC1 and
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AtABCC2 [338,339]. The expression of the AtABCC1 and AtABCC2 genes is positively
regulated by transcriptional factor AtMYB40 [282]. In the abcc3 mutant of A. thaliana,
as well as in the double mutant abcc1/abcc2, Cd accumulated in the cytosol, whereas in
plants overexpressing AtABCC3, the Cd content in the vacuole was higher than in the wild
type plants [304,338]. The ABCC1/2 transporters are also involved in the transport of PC
complexes with As(III) and, apparently, Zn, Cu(II), Mn, and Hg, including PheHg and
other compounds, into the vacuole [57,304,340–342]. Furthermore, in a phosphomimetic
mutant study it was shown that phosphorylation of the Ser-846 residue in the linker region
between NBD1 and TMD2 regulates the activity of AtABCC1, which is necessary for As
sequestration in the vacuole [342]. In yeast heterologous expression analyses, OsABCC1
enhanced PC-dependent As tolerance but did not affect Cd tolerance [341], suggesting
that OsABCC1 has a high selectivity for the As-PC complex but a low affinity for the
Cd-PC complex. The degree of PC polymerization can probably also affect the efficiency
of the transport of their complexes with metals across the tonoplast. It is assumed that
the complexes of Cd with synthetic PCs with a high degree of polymerization cannot be
easily transported across the tonoplast as compared to the complexes with a low degree of
polymerization [343]. Comparative analysis showed that abcc1/abcc2 double mutants, as
well as cad1-3 and cad1-6 mutants, which have a T-DNA insertion disrupting the C-terminal
half of the Phytochelatin_C domain of AtPCS1, were hypersensitive to As(III), Hg (II),
as well as to PheHg [57,221]. Therefore, both PC biosynthesis and transport of Me-PC
complexes into the vacuole are important components of PC-dependent detoxification of
toxic elements in plant cells (Figure 1). It is assumed that PC biosynthesis is regulated
according to the principle of negative feedback: the more Me-PC complexes enter the
vacuole, the more PCs are synthesized in the cytosol [340]. On the other hand, the amount
of metal entering the conductive tissues and aboveground organs depends on the efficiency
of metal sequestration in the vacuoles of the root cortical cells [19,341].

4.3. Participation of Phytochelatins in Long-Distance Transport of Metal(loid)s

Phytochelatins can take part not only in the detoxification, but also in the long-distance
transport of metals. This is confirmed by numerous studies that assessed the changes in
the concentration of metal(loid)s in transgenic plants or mutants. For example, an increase
in the Cd concentration in transgenic A. thaliana plants was shown upon the expression of
the BnPCS gene from B. napus [261], the NnPCS1 gene from N. nucifera [267], the AsPCS1
gene from Allium sativum [254], and the ZmPCS1 gene from Z. mays [230]; though it was not
observed when the VsPCS1 gene from V. sativa was expressed in transgenic A. thaliana [52].
Overexpression of CdPCS1 from C. dactylon [268], AtPCS1 from A. thaliana [50,287], and
PtPCS from P. tomentosa [277] also led to an increase in Cd accumulation in transgenic
N. tabacum plants compared to the wild type, which, however, was not observed in trans-
genic tobacco lines with the overexpression of the NtPCS1 gene [279]. The physiological
reasons for these discrepancies are not clear yet. The expression of the TaPCS1 gene in
cad1-3 transgenic mutants led not only to the restoration of PC biosynthesis, but also to
an increase in the Cd root-to-shoot translocation [51]. The expression of the CdPCS1 gene
from Ceratophyllum demersum in transgenic O. sativa plants also led to an increase in PC
concentration compared to non-transgenic plants, which was accompanied by an increase
in As accumulation in the roots and shoots, while its concentration in the caryopses de-
creased [84]. At the same time, in the OsPCS1 mutant of O. sativa, the As concentration
in the caryopses increased, while the Cd concentration decreased, which indicates the
existence of different PC-dependent pathways of As and Cd transport [240]. The analysis
of cad1-3 and cad1-6 mutants of A. thaliana also suggested the existence of a PC-dependent
pathway of Zn root-to-shoot translocation [54].

Direct analysis showed the presence of PCs in the xylem sap of B. napus and B. juncea,
as well as in the phloem sap of B. napus [344,345]. However, no As–PC complexes were
found in the xylem sap of H. annuus [47]. Due to the low pH values of the xylem sap
(~5.5–6.2), the stability of metal complexes with PCs may be lower there compared to the
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phloem sap, where, due to the neutral pH values (~7.5), the stability of the complexes
is rather high. Therefore, it can be assumed that phloem is the main conducting tissue
for the long-distance transport of metal complexes with PCs and glutathione. Phloem
transport plays an important role in the entry of metals into generative organs and seeds.
The involvement of PCs in this process was confirmed by the high expression level of
the PCS1 gene in the phloem companion cells in A. thaliana [346]. Phytochelatins were
also shown to be transported from shoots to roots in A. thaliana [347]. On this basis, it has
been suggested that PCs are involved in metal transport from the shoots, as a result of
which metal accumulation in the shoots decreases, and, consequently, the toxic effect on
photosynthesis is diminished [125,345]. However, despite the presence of Me-PC complexes
in the phloem and xylem sap, metals are mainly transported via conducting tissues as
complexes with organic acids [19,30,348].

Glutathione is an important potential ligand for binding not only Cd, but also Cu and
Zn, as a result of which there may be competition between these metal ions for binding
to glutathione, as well as competition between PCs, glutathione, and other ligands for
binding Cd [344,349,350] and other metal ions in the xylem vessels. Enhanced root-to-shoot
translocation of Zn was shown for the transgenic lines of A. thaliana with elevated levels
of glutathione [351], while mutants with reduced PC biosynthesis accumulated less Zn
in the leaves compared to the wild type [54], which indicates the possible role of these
compounds in the long-distance transport of not only Cd, but also Zn [18].

There are only a few studies on the mechanisms of the entry of S-containing ligands
and their complexes with metals into conducting tissues. It was proposed that in A. thaliana,
an oligopeptide transporter AtOPT6 can transport glutathione, PCs, and Cd complexes
with these thiols into actively dividing cells around the phloem in sink organs [352]. It was
also suggested that the loading of As(III)-PC2 and As(III)-GS3 complexes into the xylem
vessels is mediated by the OsABCC7 transporter located on the plasma membrane of the
xylem parenchyma cells in O. sativa roots [353].

4.4. Metal(loid) Detoxification in the Rhizosphere

In addition to the participation of PCs in metal entry into the vacuole and the long-
distance transport through conductive tissues, their presence in root exudates has recently
been shown. Under the treatment with As, (γ-Glu-Cys)2-Gly, (γ-Glu-Cys)2-Glu, (γ-Glu-
Cys)2, as well as dimers linked by disulfide bridges [(PC2)2 and (PC3)2], were found in the
root exudates of Lupinus albus. It is assumed that PCs can participate in As detoxification in
the rhizosphere, limiting its entry into the roots, or that As(III)–(PC2)2 complexes can be
exuded from the roots, possibly with the participation of ABC-type transporters [127].

The analysis of PC accumulation in plant tissues is an important biomarker for the
presence of metals in the cytoplasm and the effectiveness of metal detoxification mecha-
nisms in excluders, which is important for assessing the toxicity of metals [146,155,354],
and is also an indicator of environmental pollution with metals [136,153,355].

5. Conclusions and Outlook

Having entered the cytoplasm, metal ions bind to various ligands involved in their
transport and detoxification, and it is often not clear yet how the metal is transferred from
the transporter to the ligand. In different plant species, various ligands can be present
in the cytosol in different ratios. In addition to PCs and glutathione, an important role
in metal binding is played by histidine, nicotianamine, metallothioneins, and organic
acids, the affinity for which can vary significantly for different metal ions [9,19,175,356].
Therefore, there will be competition between the ligands for binding metal ions, and the
amount of metal bound to one or another ligand can depend both on the strength and
stability of the complexes formed, and on the amount of different ligands in the cell. In
different species, the concentration of various ligands can vary significantly, which is
especially evident when comparing excluders and hyperaccumulators. For example, PC
concentration is low in hyperaccumulators [48,63,64,181,305,306] and, therefore, they do
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not play a significant role in the mechanisms of hyperaccumulation, which does not exclude
a certain role of PCs in metal detoxification and maintenance of metal homeostasis. The
low concentration of PCs and the high endogenous level of histidine and nicotianamine
in the roots of hyperaccumulators [19] restrict metal entry into the vacuoles of root cells,
facilitating their radial transport and loading into the xylem vessels. Excluders, on the
contrary, have a higher level of PCs in their roots and a lower level of N-containing
ligands [19], which determines the accumulation of metals in the vacuoles of root cells and
their limited entry into the shoots. Obviously, the mechanisms of metal detoxification and
the contribution of PCs and other metal-binding ligands to plant metal tolerance require
further comparative studies.

Different metals can affect the production of low-molecular-weight ligands in cells
to a different degree, and this effect may differ for different ligands, which, accordingly,
will lead to a change in the buffer capacity of the cytosol [19]. There are few works
that studied the combined effects of different metals on the concentration of PCs and
glutathione [146,148,149,357]. However, this line of research is promising, since plants
often encounter polymetallic stress in natural habitats, and PCs are considered as indicators
of metal pollution [136,153,355].

Despite the extensive literature on the concentration of PCs in various plant organs
summarized in this review, there is much less data on the structure of PC complexes with
metals and their localization in various plant tissues. What makes it more complicated is the
fact that PCs can have different degrees of polymerization and form complexes of different
compositions [38,120]. The distribution and accumulation of metals can differ significantly
not only in root and shoot tissues, but also in different cells of the same tissue [19,174].
Since the biosynthesis of PCs is induced by metals, it can be expected that PC concentration
in plant tissues will be different. However, due to the difficulties in visualizing the ligands
and their complexes with metals in plants tissues, such studies are practically absent.

The key enzyme that determines PC biosynthesis is PCS, which is present not only in
the cytosol but also in various organelles [52,203,228,231,233,234], which may determine the
presence of a wide range of functions. Some of them are already known [124,229,291,294,295],
but we do not have a complete understanding of the role of PCS in various cell compart-
ments. Recently, more works have appeared that testify to the biosynthesis of iso-PCs in
the representatives of certain plant families. Despite the fact that significant progress has
been made in deciphering the molecular mechanism of PC biosynthesis, we still know very
little about the biosynthesis of iso-PCs, their functional significance, and also about the
evolutionary aspects of their appearance in certain systematic groups. The information
on the regulation of PC biosynthesis, including the data on hormonal regulation, is also
very incomplete.

There is a certain amount of conflicting data regarding the involvement of PCs in
the mechanisms of plant metal tolerance and their contribution to plant metal accumula-
tion capacity, which is summarized in this work and in the review [214]. The resolution
of the contradictions that have arisen is impossible without the elucidation of the path-
ways of radial and long-distance transport of metals in plants and the contribution of
low-molecular-weight ligands to these processes. Recently, it has been proposed to use
genetic engineering methods to create transgenic plants with enhanced metal tolerance for
practical purposes [14,358,359]. However, even targeted creation of transgenic plants, for
example, with overexpression of PCS genes, can lead to either an increase or a decrease
in metal tolerance and plant ability to transport metals from roots to shoots (see above).
Another interesting direction is the creation of plants with overexpression of synthetic
genes encoding peptides similar to PCs and having the structure of Met(Glu-Cys)nGly [343]
or MetHis6[α-Glu(Cys)]6Gly [360]. It is often proposed to use transgenic plants with a
high metal tolerance and the capacity to accumulate metals in aboveground organs for
phytoremediation; however, this approach is also limited by the existing risks [361].

Understanding the physiological mechanisms that determine metal tolerance and the
ability of plants to selectively accumulate metals in aboveground or underground organs
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is of fundamental and practical importance. The discovery of PCs in the representatives
of various kingdoms of living organisms raises the question of their origin in the process
of evolution and possible reasons for their wide distribution in different taxa. The latter
may be associated not only with the high concentration of metals in the environment at the
dawn of life, but also with a wider range of PC functions, which, however, requires further
studies and confirmation. Since PCs play an important role in the mechanisms of metal
detoxification and maintenance of metal homeostasis, their study is a promising direction
for further research and they have a certain potential for the use in the development of
phytoremediation, biofortification, and phytomining technologies.
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