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Abstract: Bone tissue engineering (BTE) utilizes a special mix of scaffolds, cells, and bioactive factors
to regulate the microenvironment of bone regeneration and form a three-dimensional bone simulation
structure to regenerate bone tissue. Silk fibroin (SF) is perhaps the most encouraging material for BTE
given its tunable mechanical properties, controllable biodegradability, and excellent biocompatibility.
Numerous studies have confirmed the significance of SF for stimulating bone formation. In this
review, we start by introducing the structure and characteristics of SF. After that, the immunological
mechanism of SF for osteogenesis is summarized, and various forms of SF biomaterials and the latest
development prospects of SF in BTE are emphatically introduced. Biomaterials based on SF have
great potential in bone tissue engineering, and this review will serve as a resource for future design
and research.
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1. Introduction

With increasing age, accidents, and orthopedic diseases, bone has gradually become
the second most common tissue graft, and there is a growing demand for bone graft
technology worldwide [1]. Bone defects could result in bodily dysfunction and thus have
an impact on the life satisfaction of patients. Bone tissue has limited regenerative capacity,
and its self-repair can occur only when the defect is small [2]. There are some limitations
in autogenous bone and allogeneic bone transplantation, such as limited source, donor
injury, immune rejection, etc. It is of wide clinical demand and practical significance to
develop artificial bone materials for the effective healing and functional regeneration of
lesions [3]. Bone tissue engineering (BTE) has been extensively developed, most recently,
and is becoming a promising alternative for treating bone defects [4]. An in vivo-like
microenvironment is created by combining cells and bioactive molecules with scaffolds. The
ideal bone graft materials should have good biocompatibility, biodegradability, mechanical
properties, and osteogenic properties to treat bone defects [5–7].

For several decades, silk fibroin (SF) has aroused growing interest. SF has been used
as a suture in biomedicine for the past 20 years [8]. It has been demonstrated that SF is a po-
tentially useful biomaterial in BTE because of its unique mechanical properties, controllable
biodegradability, and good biocompatibility [9]. Various forms of SF-based biomaterials
have been explored, such as films, particulates [10], hydrogels [11], sponges [12], fibers [13],
and 3D porous scaffolds [14]. An immense number of studies have shown that SF combined
with various organic and inorganic biomaterials, bioactive factors, and cell therapy could
create an osteogenic microenvironment and further accelerate bone formation around bone
defects [15–18].

Many published reviews have described the status of SF based materials for
BTE [19–24]. Our purpose here is to broaden the understanding of the immunological
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mechanism of SF for osteogenesis and the latest research progress of SF biomaterials in
BTE. This review starts with the introduction of the source, structure, and properties of SF,
which is closely related to the application of BTE. Secondly, the various forms and different
preparation methods of SF related to osteogenesis are summarized. This review seeks to
highlight the immunological mechanism of SF, which may provide guidance for achieving
better bone formation and enhancing their clinical translational potential. Based on recent
advances and developments with SF-based materials for BTE, this review addresses the
latest technology of SF blend bone substitutes. The summary of new bioactive materials and
fabrication processing provides new insights and therapies for BTE. Finally, the challenges
of SF-based bone tissue materials are discussed as the possibilities for future advancement.

2. Bone Tissue Engineering

BTE utilizes a special mix of scaffolds, cells, and bioactive factors to regulate the mi-
croenvironment of bone formation and form a three-dimensional bone simulation structure.
Due to its good biocompatibility and biological activity, as well as the moderate mechanical
properties of supporting cells, BTE is emerging as the most effective method for bone
repair [6,25]. As BTE depends on our understanding of bone structure and composition,
it is essential to have a basic grasp of bone biology. Bone is a special kind of connective
tissue characterized as hard, dense, and highly vascularized. As an essential part of the
human body, bone is essential for movement, support, structural integrity, and internal
organ protection [26]. The bone structure and the main components, including minerals
and extracellular matrix (ECM), affect the bone’s characteristics [27]. Cortical bone and
cancellous bone are the two forms of mineralized tissues that are found in bone. Other
components of bone involve bone marrow, endosteum, nerves, blood vessels, cartilage,
and perichondrium [28]. Bone tissue consists of 65% inorganic matrix and 35% organic
part [29]. The organic portion endows bone tissue flexibility and elasticity, while the inor-
ganic portion provides strength and mechanical stress resistance [30]. It is well known that
hydroxyapatite (HAP) is the major inorganic constituent. In the process of bone biominer-
alization, HAP are periodically deposited between collagen so that the mineralized fibril,
non-collagenous proteins, and water are arranged in a complex hierarchical structure,
finally forming the excellent mechanical properties of natural bone [31]. On the other hand,
ECM can regulate cell attachment, growth, and transformation and induce the polarization
of various progenitor cells and macrophages with good tissue remodeling properties [32].
Cell–material interactions are regulated by stimulating the ECM of bone on the surface
of biomaterials [33]. Ideal tissue engineering scaffolds implanted into patients should be
designed to mimic an ideal non-immune environment with natural three-dimensional
structures and a variety of bioactive components [34]. To explore whether SF is a suitable
material for BTE scaffolds, the biomaterial characteristics of SF will be discussed in the
following paragraph.

3. Silk Fibroin: Source and Structure

SF can be derived from silkworm cocoons, spiders, scorpions, mites and flies, and
so on [35–37]. The most common type of silk originates from the silkworm. Silkworm
cocoons are widely raised worldwide to obtain silk [38]. The SF derived from silkworm
cocoons is a mature textile fiber produced and processed at a rate of nearly 1000 metric tons
per year, compared to spider fibers [39]. On the other hand, it is easy to operate and has
good mechanical properties and high biocompatibility [40]. Recently, Zou et al. reviewed
the effects of non-cocoon SF materials on the control of cell activity and tissue generation.
According to the article, non-cocoon SF materials have a unique arginine-glycine-aspartic
acid sequence to promote cell adhesion [41].

The primary constituents of SF are protein, a small number of lipids, and polysac-
charides. SF has a considerable molecular weight modular hydrophobic structure that is
interrupted by small hydrophilic groups. SF contains two major chains: the hydrophobic
heavy (H-) chain and the hydrophilic light (L-) chain. These two chains are connected by



Int. J. Mol. Sci. 2023, 24, 2660 3 of 21

disulfide bonds to construct H-L complexes (Figure 1) [42]. P25 is a hydrophobic glyco-
protein linked to the H-L complex and plays an essential part in ensuring the structure’s
integrity [43]. The amino acid sequence of the H-chain is mainly glycine. The Gly-X dipep-
tide sequences are repeated, accounting for 60–75% of the H-chain. Two hexapeptides,
Gly-Ala-Gly-Ala-Gly-Ser and Gly-Ala-Gly-Ala-Gly-Tyr, comprise 70% of the Gly-X dipep-
tidyl sequence [22]. H-chain, L-chain, and P25 are blended in a 6:6:1 molar ratio [44]. In
addition to the primary structure, the secondary and hierarchical structure of SF determines
many of its biomaterial properties. The key crystalline structures of SF are silk I and II [45].
The hydrophobic domain of silk II, which consists of repeated amino acid sequences, is
assembled into a β-sheet. Silk II is the state with the greatest degree of predictability
considering the strong hydrogen bond interaction of β-sheet [46].
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Figure 1. Structure diagram of silk fibroin (SF). The hydrophobic heavy (H-) chain and hydrophilic
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2018 American Chemical Society.

4. Silk Fibroin Dissolution Techniques

Silk fibers mainly comprise SF wrapped by sericin protein (SS) [48]. SF is composed of
filamentous and semi-crystalline structural proteins. SS is a water-soluble gelling agent
made of amorphous protein polymers [49]. The cocoon has to be degummed to remove SS,
which, in association with SF, can enhance the adverse immune response [50].

After cutting silk cocoons into small pieces, the first step in obtaining regenerated
silk fibroin (RSF) solution is degumming, which is usually carried out under boiling
and degumming agents. Degumming agents mainly include alkaline, acid and neutral
degumming agents, surfactants and enzymes [45]. The bulk of SF is obtained by drying
overnight. LiBr solution, the widely used dissolving system, can guarantee a relatively
high quality of SF in solution [51]. Therefore, degummed SF is usually dissolved in LiBr
solution at 60 ◦C for 4 h. Dissolved fibroin solution was then dialyzed against the deionized
(DI) water to finally obtain RSF (Figure 2) [52].
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Figure 2. A schematical representation of obtaining regenerated silk fibroin (RSF) solution. Silk
cocoons are cut into small pieces, which are purified from sericin by boiling them in degumming
agents. The bulk of SF was obtained by drying overnight. RSF was formed by dissolving the bulk of
SF in LiBr and then dialyzing.

5. Properties of Silk Fibroin
5.1. Mechanical Properties

BTE scaffolds should be adapted to the mechanical properties of native bone and
conduct appropriate loads. It has been previously reported that SF without SS exhibits
better mechanical properties and facilitates the control of long-term conformation and
stability [53]. The modulus of B. mori silk (with sericin) can reach 5–12 GPa, and the
modulus of B. mori silk (without sericin) can reach 15–17 GPa [54]. Therefore, SF has
great shear strength, tensile strength, and fracture resistance, making it an ideal material
for bone construction [55]. However, SF scaffolds in BTE are mainly made from RSF
solution. The structure and mechanical properties of SF can be changed due to the absence
of compact hydrogen bonding at the inter-molecular level and the exposure of SF to
extreme environments during the RSF preparation. Different treatments can provide
various functions and mechanical properties [56,57]. In the current study, there are some
cases of implantation failure owing to poor mechanical properties during the preparation
phase [58]. The lack of a suitable secondary and hierarchical structure is to blame for this
circumstance.

The mechanical strength of RSF can be effectively improved by controlling the sec-
ondary structure in the regeneration process [59]. Numerous research has shown that the
crystallinity and stability of β-sheet secondary structures (silk II) can control the mechanis-
tic qualities and characteristics of SF [60]. Temperature, pH, alcohol, ultrasonic treatment,
and steam annealing could all influence the formation of β-sheet. In addition, methanol or
ethanol treatment can increase glycine content in the amino acid sequence of SF protein
and induce the formation of stable β-sheets [61]. Different modification strategies that
address the above deficiencies, such as enzyme cross-linking, were developed, and SF
composite scaffolds are beneficial for the improvement of mechanical properties. For exam-
ple, Sheng et al. prepared enzyme cross-linked SF hydrogel enhanced by montmorillonite
(MMT) nanoparticle with better mechanical properties and hydrophilicity than SF hydrogel.
The compression modulus of SF-MMT nanocomposite hydrogel (24.78 ± 4.13 kPa) was
markedly higher than that of SF hydrogel (16.77 ± 1.99 kPa, p < 0.001) [62]. Furthermore,
strontium-substituted calcium silicate/SF composite materials were developed by Zhou
and colleagues, which showed the same results as the previous study [63].
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5.2. Biocompatibility

Biocompatibility can enable cells to adhere and migrate into scaffolds, which is an
essential element for the success of BTE. SF was approved by the FDA in 1993 and used as
a suture [64]. In vivo studies have demonstrated that SF is compatible with blood [65,66].
In 1995, Minoura et al. successfully cultured fibroblasts on SF-coated films [67]. In addition,
the biocompatibility of SF has been the subject of several investigations. For example, Fan
et al. used a large animal model, porcine anterior cruciate ligament (ACL), for evaluation
in vitro and in vivo. Observations made using confocal microscopy showed that scaffolds
supported both high cell growth and good cell survival. The cells were dispersed across
the scaffolds with negligible cell loss [68]. A large number of reports have found that SF
composite scaffolds are more biocompatible when applied to BTE. Jo et al. conducted an
in vivo trial to evaluate the effect of alginate/HAP/SF composites as bone substitutes, and
the results showed no infection and reduced immunogenicity for up to four weeks. The
expression level of tumor necrosis factor-α (TNF-α) was significantly decreased, while the
expression rates of Runx2 and fibroblast growth factor (FGF)-23 were higher in the tumor
necrosis factor [69]. Other than that, the SF/gelatin microcarrier prepared by Luechford
et al. improved cell adhesion and proliferation. After 28 days in the osteoblastic culture
medium, the cells showed osteoblastic differentiation under the microscope stained with
alkaline phosphatase (ALP) [70].

5.3. Biodegradability

Scaffolds for tissue engineering should be gradually replaced by cells and extracellular
matrix, so the by-products of biodegradation must not be harmful and should not affect
the functions of other tissues or organs [71]. Amino acids and peptides are the results
of the degradation process which do not cause immunogenic reactions and are easily
absorbed by the body [72]. However, the challenge is the degradation of β-sheets in SF,
as previously proposed β-amyloid might participate in the development of Alzheimer’s
disease [73]. Different techniques can be used in vivo and in vitro to identify biomaterial
degradation. In vitro, the degradation of tested biomaterials can be assessed through mass
loss and morphological changes [74]. In vivo, animal models were used for histological
and fluorescence studies after implantation [75]. SF is an enzyme-degradable polymer. The
degradation of SF is mediated by matrix metalloproteinase (MMP) and integrins expressed
by osteoblasts and osteoclasts. The findings show that water-soluble silk I and insoluble
silk II proportion have an impact on it. To be specific, higher silk I content silk films degrade
more quickly than those with higher silk II content [76,77]. Alternatively, Protease XIV
is derived from streptomyces griseus. It has long been considered as a model enzyme for
examining the behavior of SF degradation and is the most commonly used enzyme for SF
degradation [47].

Another challenge that currently exists is that the scaffolds require slow degradation
and load-bearing capacity to maintain their mechanical properties for more extended peri-
ods in BTE [78]. However, controlling the time and degradation of SF remains a challenge.
Umuhoza et al. summarized and reported that the regulation of the biodegradation rate
of SF materials was related to the raw material status, scaffold preparation method, mor-
phological characteristics, and host factors. For example, the crystal content in regenerated
SF is inferior to those in native SF. Consequently, the degrading characteristics of natural
and reconstituted SF might vary considerably. Besides that, degumming can alter the
SF structure and, as a result, it greatly impacts the features of the finished product [79].
Biodegradability information about different morphological characteristics of SF has also
been collected in vivo in small animal models, revealing that fibroin yarn and scaffold com-
pletely biodegrades in 18–36 months, while for a hydrogel, the biodegradation is completed
in 12 weeks. In addition, fibroin nanofibers completely biodegrade in 8 weeks [78,80–82].
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6. Silk Fibroin for Osteogenesis by Immunoregulation

With bone immunology playing an increasingly important role in bone tissue engi-
neering in recent years, the role of SF as commonly used biomaterials in the induction
of macrophage polarization has been gradually explored. The first inflammatory phase
is essential for the completion of bone repair, as SF could induce the M1 phenotype in
macrophages. As inflammation progresses, the pro-inflammatory M1 phenotype is polar-
ized into the anti-inflammatory tissue repair M2 phenotype. Following that, the interaction
between macrophages and osteoblasts may substantially promote bone repair. Bhattachar-
jee and colleagues co-cultured freshly purified peripheral blood monocytes with lyophilized
3D fibroin scaffold and observed gene expression of IL-1β (Figure 3A) and IL-6 (Figure 3B).
Higher gene expression of IL-1β and IL-6 was detectable in cells stimulated with 3D fibroin
group on the first day, which are responsible for the initiation of inflammatory response.
However, gene expression of IL-1β and IL-6 significantly decreased after six days. The
study also found that different immunogenicity of different SF materials is attributed to
the physical characteristics and protein conformation of the materials, which may be influ-
enced by the content of the β-sheet in SF [83]. In addition, it was reported that when SF
nanoparticles were fixed on the surface of titanium, the expression of CD86 in the Ti-SF
groups decreased seven days after surgery compared with the Ti group. However, CD206
expression was greater in the Ti-SF groups. At the same time, the expression of collagen
(COL) 1, osteopontin (OPN), and new bone area were more elevated in Ti-SF [84]. Another
observation was made by immobilizing non-mulberry SF on the titanium surface to study
the effect on osteoblast-macrophages. After 24 h, the protein-coated surfaces exhibit a re-
duced inflammatory response as measured by TNF-α and IL-1β released by macrophages.
The proliferation of macrophages is confirmed by the increased generation of nitric oxide
(NO) from mono- and co-cultures on all Ti surfaces on days 1 and 3. Intriguingly, the direct
co-culture model of macrophage and osteoblast produces significantly less TNF-α and
IL-1β and NO production, which can be explained by the cellular cross-talk [85].
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7. Silk Fibroin Processing Methods

SF scaffolds can be fabricated into various forms for BTE using different techniques:
films, nanoparticles, hydrogels, sponges, nanofibers, and 3D-printed scaffolds (Figure 4).
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7.1. Films

SF films are prepared by adding aqueous, acidic, and ionic SF solutions to the substrate
and then drying the solution [86]. The main techniques include spin coating and vertical
deposition. Spin coating alternates the regenerated SF solution and ethanol on the surface.
Vertical deposition immerses dry glass into regenerated SF solution, which was then
dried at 50 degrees [87]. On the other hand, controlling the surface qualities of films
through photolithography and sophisticated printing techniques is critical for directing
and increasing cell adherence and development [88]. To improve the stability of the
film, temperature-controlled water vapor annealing (TCWVA), stretching, ethanol, and
controlling drying were used to induce and increase the content of β-sheets and prevent
the film from dissolving in water [76,89]. Wang et al. first modified magnesium alloy by
vacuum UV ozone surface activation method and prepared magnesium alloy coated with
SF, which provided more possibilities for bone implantation [90].

7.2. Nanoparticles

SF nanoparticles can be prepared from SF solutions by the following methods: freeze-
drying, grinding, spray-crushing, spray-drying, self-assembly, and freeze-thawing [91,92].
The desolvation and salting-out process is the most commonly used method to prepare SF
nanoparticles due to comparatively mild conditions and simplicity of operation. However,
organic solvent and salting-out agents residue will be present in both methods, respec-
tively [10,93]. Considering their high surface-to-volume ratio, superior solubility, and
outstanding chemical modification capabilities, nanoparticles have attracted more and
more attention [94]. SF nanoparticles are especially used as carriers for the delivery of
drugs and bioactive factors [95]. For example, Subia et al. bound folic acid to SF to en-
hance drug loading, targeting, and controlled release [96]. The functionalized SF-based
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nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated
into these nanoparticles. The introduction of different surface modifications brings many
optimized and new functionalities to SF nanoparticles [97–102]. The preparation of fine and
uniform SF nanoparticles remains a challenge. There are benefits and drawbacks associated
with each strategy, and it is imperative to select a suitable approach for forming SF-based
nanoparticles for BTE.

7.3. Hydrogels

The solution–gel transformation of the SF aqueous solution forms SF hydrogels. One
method is physical cross-linking through eddy current, ultrasound, change of pH or tem-
perature, irradiation, freezing, and electromagnetic treatment [103,104]. Sonication is a
crucial new method for initiating fast sol–gel transitions. Three-dimensional viscoelastic
polymer networks known as hydrogels may diffuse molecules and cells [105]. The mi-
croenvironment is similar to natural tissues and can promote the delivery of nutrients and
cytokines [106]. Consequently, SF hydrogels can serve as a medium for encapsulating cells.
For example, Wang et al. entrapped human marrow mesenchymal stem cells (MSCs) into
ultrasound-induced RSF hydrogels, and cells continued to be alive and multiply while
being maintained under circumstances of static culture for several weeks [107]. Another
method is chemical cross-linking, in which horseradish peroxidase (HRP) is used for enzy-
matic cross-linking in the presence of hydrogen peroxide (H2O2) to form SF hydrogel [108].
After going through the gelation process, the formation of the SF aqueous solution will
shift from the random coil structure (silk I) to the β-sheet structure (silk II) [109]. Compared
with chemical cross-linking, the gel process of physical cross-linking is slower, but it has
the advantage of creating a more uniform β-sheet form, which is a better cross-linking
form [46]. Accelerating the formation of SF hydrogels requires raising the protein content,
the temperature, and the incorporation of calcium ions [110]. Moreover, the functional
design of SF has attracted worldwide attention, including high strength, injectability, heal-
ing, adhesion, conductivity, environmental responsiveness, and 3D printing [11]. The
high-strength SF hydrogel can be prepared by physical cross-linking, double cross-linking,
double network, and composite hydrogels [46]. It has been reported that a novel form of
photo-crosslinked interpenetrating polymer network hydrogel has been demonstrated to
deliver drugs [111].

7.4. Sponges

SF sponges are interconnected porous structures with high porosity, excellent mechan-
ical characteristics, and biodegradability, which can encourage cell adhesion, proliferation,
and migration [112]. SF sponges can be produced in various ways. For example, the regen-
erated SF solution sublimates ice crystals and leaves pores by freeze-drying, forming soft,
porous sponges with a bone lamellar-like structure. By changing the RSF solution’s pH, con-
centration, and freeze-drying temperature, the porosity and pore size of the SF sponge may
be modified. Ice templating is a recently developed method for the adequate preparation
of porous sponges, and many studies have shown that it can form a more optimized pore
structure than conventional freezing. Moreover, it has the advantage of being simple, fast,
and convenient. Wang et al. prepared an SF/nano-hydroxyapatite/graphene oxide scaffold
with a directional channel structure by directional freezing. This structure is more favorable
for migration and bone formation, and for differentiation of BMSCs [113]. The same results
can be seen in ZnSr-doped β-TCP/SF scaffolds [114]. Font Tellado S and colleagues de-
signed biphasic SF scaffolds with two different pore arrangements and mechanical strengths
by a combination of targeted freezing and freeze-drying for tendon/ligament-BTE [115]. In
addition, using the pore-forming agent and the gas-foaming manufacturing process, SF
porous scaffolds with varying pore diameters may be manufactured [116].
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7.5. Nanofibers

SF fibers are produced by a variety of flexible methods and can be formed by electro-
spinning [117], wet spinning [118], dry spinning [119], and other technologies. The most
common is electrospinning, in which droplets are electrified to produce a jet, and when
the jet is stretched to a thinner diameter, the fibers are rapidly cured and deposited [120].
Electrospinning SF nanofiber mats have a high surface area and a porous structure, both
of which offer favorable conditions for cell inoculation, adhesion, and proliferation [121].
The concentration of SF is a significant component that influences the morphology and
porosity of the nanofiber networks [122]. Mao et al. coated electrospinning poly (L-Lactic
acid) (PLLA) fibers with SF nanofibers, which may improve cell adherence and accelerate
the growth of protrusions [123]. In addition, doping graphene oxide (GO), containing
silver and magnesium ions [124] and adding polyethylene oxide (PEO) nanoparticles [125],
can enhance the antibacterial properties of regenerated SF mats and resist infections that
may develop during the osteogenesis process. However, electrospinning still has some
limitations, which can be combined with other manufacturing methods to compensate. For
example, the combination of electrospinning and freeze-drying can promote the delivery
of growth factors, increase the stimulation of the bone microenvironment, and enhance
osteogenic differentiation [126].

7.6. 3D-Printed Scaffolds

3D porous SF scaffolds have excellent porosity and can simulate the biological mi-
croenvironment in vivo, which is beneficial to the adhesion, growth, migration of cells, and
the transfer of nutrients and metabolic wastes [127]. In addition, 3D printing allows cells
to be encapsulated in hydrogels to form a natural tissue-like environment [128]. There is
no doubt that SF hydrogel is an ideal and attractive choice for 3D printing. However, the
literature still reports limited examples, as many challenges need to be overcome [129].
The critical characteristics of bioink suitable for 3D printing are that it is cell-friendly, re-
producible, and has physical chemical gradients suitable for printing [130]. However, the
viscosity of SF hydrogel is higher and a larger pressure is needed for the extrusion of bioink
from the small nozzle, which can cause the nozzle to be blocked and cell death [131]. This
is due to the fact that silk I is a metastable state and tends to aggregate and form β-sheet
structures [132].

In order to be suitable for 3D printing, the excellent rheology is the basic requirement
for bioink, so SF hydrogels usually consist of SF with additives [133]. Furthermore, effective
crosslinking method should be adopted to improve cell viability [134]. In BTE, a variety
of methods, including those that make use of enzymatically cross-linked SF hydrogels,
have been investigated. According to a study by Costa et al., there is a potential for print-
ing silk scaffolds utilizing enzymatic methods, which have good mechanical properties,
controllable biodegradability, and adjustable pore structure and shape. In addition, it has
unique features of shape memory, which can open up the possibility for personalized im-
plantation of bone defects [135]. Furthermore, digital light processing (DLP) bioprinting is
a light-assisted direct approach that can circumvent some of the most significant limitations
of inkjet and extrusion bioprinting. So far, several investigations have been completed
utilizing methacrylated silk fibroin (Sil-MA) as a material for DLP bioprinting. Experimen-
tal tests have proven that Sil-MA has outstanding mechanical and rheological properties,
excellent structural stability, and good cell compatibility [136]. 3D printing hydrogels of
Sil-MA exhibit bone-mimetic structures and compressive modulus ranging from ≈12 kPa
to ≈96 kPa. Encapsulation of pre-osteoblasts using 3D bioprinting Sil-MA hydrogels was
effective, resulting in excellent viability of the cells. It was shown that cell proliferation and
morphology are good. Subsequently, calcium deposition is enhanced, demonstrating that
the hydrogels that encapsulate cells can promote the ability of osteogenesis [137]. Recently,
fluorescent SF bioink was made into glycidyl methacrylated fluorescent SF (FSGMA), which
suggested a potent tool for encapsulated cell tracking and observing real-time degradation
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of the hydrogels [138]. This study provided fuller data support for the further application
of SF in 3D printing.

8. Application of Silk Fibroin Biomaterials for BTE
8.1. SF-Based Scaffolds for BTE Applications

The optimal scaffolds for BTE should be porous and biocompatible in order to promote
cell attachment, growth, differentiation, and migration. On top of that, they must have
sufficient toughness and biodegradability. Bone tissue engineering requires careful consid-
eration of the materials used and the structures designed. SF is a reasonable choice for BTE
because of its good properties and the ability to support osteogenesis and oxygen transport.
For instance, COL-1 expression was observed on scaffolds cocultured with human amniotic
mesenchymal stem cells (hAMSCs). The scaffolds stimulated the growth of hAMSCs and
elevated their COL-1 expression. In vitro, the scaffolds significantly increased ALP activity
and bone mineralization, and elevated the expression of osteogenic-related proteins. On
the other hand, the scaffolds facilitated the angiogenic differentiation of hAMSCs. The
cocultured scaffolds accelerated bone growth in the treatment of severe mouse calvarial
defects [139]. In addition, combining SF with other materials could increase the roughness
of the material surface, enhance cell adhesion and promote osteogenic properties. The latest
progress of SF-based scaffolds as bone construction is summarized in Table 1. Chen et al.
prepared composite scaffolds through incorporating SF nanoparticles into PLLA, which
was beneficial in promoting surface roughness and albumin attachment. Furthermore,
SF/PLLA scaffolds were proven to be able to facilitate an increase in mouse osteoblastic
(MC3T3-E1) cells’ osteogenic differentiation [140].

A recent study showed that the mechanical properties of SF hydrogel-derived scaffolds
can meet the load-bearing requirements of bone regeneration. Kim et al. used γ-ray irradia-
tion technology to prepare SF composite hydrogel containing hydroxyapatite nanoparticles.
The findings revealed that the composite hydrogel could improve the mechanical prop-
erties of hydrogel and effectively stimulate the functional activity of hMSCs and induce
bone regeneration [141]. At the same time, a portion of studies suggested that carbonate
hydroxyapatite (CHA) appears to have more potential than HAP as a re-substitute for bone
scaffold development to enhance bone regeneration. When macrophages are co-cultured
with polycaprolactone/SF/carbonated hydroxyapatite scaffolds prepared by electrostatic
spinning technique, the scaffolds are found to promote macrophage polarization toward
M2 via the JAK/STAT5 pathway, leading to the bone microenvironment to promote os-
teoblast differentiation. The PCL/SF/CHA group showed signs of being more successful
than the other groups in vivo in stimulating bone repair in cranial lesions [142]. Recent
evidence from another study by Del Bianco et al. suggested that SF membranes contain-
ing magnetic nanoparticles triggered a kind of benign magneto-mechanical stimulation
conducive to osteogenic differentiation under the applied magnetic field, which provides
further theoretical support for the application of SF in BTE [143].

Table 1. SF-based scaffolds for BTE applications.

Material Processing Method Cell Osteogenic Effect Ref.

SF/PCL/CHA Electrospinning BMSCs

Activation of the JAK/STAT5 pathway led to
the creation of a pro-osteogenic milieu, which
facilitated the differentiation of osteoblasts.
This was accomplished by shifting the
polarization of macrophages toward M2.

[142]

SF Digital light processing Mouse osteoblastic cells
(MC3T3-E1)

Effectively promoted cell proliferation,
resulting in favorable cell shape and
cytoskeletal morphology, and led to enhanced
calcium deposition over a period of up to 14
days.

[137]
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Table 1. Cont.

Material Processing Method Cell Osteogenic Effect Ref.

SF/apatite Unidirectional
freeze-drying BMSCs

Exhibited high cytocompatibility and
considerably enhanced bone formation; these
results were seen in vitro and in vivo.

[17]

SF/PDA/E7 Electrospinning BMSCs

Creating osteoinduction conditions improved
BMSCs’ biocompatibility, stimulated cell
proliferation and adhesion, and enhanced their
osteogenic differentiation.

[144]

PCL/Fe-BG
hMSCs/SF-PVP-nHA 3D bioprinting hMSCs

Increased the levels of osteogenic markers and
aided the development of osteogenic-primed
MSCs cultured in encapsulation.

[145]

SF/HAP/GPM Freeze-drying /

Inhibited miR-214 expression in MC3T3-E1
in vitro, which in turn enhanced the expression
levels of activating transcription factor 4,
therefore promoting activity of osteoblasts,
extending the expression levels of osteogenic
genes and proteins, and enhancing osteogenic
differentiation.

[146]

8.2. SF as a Scaffold for Growth Factor Delivery

BTE simulates the hierarchical structure of bone tissue by designing growth factors into
biomaterials with enhanced bone-inducing abilities. Many studies have demonstrated that
growth factor composite scaffolds are more effective in local delivery and bone formation.
Bone morphogenetic protein-2 (BMP-2), as a multifunctional paracrine growth factor,
is a member of the TGF-β superfamily and is crucial in the mechanism of osteoblast
differentiation and bone formation [147]. When BMP-2-loaded absorbable SF screws were
implanted into the distal femur of rats, osteoclasts and osteoblasts were recruited more,
allowing more collagen and osteoid deposition than unloaded screws [148]. In addition, SF
as a carrier can control the release of growth factors, which is also essential in promoting
bone regeneration [149]. Shi and colleagues prepared SF nanoparticles containing BMP-
2 with an average size of about 250 nm. BMP-2 was released in a regulated manner.
Utilization of these compounds increases ALP activity, osteogenic gene expression, and
osteogenic differentiation of MSCs [150]. Bessa et al. reported that SF microparticles
prepared by the mild method were used as carriers for the transfer of BMP-2, BMP-9, or
BMP-14. The release kinetics suggest that BMP was released in two stages, with a burst of
release in the first two days, followed by a slow release lasting 14 days. This allows BMPs to
target specific tissues and has the advantage of continuous or controlled release, improving
the bioavailability of growth factors [151]. However, an increasing number of adverse
events associated with the clinical application of rhBMP-2, such as ectopic bone formation,
inflammation and bone resorption, and uncomfortable lipogenesis, are reported [152].
Most complications are thought to be due to excessive superphysiological concentrations
of rhBMP-2. Noggin is the main antagonist of BMP-2. siNoggin-transfected MC3T3-E1
cells were used to enhance the osteogenic effect of BMP-2 dose reduction in 3D SF scaffolds.
The outcomes demonstrated that siNoggin decreased Nog gene expression, but osteocalcin
(OCN) gene expression was five times higher in the siNoggin group compared to the
control group. Histological staining revealed that the siNoggin group had significantly
more mineralized regions than the control group. This non-gene integration strategy has
the potential to enhance the safety of tissue regeneration therapy [153].

Vascularization is also crucial in bone regeneration. Vascularization in bone defects
affects the action of cells and signaling molecules involved in bone regeneration [154]. A
functional vascular network can provide oxygen and nutrients, regulating the proportion-
ality of osteoblasts and osteoclasts to stimulate the release of VEGF and induce osteoblast
differentiation [155]. SF nanoparticles loaded with VEGF helped to maintain the release
of VEGF [156]. VEGF was loaded onto the SF nanoparticles and embedded into the silk
scaffold containing vancomycin to form a dual drug delivery system. The results suggested
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that the constructed co-delivery system can deliver antibiotics and angiogenic factors,
which might be a possible application to treat contaminated bone injury [157].

It is known that SF hydrogel combined with VEGF and BMP-2 can promote the
formation of the blood vessel and bone. Bai et al. created a novel kind of hydrogel,
capable of multiple transitions between hydrogel and dissolution, which is helpful for
the injectable drug delivery system [158]. Furthermore, Zhang et al. prepared injectable
ultrasound-induced silk hydrogel to deliver VEGF (165) and BMP-2 for the maxillary
sinus floor elevation. The findings demonstrated that injectable SF hydrogels could be
utilized to administer various growth factors to irregular bone voids in a less invasive
way [159]. Binding BMP-2 and VEGF to SF microspheres was subsequently incorporated
into SF/nHAP scaffolds for regulated release. Early bone repair is associated with the quick
initial release of VEGF and encouragement of angiogenesis, followed by the comparatively
slow and continuous release of BMP-2 for osteogenic differentiation [160]. This research
suggests a viable strategy for the continuous delivery of growth factors for use in BTE.

8.3. SF as a Scaffold for Stem Cell-Based BTE

Stem cells possess the capacity for multi-directional differentiation, and BMSCs are of-
ten used in BTE to repair bone regeneration effectively [161]. The osteogenic differentiation
of stem cells results from precise regulation of a large number of gene activations/silencing.
Among them, PHF8 plays an essential role in the fibroin scaffold filled with BMSCs in
osteoblast differentiation and skull regeneration after implantation of mouse skull defects.
PHF8 is a major H4k20/H3k9 demethylase which can epigenetically regulate the activity
of unique SAT-rich sequence-binding protein 2 (SATB2). SATB2 triggers the osteoblastic
differentiation of BMSC and induced pluripotent stem cells (iPSCs) and upregulates the
expression of Runx2 and bone matrix proteins by inhibiting HoxA2 and enhancing the
function of osteoblast-determinant Runx2, BSP, and OCN [162,163].

According to the findings of studies, the osteogenic differentiation of stem cells can be
affected by adjusting the properties of the SF scaffold. Various forms of SF scaffolds have
been used as substrates for loading BMSC, such as electrospinning SF mats supporting the
adhesion, diffusion, and growth of BMSC in vitro [164]. Subsequently, electrospinning SF
scaffolds modified with polydopamine (PDA), grafted with E7, were prepared to improve
growth, adhesion, and osteogenic differentiation of BMSC. This research proves that the
composite scaffolds possess the capability to recruit BMSCs and accelerate bone formation,
which is associated with the SDF-1 α/CXCR4 axis and AKT, ERK, and p38 signaling
pathways [144]. Studies have shown that the scaffold stiffness might affect the three-
dimensional differentiation ability of MSCs in vitro. Rockwood et al. implanted MSCs
into an SF composite scaffold reinforced with porous SF particles and found that the
osteogenic ability of MSCs was gotten better. This provided a means to improve the
osteogenic outcome [165]. Additionally, the osteogenesis of BMSC is dependent on the
scaffold’s pore size. Three kinds of fibronectin/gelatin-coated SF scaffolds with large,
medium, and small/average pore sizes were prepared by the salt leaching method. The
fibronectin/gelatin-coated SF scaffolds with an average pore size of 173.8µm were most
suitable for osteogenic differentiation of BMSC in vitro [166].

Recently, a novel “sandwich” approach has been discovered. SF/nanohydroxyapatite
bio-inks loaded with MSCS are bio-printed together with thermoplastic inks formed by
paramagnetic iron-doped bioactive glass-polycaprolactone blends for bone fracture treat-
ment. In this study, pulsed magnetic field drive positively affects the osteogenesis and
maturation of bioprinting structures through mechanical conduction, which provides SF as
a scaffold for stem cell-based BTE with a new and viable option [145]. Furthermore, when
co-cultured with MSCs, RSF united with growth factors can enhance cell adhesion and os-
teogenic differentiation, stimulate ALP activity, and promote bone formation in vivo [167].
Karageorgiou et al. reported that SF scaffolds packed with BMP-2 and implanted with
MSCs had increased ALP activity, calcium deposition, and transcription levels of bone
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sialoprotein, osteopontin, osteocalcin, and osteogenic marker gene cbfa-1. There was higher
bone formation in comparison to control without BMP-2 supplementation [168].

Exosomal miRNAs derived from BMSC are crucial for bone formation and resorp-
tion [169]. Ou et al. assembled PEI-GO complexes loaded with miR-214 inhibitors into
SF/HAP scaffolds to fix critical-size bone deficiencies in rats without loading osteoblasts.
The results showed that the scaffolds have strong mechanical resistance. The structure
promotes cell adhesion and proliferation and can control the release of miR-214 inhibitors.
By inhibiting the expression of miR-214 and inversely increasing the expression of activated
transcription factor 4 (ATF4), the AKT and ERK1/2 signaling pathways in MC3T3-E1 were
activated to achieve the osteogenic activity of endogenous osteoblasts. The capacity of
SF/HAP/GPM scaffolds for osteogenesis was observed (Figure 5) [146]. miR-23a-3p is
highly expressed in the exons of BMSCs and can target interferon regulatory factors 1(IRF1).
It can facilitate the conversion of M1 to M2, reduce the early inflammatory reaction, and
contribute to the early repair of bone tissue [170].
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Figure 5. The capacity of SF/HAP/GPM scaffolds for osteogenesis. (A) The ALP activities of
MC3T3-E1 cells on SF-based scaffolds for 7, 14, or 21 days. (B) The expression levels of ATF4, p-
Akt, Akt, p-ERK1/2, ERK1/2, RUNX2, and OCN in MC3T3-E1 cells cultured on SF, SF/HAP, and
SF/HAP/GPM scaffolds for 14 days. (C,D) The expression levels of RUNX2 and OCN on SF, SF/HAP,
and SF/HAP/GPM scaffolds were measured by qRT-PCR. (E) Reconstructed micro-CT images of
calvarial deficiencies following implantation of SF, SF/HAP, and SF/HAP/GPM scaffolds for 4, 8,
12 and 16 weeks. (F,G) Histological sections of control, SF, SF/HAP, and SF/HAP/GPM scaffolds
were stained with H&E and Masson’s trichrome after 4 and 12 weeks of implantation. * p < 0.05
and ** p < 0.01. Reproduced with permission from [146]. Copyright © 2019 Ivyspring International
Publisher.
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With the gradual increase in the research on cellular exosomes in recent years, the
significance of exosomes in the stimulation of bone regrowth has been demonstrated in
a number of investigations [171]. However, the delivery of exosomes is still a significant
challenge. Sun and colleagues prepared a new type of SF sponge by low-temperature
freezing self-assembly, which serves as a platform for delivering enzymes to respond to the
biodegradation of exosomes. The silk sponge produced by this method has the formation
of Silk I structure, which degrades more quickly. This encapsulation realizes the continuous
release of exons and the maintenance of biological activity. The SF sponges with and
without exosomes were implanted subcutaneously in nude mice. It was found that the
sponge group containing exosomes showed better angiogenesis and tissue inward growth
effects [172]. The ongoing in-depth studies of miRNAs derived from BMSC provide new
insights and therapies for BTE.

9. Conclusions and Perspectives

BTE plays an extremely significant role in treating bone abnormalities and can meet
urgent clinical needs. In order to restore the function of the system, the tissue must
coordinate with the human immune system without adverse effects. A better understanding
is needed regarding SF for osteogenesis by immunoregulation. This review may provide
guidance for achieving better bone formation. Further, it helps to understand the immune
response of SF materials in vivo and enhance their clinical translational potential. SF has
excellent mechanical properties, biocompatibility, and an easily controlled degradation rate,
making it a unique polymeric biomaterial for guided bone regeneration. SF has been taken
on a variety of shapes, such as films, nanoparticles, hydrogels, sponges, fibers, 3D scaffolds,
etc. It has a broad application prospect in the biomedical field, and many studies have used
it for bone tissue repair and functional recovery. In addition, SF can combine with different
biomaterials to form composite scaffolds, which can improve the performance of scaffolds
and promote the formation and mineralization of new bone, enhancing the applicability
and new possibilities of SF in the field of BTE.

However, there are still certain issues that need to be addressed and resolved in SF-
based biomaterials. For example, the mechanical characteristics of SF scaffolds are relatively
poor, and their clinical applications and systematic research need further study. SF is a
non-autogenous biomaterial, and there are still some adverse immune responses, which
may be due to residual sericin. Then again, the degradation products of SF biomaterials
may trigger the immune system. Therefore, a great deal of work is required to be done to
elucidate the long-term safety of SF scaffolds further. Although it has been shown that SF
material has achieved exciting bone regeneration in small animal models, it is still lacking
in large animal models. Furthermore, research on the osteogenesis signal pathway of SF
needs to be more thorough. So far, SF-based biomaterials have not entered the phase of
human trials yet, and the clinical translation may still take time. There is still much work to
be done to accelerate the development of SF-based products for BTE, and an increase in the
usage of SF scaffolds in BTE is anticipated.
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