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Abstract: In this work, BTEAC (benzyl triethylammonium chloride) was employed as a phase trans-
fer catalyst in an improved synthesis (up to 88% yield) of S-alkylated bromobenzofuran-oxadiazole
scaffolds BF1-9. These bromobenzofuran-oxadiazole structural hybrids BF1-9 were evaluated in vitro
against anti-hepatocellular cancer (HepG2) cell line as well as for their in silico therapeutic potential
against six key cancer targets, such as EGFR, PI3K, mTOR, GSK-3β, AKT, and Tubulin polymerization
enzymes. Bromobenzofuran structural motifs BF-2, BF-5, and BF-6 displayed the best anti-cancer
potential and with the least cell viabilities (12.72 ± 2.23%, 10.41 ± 0.66%, and 13.08 ± 1.08%), re-
spectively, against HepG2 liver cancer cell line, and they also showed excellent molecular docking
scores against EGFR, PI3K, mTOR, and Tubulin polymerization enzymes, which are major cancer
targets. Bromobenzofuran-oxadiazoles BF-2, BF-5, and BF-6 displayed excellent binding affinities
with the active sites of EGFR, PI3K, mTOR, and Tubulin polymerization enzymes in the molecu-
lar docking studies as well as in MMGBSA and MM-PBSA studies. The stable bindings of these
structural hybrids BF-2, BF-5, and BF-6 with the enzyme targets EGFR and PI3K were further con-
firmed by molecular dynamic simulations. These investigations revealed that 2,5-dimethoxy-based
bromobenzofuran-oxadiazole BF-5 (10.41 ± 0.66% cell viability) exhibited excellent cytotoxic thera-
peutic efficacy. Moreover, computational studies also suggested that the EGFR, PI3K, mTOR, and
Tubulin polymerization enzymes were the probable targets of this BF-5 scaffold. In silico approaches,
such as molecular docking, molecular dynamics simulations, and DFT studies, displayed excellent
association with the experimental biological data of bromobenzofuran-oxadiazoles BF1-9. Thus,
in silico and in vitro results anticipate that the synthesized bromobenzofuran-oxadiazole hybrid
BF-5 possesses prominent anti-liver cancer inhibitory effects and can be used as lead for further
investigation for anti-HepG2 liver cancer therapy.

Keywords: bromobenzofuran-oxadiazole; BTEAC; HepG-2 cell line; EGFR; PI3K, mTOR and tubulin
polymerization inhibitors; SAR; molecular docking; MD simulations; DFT studies

1. Introduction

Cancer is a serious threat to today’s world and is considered the second foremost
cause of death globally. The search for new anticancer therapeutic agents has gained
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considerable attention and interest. Many research groups of synthetic/medicinal chemists
and pharmacologists are working to discover and develop novel anticancer agents for
the treatment of around 100 different types of cancers [1–4]. Liver cancer is the fourth
most common cause of deaths among all the cancers, and it is the seventh leading cause
of death in women and the fifth in men worldwide. According to the statistics, liver
disease will become a global problem by 2025, affecting almost one million people across
the world. The major cause of hepatocellular carcinoma (HCC) is obesity, hepatitis C
and B viruses (HCV& HBV), diabetes, and alcoholic and nonalcoholic fatty liver diseases
(AFLD & NAFLD) [5–9]. Various treatments are in practice to treat cancerous cells; 49% of
cancer cells are treated with surgery, 40% with radiotherapy, and only 11% are being cured
with chemotherapy.

Various chemotherapeutics are available to cure different cancers, yet most of them
suffer from certain drawbacks (being expensive, often having less efficacy than required,
and carrying a lot of negative side effects) [10–13]. The development of new bioactive
privileged structural motifs based on molecular recognition is the core and significant
objective of medicinal chemistry. The oxygen and nitrogen containing heterocycles have
always been of great synthetic/biological interest owing to their broad spectrum of ap-
plications in the fields of medicinal chemistry, pharmaceutics, and pharmacology. The
compound’s structures innately lock the therapeutic potential against various diseases
and diversified structures of heterocyclic scaffolds are the main dynamic source to act as
biologically active therapeutics. Therapeutically, the heterocyclic oxadiazole is the one of
the most famous pharmacophores of oxygen and nitrogen, containing a five member azole
family that is an integral structural unit of various clinical drugs, as displayed in Figure 1.
In general, the biological properties manifested by oxadiazole moiety bearing molecules
include anti-fungal, anti-inflammatory, analgesic, anti-diabetic, anticancer, antibacterial,
antiviral, antibacterial, antitumor, hypotensive, anti-obesity, etc. [14–19].
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Figure 1. The most famous oxadiazole core-based clinical drugs. 

As per recent literature, benzofuran derivatives also exhibit a wide spectrum of 
versatile biological activities, such as a bone anabolic agent, anti-inflammatory, antimi-
crobial agents, monoamine oxidase (MAO) inhibitors, tumor necrosis factor-α (TNF-α) 
inhibitors, anti-HIV/HCV, CNS related disorders, antipyretic, renal disorders, anticoag-
ulant, anti-lung cancer, dual active ligands of 5-HT1A and serotonin reuptake inhibitors, 
anti-TB, farnesyltransferase (FTase) inhibitors, aromatase (cytochrome P450) inhibitors, 
Pim-1 serine/threonine-protein kinase inhibitors, hypoxia-inducible factor (HIF-1α) in-
hibitors, serotonin receptor inhibitors (5-HT1A), glycogen synthase kinase (GSK-3β) in-
hibitors, mammalian target of the rapamycin (mTOR) inhibitors, prolyl endopeptidase 
inhibitors (PEP), cholinesterase activity inhibitors, α-glucosidase inhibitors, tubulin 
polymerization inhibitors, anti-human liver carcinoma cell line (HepG2), ser-
ine-threonine kinase (AKT) inhibitors, PLK1 PBD inhibitors, PI3K/Akt inhibitors and 
VEGFR-2 tyrosine kinase inhibitors, etc. Some of the most famous benzofuran core based 
clinically active therapeutics have been depicted in Figure 2 [20–27]. 
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As per recent literature, benzofuran derivatives also exhibit a wide spectrum of ver-
satile biological activities, such as a bone anabolic agent, anti-inflammatory, antimicro-
bial agents, monoamine oxidase (MAO) inhibitors, tumor necrosis factor-α (TNF-α) in-
hibitors, anti-HIV/HCV, CNS related disorders, antipyretic, renal disorders, anticoagulant,
anti-lung cancer, dual active ligands of 5-HT1A and serotonin reuptake inhibitors, anti-
TB, farnesyltransferase (FTase) inhibitors, aromatase (cytochrome P450) inhibitors, Pim-1
serine/threonine-protein kinase inhibitors, hypoxia-inducible factor (HIF-1α) inhibitors,
serotonin receptor inhibitors (5-HT1A), glycogen synthase kinase (GSK-3β) inhibitors,
mammalian target of the rapamycin (mTOR) inhibitors, prolyl endopeptidase inhibitors
(PEP), cholinesterase activity inhibitors, α-glucosidase inhibitors, tubulin polymerization
inhibitors, anti-human liver carcinoma cell line (HepG2), serine-threonine kinase (AKT)
inhibitors, PLK1 PBD inhibitors, PI3K/Akt inhibitors and VEGFR-2 tyrosine kinase in-
hibitors, etc. Some of the most famous benzofuran core based clinically active therapeutics
have been depicted in Figure 2 [20–27].
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Figure 2. Some of the most famous benzofuran core-based clinical drugs. 

The Rationale of Molecular Design of Bromobenzofuran-oxadiazoles BF1-9 against HepG2 Cancer 
Cell Line 

The versatile therapeutic potential of oxadiazoles has made this moiety an important 
pharmacological scaffold for drug design, especially in the field of oncology [28,29]. A 
large library of oxadiazoles, such as naproxen-, benzoxazole-, piperazinyl-, thienyl-, and 
naphthalene-based oxadiazoles and 2,5-disubstituted-1,3,4-oxadiazoles, etc. displayed 
excellent anti-cancer potential against HepG2 cell line (Figure 3). Benzofuran analogues, 
such as thiazole-based benzofurans, have been found to be more active scaffolds than the 
standard drug 5-fluorouracil. Furan-thiazole based oxadiazoles displayed comparable 
IC50 values to the reference drug doxorubicin. Similarly, trifluoro containing benzofuran 
hybrids exhibited strong anti-proliferative efficacy against HepG-2 cell line as displayed 
in Figure 3 [24,30–34]. 

The rationale of the current study was based on the molecular hybridization of 
bromo-arylated fragment with the combination of two major bioactive heterocyclic moi-
eties furan and oxadiazole, each of which possess excellent and privileged pharmaceuti-
cal and pharmacological profiles, as demonstrated in Figures 1–3, respectively. In the 
recent research work, we screened the synthesized substituted 
S-arylatedbenzofuran-oxadiazole scaffolds against the HepG-2 cancer cell line.  
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The Rationale of Molecular Design of Bromobenzofuran-oxadiazoles BF1-9 against HepG2 Cancer
Cell Line

The versatile therapeutic potential of oxadiazoles has made this moiety an important
pharmacological scaffold for drug design, especially in the field of oncology [28,29]. A
large library of oxadiazoles, such as naproxen-, benzoxazole-, piperazinyl-, thienyl-, and
naphthalene-based oxadiazoles and 2,5-disubstituted-1,3,4-oxadiazoles, etc. displayed
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excellent anti-cancer potential against HepG2 cell line (Figure 3). Benzofuran analogues,
such as thiazole-based benzofurans, have been found to be more active scaffolds than the
standard drug 5-fluorouracil. Furan-thiazole based oxadiazoles displayed comparable
IC50 values to the reference drug doxorubicin. Similarly, trifluoro containing benzofuran
hybrids exhibited strong anti-proliferative efficacy against HepG-2 cell line as displayed in
Figure 3 [24,30–34].
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The rationale of the current study was based on the molecular hybridization of bromo-
arylated fragment with the combination of two major bioactive heterocyclic moieties
furan and oxadiazole, each of which possess excellent and privileged pharmaceutical
and pharmacological profiles, as demonstrated in Figures 1–3, respectively. In the recent
research work, we screened the synthesized substituted S-arylatedbenzofuran-oxadiazole
scaffolds against the HepG-2 cancer cell line.

Based on the plethora of the research cited above, we were interested to assess the
therapeutic potential of bromobenzofuran-oxadiazoles BF1-9 as anti-hepatic cancer agents.

2. Materials and Methods
2.1. Materials for the Synthesis Bromobenzofuran-Oxadiazole Derivatives BF1-9

The ultrasonic irradiated experimental synthetic strategy was performed in a 1.9-L
capacity ultrasonic cleaner bath (model 1510) powered by a 115 V heater switch, 47 kHz,
and mechanical timer. In this study, all analytical grade starting materials, reagents, and
solvents were purchased from Alfa Aesar or Sigma Aldrich. The reactions were monitored
by thin-layer chromatography (TLC) using aluminum-backed silica gel plates.
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2.2. BTEAC Catalyzed Synthesis of Bromobenzofuran-Oxadiazole Structural Hybrids BF1-9 by
Ultrasonic Irradiated Synthetic Approach

A reaction mixture containing bromobenzofuran-oxadiazole-2-thiol 1 (1 mmol) [35,36],
BTEAC (10 mol%), and substituted bromoacetanilide derivatives 2a–i (1.2 mmol) [35,36]
in CH3CN was sonicated for 30 min at 40 ◦C (Scheme 1). Upon reaction completion, n-
hexane was added to afford S-arylated bromobenzofuran-oxadiazole derivatives BF1-9
as precipitates, which were further purified with an ethanolic recrystallization process or
column chromatography technique using ethyl acetate–petroleum ether (1:9) [37–39].
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2.3. Anti-hepatocellular Carcinoma MTT Assay

The anti-hepatocellular therapeutic potential of the afforded bromobenzofuran-
oxadiazoles BF1-9 was evaluated by applying the MTT assay, and these structural hy-
brids BF1-9 were screened against the HepG2 cancer cell line [40,41]. The Dulbecco’s
modified Eagle’s medium was used to develop the HepG2 cell line as a monolayer culture
composed of 10% FBS, 100 µg/mL penicillin, and 1% streptomycin. The humid atmosphere
at 37 ◦C was provided for incubation, which consisted of 95% air, 5% CO2, and water.
The synthesized bromobenzofuran-oxadiazoles BF1-9 (100 µg/100 mL) were dissolved
in DMSO to treat the HepG2 cancer cell line and the DMSO-treated cells were used as a
negative control. The 96-well plates were used to culture HepG2 cells overnight, which
were further treated with the BF1-9 compounds.

After the incubation of 48 h, 10 µL, 5 mg/mL of MTT reagent was added to each
plate and incubated for 4 h at 37 ◦C. The percentage cell viability was calculated by
measuring the absorbance at 490 nm after the addition of 150 µL DMSO to each plate via a
micro-plate reader.

2.4. Computational Approach of Bromobenzofuran-Oxadiazoles BF1-9
2.4.1. Retrieval of EGFR, PI3K, mTOR, AKT, Tubulin Polymerization, and GSK-3β Protein
PDB Structures

For the computational investigations, the target enzymes EGFR, PI3K, mTOR, AKT,
Tubulin polymerization and GSK-3β protein PDB structures were retrieved from the RCSB
with PDB identifiers 4HJO, 3ML9, and 6Y9R [42–45] and 3QKL, 4JSX, and 4O2B [46–48].

2.4.2. Designing of Ligands and Molecular Docking of Bromobenzofuran-
Oxadiazoles BF1-9

The Molecular Operating Environment (MOE) 2009.10 was used to carry out the
molecular docking analyses. The Biovia DS software was used to prepare the EGFR,
PI3K, mTOR, AKT, Tubulin polymerization, and GSK-3β enzyme protein structures for
docking experiments by removing any extra water molecules and heteroatoms from their
protein PDB structures. The chemdraw professional program was used to prepare the
structures of the ligands BF-2, BF-5, and BF-6 and saved them in the mol format for later
research [49–52]. The ligand structures were loaded into the MOE before docking, and the
MMFF94x forcefield was used to reduce their energy. The protein PDBs was opened in MOE
and three d-protonated using the MMFF94x force field. The active site of the six proteins
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was located and selected using the Site Finder function of MOE. Using the Triangle Matcher
placement techniques, the compounds were docked in the binding pocket and scored
by the Dock module using the London-dG scoring function of MOE. The ligand-protein
interaction was viewed using the Biovia DS Studio software.

2.4.3. ADMET and Drug-Likeness Studies of Bromobenzofuran-Oxadiazoles BF1-9

The Swissadme and ADMETlabonline servers were used for the ADME and
drug-likeness research, whereas the admetSARonline server was used for toxicity
investigations [53–56].

2.4.4. Molecular Dynamic Simulation of Bromobenzofuran-oxadiazoles BF-2, BF-5,
and BF-6

The molecular dynamic simulation was done using AMBER20. Preprocessing of the
docked complexes was done via the Antechamber program. The receptors and compounds
were processed through FF14SB and GAFF force fields, respectively. The systems were
energy minimized for 1500 steps. First, the steepest descent followed by conjugate gradient
algorithm was used. Heating was done for 310 K in gradual fashion. The systems were
equilibrated and then subjected to production run of 50 ns. The CPPTRAJ module was used
for trajectories analysis while XMGRACE was applied for making plots. The MMPBSA.py
module was used for binding free energies analysis. In total, 1000 frames were picked for
MMPBSA and MMGBSA analyses [57–63].

2.4.5. DFT Studies of Bromobenzofuran-Oxadiazoles BF-2, BF-5, and BF-6

The DFT computations of biologically active bromobenzofuran-oxadiazoles BF-2, BF-5
and BF-6 structural motifs were performed with Gaussian 09. The geometries of compounds
BF-2, BF-5, and BF-6 were optimized by using the DFT method with B3LYP in the ground
state. The basis set was LANL2DZ. Then, energy calculations of BF-2, BF-5, and BF-6 were
performed by keeping the DFT optimization setups the same. By the time-dependent DFT
method, the total energy, the highest occupied molecular orbital (HOMO) energy, and
the lowest unoccupied molecular orbital (LUMO) energy were obtained. Thereafter, the
related parameters were computed using these values. The DFT computation results were
visualized and analyzed using GaussView 5.0 [64–67].

2.5. Statistical Data

The statistical data was analyzed with the Prism software, and the results of the study
were measured in triplicates and depicted as mean ± SD.

3. Results and Discussion
3.1. Chemistry
Synthesis of Bromobenzofuran-Oxadiazole Structural Hybrids BF1-9

In the present research work, BTEAC catalyzed synthetic protocol was applied to
furnish substituted 1,3,4-oxadiazole appended bromobenzofuran structural motifs BF1-9 as
sketched in Scheme 1. In the methodology, the scaffold BF-4 containing electron-donating
(ED) methoxy group at ortho positions was achieved in maximum 88% yield while the low-
est yield was observed for BF-8 (75%), having highly electronegative electron withdrawing
group chlorine at para position (2-position) on the phenyl ring, as shown in Table 1. This
BTEAC-catalyzed synthetic approach provided higher reaction yields as compared to our
previously reported methodology yields (53–79%) [39].
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Table 1. Synthetic data of bromobenzofuran-oxadiazole derivatives BF1-9.

Compounds Products
Percentage Yields Melting Points (MP) oC

This Work (Using BTEAC Catalyst) Reported [39] Found

BF-1
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tron-donating (ED) methoxy group at ortho positions was achieved in maximum 88% 
yield while the lowest yield was observed for BF-8 (75%), having highly electronegative 
electron withdrawing group chlorine at para position (2-position) on the phenyl ring, as 
shown in Table 1. This BTEAC-catalyzed synthetic approach provided higher reaction 
yields as compared to our previously reported methodology yields (53–79%) [39]. 

Table 1. Synthetic data of bromobenzofuran-oxadiazole derivatives BF1-9. 
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3.2. Biological Evaluation of Bromobenzofuran-Oxadiazoles 
3.2.1. Anti-Hepatocellular Carcinoma Activity of Bromobenzofuran-Oxadiazoles BF1-9 

The anti-HepG2 liver cytotoxicity of bromobenzofuran-oxadiazole structural hy-
brids BF1-9 was evaluated via MTT assay. The human liver tumor cell line (HepG2) was 
used to examine one dose-response, and the results are presented in Table 2. These re-
sults highlighted the significance of S-alkylated bromobenzofuran-oxadiazole deriva-
tives BF1-9, which exhibited significant anticancer activity (Cell viability = 10.41 ± 0.66% 
to 44.69 ± 6.85%). Among all bromobenzofuran-oxadiazole derivatives BF1-9, 
3,4-dimethyphenyl-containing scaffold BF-9 showed the maximum cell viability of 44.69 
± 6.85%, which indicated that this structural hybrid BF-9 is less cytotoxic while 
2-methoxyphenyl containing structural motif BF-4 (13.88 ± 0.6% cell viability) and 
4-fluorophenyl-based derivative BF-8 (13.85 ± 1.08% cell viability) displayed comparable 
and better cytotoxic potential with respect to the most bioactive bromobenzofu-
ran-oxadiazoles BF-2, BF-5, and BF-6. The phenyl, 2,5-dimethyl phenyl, and 
2-chlorophenyl containing bromobenzofuran-oxadiazoles BF-1, BF-3, and BF-7 demon-
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3.2. Biological Evaluation of Bromobenzofuran-Oxadiazoles 
3.2.1. Anti-Hepatocellular Carcinoma Activity of Bromobenzofuran-Oxadiazoles BF1-9 

The anti-HepG2 liver cytotoxicity of bromobenzofuran-oxadiazole structural hy-
brids BF1-9 was evaluated via MTT assay. The human liver tumor cell line (HepG2) was 
used to examine one dose-response, and the results are presented in Table 2. These re-
sults highlighted the significance of S-alkylated bromobenzofuran-oxadiazole deriva-
tives BF1-9, which exhibited significant anticancer activity (Cell viability = 10.41 ± 0.66% 
to 44.69 ± 6.85%). Among all bromobenzofuran-oxadiazole derivatives BF1-9, 
3,4-dimethyphenyl-containing scaffold BF-9 showed the maximum cell viability of 44.69 
± 6.85%, which indicated that this structural hybrid BF-9 is less cytotoxic while 
2-methoxyphenyl containing structural motif BF-4 (13.88 ± 0.6% cell viability) and 
4-fluorophenyl-based derivative BF-8 (13.85 ± 1.08% cell viability) displayed comparable 
and better cytotoxic potential with respect to the most bioactive bromobenzofu-
ran-oxadiazoles BF-2, BF-5, and BF-6. The phenyl, 2,5-dimethyl phenyl, and 
2-chlorophenyl containing bromobenzofuran-oxadiazoles BF-1, BF-3, and BF-7 demon-
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3.2. Biological Evaluation of Bromobenzofuran-Oxadiazoles 
3.2.1. Anti-Hepatocellular Carcinoma Activity of Bromobenzofuran-Oxadiazoles BF1-9 

The anti-HepG2 liver cytotoxicity of bromobenzofuran-oxadiazole structural hy-
brids BF1-9 was evaluated via MTT assay. The human liver tumor cell line (HepG2) was 
used to examine one dose-response, and the results are presented in Table 2. These re-
sults highlighted the significance of S-alkylated bromobenzofuran-oxadiazole deriva-
tives BF1-9, which exhibited significant anticancer activity (Cell viability = 10.41 ± 0.66% 
to 44.69 ± 6.85%). Among all bromobenzofuran-oxadiazole derivatives BF1-9, 
3,4-dimethyphenyl-containing scaffold BF-9 showed the maximum cell viability of 44.69 
± 6.85%, which indicated that this structural hybrid BF-9 is less cytotoxic while 
2-methoxyphenyl containing structural motif BF-4 (13.88 ± 0.6% cell viability) and 
4-fluorophenyl-based derivative BF-8 (13.85 ± 1.08% cell viability) displayed comparable 
and better cytotoxic potential with respect to the most bioactive bromobenzofu-
ran-oxadiazoles BF-2, BF-5, and BF-6. The phenyl, 2,5-dimethyl phenyl, and 
2-chlorophenyl containing bromobenzofuran-oxadiazoles BF-1, BF-3, and BF-7 demon-
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3.2. Biological Evaluation of Bromobenzofuran-Oxadiazoles 
3.2.1. Anti-Hepatocellular Carcinoma Activity of Bromobenzofuran-Oxadiazoles BF1-9 

The anti-HepG2 liver cytotoxicity of bromobenzofuran-oxadiazole structural hy-
brids BF1-9 was evaluated via MTT assay. The human liver tumor cell line (HepG2) was 
used to examine one dose-response, and the results are presented in Table 2. These re-
sults highlighted the significance of S-alkylated bromobenzofuran-oxadiazole deriva-
tives BF1-9, which exhibited significant anticancer activity (Cell viability = 10.41 ± 0.66% 
to 44.69 ± 6.85%). Among all bromobenzofuran-oxadiazole derivatives BF1-9, 
3,4-dimethyphenyl-containing scaffold BF-9 showed the maximum cell viability of 44.69 
± 6.85%, which indicated that this structural hybrid BF-9 is less cytotoxic while 
2-methoxyphenyl containing structural motif BF-4 (13.88 ± 0.6% cell viability) and 
4-fluorophenyl-based derivative BF-8 (13.85 ± 1.08% cell viability) displayed comparable 
and better cytotoxic potential with respect to the most bioactive bromobenzofu-
ran-oxadiazoles BF-2, BF-5, and BF-6. The phenyl, 2,5-dimethyl phenyl, and 
2-chlorophenyl containing bromobenzofuran-oxadiazoles BF-1, BF-3, and BF-7 demon-
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3.2. Biological Evaluation of Bromobenzofuran-Oxadiazoles 
3.2.1. Anti-Hepatocellular Carcinoma Activity of Bromobenzofuran-Oxadiazoles BF1-9 

The anti-HepG2 liver cytotoxicity of bromobenzofuran-oxadiazole structural hy-
brids BF1-9 was evaluated via MTT assay. The human liver tumor cell line (HepG2) was 
used to examine one dose-response, and the results are presented in Table 2. These re-
sults highlighted the significance of S-alkylated bromobenzofuran-oxadiazole deriva-
tives BF1-9, which exhibited significant anticancer activity (Cell viability = 10.41 ± 0.66% 
to 44.69 ± 6.85%). Among all bromobenzofuran-oxadiazole derivatives BF1-9, 
3,4-dimethyphenyl-containing scaffold BF-9 showed the maximum cell viability of 44.69 
± 6.85%, which indicated that this structural hybrid BF-9 is less cytotoxic while 
2-methoxyphenyl containing structural motif BF-4 (13.88 ± 0.6% cell viability) and 
4-fluorophenyl-based derivative BF-8 (13.85 ± 1.08% cell viability) displayed comparable 
and better cytotoxic potential with respect to the most bioactive bromobenzofu-
ran-oxadiazoles BF-2, BF-5, and BF-6. The phenyl, 2,5-dimethyl phenyl, and 
2-chlorophenyl containing bromobenzofuran-oxadiazoles BF-1, BF-3, and BF-7 demon-
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3.2. Biological Evaluation of Bromobenzofuran-Oxadiazoles 
3.2.1. Anti-Hepatocellular Carcinoma Activity of Bromobenzofuran-Oxadiazoles BF1-9 

The anti-HepG2 liver cytotoxicity of bromobenzofuran-oxadiazole structural hy-
brids BF1-9 was evaluated via MTT assay. The human liver tumor cell line (HepG2) was 
used to examine one dose-response, and the results are presented in Table 2. These re-
sults highlighted the significance of S-alkylated bromobenzofuran-oxadiazole deriva-
tives BF1-9, which exhibited significant anticancer activity (Cell viability = 10.41 ± 0.66% 
to 44.69 ± 6.85%). Among all bromobenzofuran-oxadiazole derivatives BF1-9, 
3,4-dimethyphenyl-containing scaffold BF-9 showed the maximum cell viability of 44.69 
± 6.85%, which indicated that this structural hybrid BF-9 is less cytotoxic while 
2-methoxyphenyl containing structural motif BF-4 (13.88 ± 0.6% cell viability) and 
4-fluorophenyl-based derivative BF-8 (13.85 ± 1.08% cell viability) displayed comparable 
and better cytotoxic potential with respect to the most bioactive bromobenzofu-
ran-oxadiazoles BF-2, BF-5, and BF-6. The phenyl, 2,5-dimethyl phenyl, and 
2-chlorophenyl containing bromobenzofuran-oxadiazoles BF-1, BF-3, and BF-7 demon-
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3.2. Biological Evaluation of Bromobenzofuran-Oxadiazoles 
3.2.1. Anti-Hepatocellular Carcinoma Activity of Bromobenzofuran-Oxadiazoles BF1-9 

The anti-HepG2 liver cytotoxicity of bromobenzofuran-oxadiazole structural hy-
brids BF1-9 was evaluated via MTT assay. The human liver tumor cell line (HepG2) was 
used to examine one dose-response, and the results are presented in Table 2. These re-
sults highlighted the significance of S-alkylated bromobenzofuran-oxadiazole deriva-
tives BF1-9, which exhibited significant anticancer activity (Cell viability = 10.41 ± 0.66% 
to 44.69 ± 6.85%). Among all bromobenzofuran-oxadiazole derivatives BF1-9, 
3,4-dimethyphenyl-containing scaffold BF-9 showed the maximum cell viability of 44.69 
± 6.85%, which indicated that this structural hybrid BF-9 is less cytotoxic while 
2-methoxyphenyl containing structural motif BF-4 (13.88 ± 0.6% cell viability) and 
4-fluorophenyl-based derivative BF-8 (13.85 ± 1.08% cell viability) displayed comparable 
and better cytotoxic potential with respect to the most bioactive bromobenzofu-
ran-oxadiazoles BF-2, BF-5, and BF-6. The phenyl, 2,5-dimethyl phenyl, and 
2-chlorophenyl containing bromobenzofuran-oxadiazoles BF-1, BF-3, and BF-7 demon-
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3.2. Biological Evaluation of Bromobenzofuran-Oxadiazoles 
3.2.1. Anti-Hepatocellular Carcinoma Activity of Bromobenzofuran-Oxadiazoles BF1-9 

The anti-HepG2 liver cytotoxicity of bromobenzofuran-oxadiazole structural hy-
brids BF1-9 was evaluated via MTT assay. The human liver tumor cell line (HepG2) was 
used to examine one dose-response, and the results are presented in Table 2. These re-
sults highlighted the significance of S-alkylated bromobenzofuran-oxadiazole deriva-
tives BF1-9, which exhibited significant anticancer activity (Cell viability = 10.41 ± 0.66% 
to 44.69 ± 6.85%). Among all bromobenzofuran-oxadiazole derivatives BF1-9, 
3,4-dimethyphenyl-containing scaffold BF-9 showed the maximum cell viability of 44.69 
± 6.85%, which indicated that this structural hybrid BF-9 is less cytotoxic while 
2-methoxyphenyl containing structural motif BF-4 (13.88 ± 0.6% cell viability) and 
4-fluorophenyl-based derivative BF-8 (13.85 ± 1.08% cell viability) displayed comparable 
and better cytotoxic potential with respect to the most bioactive bromobenzofu-
ran-oxadiazoles BF-2, BF-5, and BF-6. The phenyl, 2,5-dimethyl phenyl, and 
2-chlorophenyl containing bromobenzofuran-oxadiazoles BF-1, BF-3, and BF-7 demon-
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3.2. Biological Evaluation of Bromobenzofuran-Oxadiazoles
3.2.1. Anti-Hepatocellular Carcinoma Activity of Bromobenzofuran-Oxadiazoles BF1-9

The anti-HepG2 liver cytotoxicity of bromobenzofuran-oxadiazole structural hybrids
BF1-9 was evaluated via MTT assay. The human liver tumor cell line (HepG2) was used to
examine one dose-response, and the results are presented in Table 2. These results highlighted
the significance of S-alkylated bromobenzofuran-oxadiazole derivatives BF1-9, which exhibited
significant anticancer activity (Cell viability = 10.41 ± 0.66% to 44.69 ± 6.85%). Among all
bromobenzofuran-oxadiazole derivatives BF1-9, 3,4-dimethyphenyl-containing scaffold BF-9
showed the maximum cell viability of 44.69 ± 6.85%, which indicated that this structural
hybrid BF-9 is less cytotoxic while 2-methoxyphenyl containing structural motif BF-4
(13.88 ± 0.6% cell viability) and 4-fluorophenyl-based derivative BF-8 (13.85 ± 1.08% cell
viability) displayed comparable and better cytotoxic potential with respect to the most
bioactive bromobenzofuran-oxadiazoles BF-2, BF-5, and BF-6. The phenyl, 2,5-dimethyl
phenyl, and 2-chlorophenyl containing bromobenzofuran-oxadiazoles BF-1, BF-3, and BF-7
demonstrated moderate anti-hepatic therapeutic efficacies (26.29 ± 17.54% cell viability,
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33.12 ± 6.15% cell viability, and 21.47 ± 8.55% cell viability), respectively, as shown in
Table 2. As depicted in Table 2, 3,4-Dichloro-based bromobenzofuran-oxadiazole BF-2,
(12.72 ± 2.23% cell viability), 2-fluorophenyl containing bromobenzofuran-oxadiazole BF-6
(13.08 ± 1.08% cell viability), and the least cell viability (10.41 ± 0.66%) and maximum
anti-hepatic liver cancer therapeutic potential were displayed by 2,4-dimethoxy phenyl
based bromobenzofuran-oxadiazole BF-5. To evaluate the in-depth therapeutic potential
and complete mechanism of inhibition of bromobenzofuran-oxadiazoles BF1-9 against the
human hepatocellular carcinoma (HCC), further in vitro studies on other human HCC
tissue cell lines would be necessitated in our further studies by utilizing cell proliferation,
apoptosis, and autophagy methodologies.

Table 2. Cytotoxic potential of bromobenzofuran-oxadiazole structural hybrids BF1-9 against HepG2
liver cancer cell line.

Compounds Products Structure HepG2 % Cell Viability ± SD
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3.2.2. Structure-Activity Relationship of Bromobenzofuran-Oxadiazoles BF1-9

The newly synthesized bromobenzofuran-oxadiazoles BF1-9 contained a variety of
substituted acetanilides 2a-I, which were installed to enhance the lipophilicity of the syn-
thesized scaffolds, and the cytotoxic results were prominently improved as mentioned in
Table 2. The SAR studies revealed that the substituted acetanilides depicted arbitrary behav-
ior as bromobenzofuran-oxadiazole compounds BF-2, BF-5, and BF-6, which have electron
withdrawing 3,4-dichloro, 2,4-dimethoxy, and 2-fluoro groups, showed considerably lower
cell viability (12.72 ± 2.23%, 10.41 ± 0.66, and 13.08 ± 1.08) and highly remarkable and sig-
nificant anti-cytotoxic potential against HepG2 cancer cells. Bromobenzofuran-oxadiazoles
BF-3 and BF-9, which have electron-donating methyl groups at 2,4- and 3,4-positions
on phenyl groups of the anilide, resulted in higher cell viability (33.12 ± 6.15% and
44.69 ± 6.85%) and demonstrated the least anticancer therapeutic efficacies as in presented
in Table 2. This study indicated that the bromobenzofuran-oxadiazoles having electron-
withdrawing methoxy, fluoro, and chloro groups displayed the best and the most significant
anticancer therapeutic potential against HepG2 cancer cells than electron-donating methyl
group containing benzofuran-oxadiazoles. The cytotoxic therapeutic potential decreased
in the following order: 2,5-dimethoxy > 3,4-dichloro > 2-flouro > 4-flouro > 2-methoxy >
2-Chloro > Pheny > 2,4-dimethyl > 3,4-dimethyl.

It was observed that the second, fourth and fifth positions of phenyl were respon-
sible for the excellent anti-HepG2 cancer activity of bromobenzofuran-oxadizoles BF1-9,
especially of 2,4-dimethoxy containing a BF-5 derivative. The introduction of electron with-
drawing groups (EWG), such as methoxy, flouro, and chloro on the second, fourth, and fifth
positions of phenyl in the bromobenzofuran-oxadiazoles BF1-9, enhanced the cytotoxic
potential while substituents pattern of the electron donating groups (EDG) on the phenyl of
anilide ring decreased the cytotoxic therapeutic potential of bromobenzofuran-oxadiazoles
BF1-9, as depicted in Figure 4 and Table 2. The effect of different substituents on the phenyl
anilide ring displayed a vital role in cytotoxic behavior of bromobenzofuran-oxadiazole
structural hybrids BF1-9.

3.3. Computational Investigations
3.3.1. Molecular Docking Studies of Bromobenzofuran-Oxadiazoles BF1-9

Some of the main targets for liver cancer medication development include several
different pathways implicated in crucial cancer-related activities like angiogenesis, cell
proliferation, and apoptosis. These pathways include several molecular targets that are re-
ported to have uncontrolled expression rates that help in the invasiveness and proliferation
of these cancers in the liver. When it comes to creating anti-cancer drugs, some of the impor-
tant key signaling molecules/molecular targets of interest include the PI3K/Akt/mTOR,
tubulin polymerization, GSK-3β, EGFR, and its related pathways [68–74].

In our studies, the in vitro investigations showed that three of the synthesized com-
pounds BF-2, BF-5, and BF-6 showed good activities against the HepG2 liver cancer cell
line and for the prediction of the probable targets of these synthesized compounds. EGFR
performs vital roles in the physiology of epithelial cells and is the target of numerous
commonly used medicines to treat cancer in clinical practice since it is commonly mutated
and/or overexpressed in various types of human malignancies. Several novel benzofuran
scaffolds carrying compounds have been reported in the literature to have significant
anti-EGFR activities [75–77]. Similarly, other important cancer molecular targets and their
related pathways like PI3K, Akt, GSK-3β, mTOR, and tubulin polymerization, etc. have also
been targeted by these types of compounds, and they exhibit good anti-cancer properties
against these molecular targets [78–83].



Int. J. Mol. Sci. 2023, 24, 3008 10 of 24Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 11 of 27 
 

 

 
Figure 4. The most bio-active anti-HepG-2 bromobenzofuran-oxadiazoles. 

3.3. Computational Investigations  
3.3.1. Molecular Docking Studies of Bromobenzofuran-Oxadiazoles BF1-9 

Some of the main targets for liver cancer medication development include several 
different pathways implicated in crucial cancer-related activities like angiogenesis, cell 
proliferation, and apoptosis. These pathways include several molecular targets that are 
reported to have uncontrolled expression rates that help in the invasiveness and prolif-
eration of these cancers in the liver. When it comes to creating anti-cancer drugs, some of 
the important key signaling molecules/molecular targets of interest include the 
PI3K/Akt/mTOR, tubulin polymerization, GSK-3β, EGFR, and its related pathways [68–
74]. 

In our studies, the in vitro investigations showed that three of the synthesized 
compounds BF-2, BF-5, and BF-6 showed good activities against the HepG2 liver cancer 
cell line and for the prediction of the probable targets of these synthesized compounds. 
EGFR performs vital roles in the physiology of epithelial cells and is the target of nu-
merous commonly used medicines to treat cancer in clinical practice since it is commonly 
mutated and/or overexpressed in various types of human malignancies. Several novel 
benzofuran scaffolds carrying compounds have been reported in the literature to have 

Figure 4. The most bio-active anti-HepG-2 bromobenzofuran-oxadiazoles.

Based on these observations, we performed in silico investigations of the synthesized
bromobenzofuran-oxadiazole compounds against these different cancer-related molecular
targets. We exploited molecular docking approaches to evaluate the binding affinities and
the interactions of three potent compounds BF-2, BF-5, and BF-6 against EGFR, PI3K, Akt,
GSK-3β, mTOR, and tubulin polymerization, which are important molecular targets in
various cancers.

The investigations of these bromobenzofuran-oxadiazole compounds BF-2, BF-5, and
BF-6 against the EGFR revealed that the bromobenzofuran-oxadiazole compound BF-5
showed greater efficacy in the in vitro studies; had a binding affinity of −15.17 Kcal/mol
with its active site; and made two conventional hydrogen bonds with LYS721, ASP831, and
two carbon-hydrogen bonds were observed with the CYS751 and PHE832 of the EGFR
active site residues. A single water-assisted hydrogen bond as well as several stabilizing
hydrophobic (Pi-sigma, Alkyl, and Pi-Alkyl) interactions were also made by this compound
BF-5 with the active site amino acids of the EGFR enzyme and can be seen in Figure 5.
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Figure 5. Three-dimensional and Two-dimensional interaction images of the BF-5+EGFR
Protein complex.

Similarly, the other two bromobenzofuran-oxadiazole compounds, BF-2 and BF-6,
were able to bind with the active site of the EGFR with binding affinities of −14.17 Kcal/mol
and −12.59 Kcal/mol, respectively. These two compounds (BF-2 and BF-6) also made
significant interactions of different types by engaging the active site residues of EGFR
via multiple hydrogen bonds and halogen interactions. These two bromobenzofuran-
oxadiazole derivatives showed multiple hydrophobic stabilizing interactions and can be
seen in Figure 6.
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The docking studies of the standard EGFR Erlotinib inhibitor in these studies showed
that Erlotinib bound with the active site of EGFR with a binding affinity of −11.67 Kcal/mol,
which suggested that the synthesized novel compounds BF-2, BF-5, and BF-6 exhibited
higher affinities with EGFR as compared to the standard reference drug Erlotinib. A
summary of their binding affinities and their total interactions with the EGFR active site
are given in Table 3.
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Table 3. Binding affinities and other docking parameters of BF-2, BF-5, and BF-6 with EGFR.

Compound Binding Affinity Interacting Residues Types of Interactions Made

BF-2 −14.17 Kcal/mol LEU694, VAL702, ALA719, LYS721, MET742,
LEU753ASP831, CYS751, PHE832

Conventional and Carbon type H-bonds,
Halogen interactions, Pi-Alkyl & Alkyl

BF-5 −15.17 Kcal/mol LEU694, VAL702, LYS721, ASP831, PHE732,
CYS751, LEU820, ASP831, PHE832 etc.

H2O-Assisted, Conventional and Carbon
type H-bonds, Pi-Sigma, Pi-Alkyl & Alkyl

BF-6 −12.59 Kcal/mol MET742, LEU694, LEU764, LEU753, LEU820 Conventional and Carbon type H-bonds,
Pi-Sigma, Pi-Alkyl, Pi-Sulfur

Erlotinib −11.67 Kcal/mol LEU694, LYS704, VAL702, ALA719, LYS721,
MET769, LEU820

Conventional and Carbon type H-bonds,
Pi-Alkyl, Alkyl

Furthermore, we investigated the binding affinities of these three compounds BF-2,
BF-5, and BF-6 with the PI3K enzyme which is also implicated in various cancer and is an
important drug target for bromobenzofuran-based compounds. The docking investigations
of BF-2, BF-5, and BF-6 revealed that BF-2 binds with the PI3K active site with the highest
binding affinity of −15.17 Kcal/mol. The interaction analysis of its conformational pose
inside the PI3K active site showed that BF-2 made several different types of stronger
hydrogen bonds with the PI3K active site (MET953, ASP836, LYS833, ASP964) along with
that of water-assisted hydrogen bonding, hydrophobic interactions (Alkyl and Pi-Alkyl)
with ALA885, ILE881, ILE879, ILE963, Pi-Sulfur, Pi-Pi T-shaped, and Amide-Pi interaction
with the TYR867, GLY966, and Pi-anion as well van der waals interaction was also observed
in the BF-2+PI3K complex. It can be seen in Figure 7 in three and two dimensional
conformations inside the PI3K active site.
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The other two lead compounds BF-5 and BF-6, which showed good efficacy in the
in vitro investigations, also exhibited good binding affinities with the PI3K protein active
site. Bromobenzofuran-oxadiazole compound BF-5 was able to bind with the PI3K active
site with a binding affinity of −13.17 Kcal/mol and made water-assisted H-bond and
two carbon-hydrogen bonds with the LYS833 and ASP964 active pocket residues; other
hydrophobic type interactions, including Pi-Alkyl, Pi-Sigma, Pi-Lone Pair, Pi-Anion, and
Pi-Sulfur interactions, were also observed between the BF-5+PI3K complex. BF-6 showed
a binding affinity of −12.90 Kcal/mol and showed the same type of multiple types of
hydrogen bonding as well water-assisted H-bonding with LYS833 and ASP964 along with
other stabilizing hydrophobic, and Amide-Pi stacked interactions with TYR867, GLY966,
ASP836, etc. were also observed their two-dimensional interactive diagrams and are given
in Figure 8.
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Overall, three bromobenzofuran-oxadiazoles (BF-2, BF-5, and BF-6) showed stronger
binding interactions with the PI3K active site while the Idelalisib standard PI3K inhibitor
was able to bind to its active site with a binding affinity of −11.42 Kcal/mol, which
suggested that these novel BF-2, BF-5, and BF-6 compounds could bind more strongly with
the PI3K compared to the standard drugs used in our docking studies. The binding affinity
energies of these three (BF-2, BF-5, and BF-6) structural motifs arose due to the interactions
of these compounds with the PI3K active pocket amino acid residues and are presented in
Table 4.

Table 4. Binding affinities and other docking parameters of BF-2, BF-5, and BF-6 with PI3K.

Compound Binding Affinity Interacting Residues Types of Interactions Made

BF-2 −15.17 Kcal/mol
MET953, ASP836, LYS833, ASP964,
ALA885, ILE881, ILE879, ILE963,

TYR867, GLY966

H2O-Assisted, Conventional and
Carbon-H type H-bonds, Halogen

interactions, Pi-Alkyl, Alkyl, Pi-Anion,
Amide-Pi Stacked, Pi-Sulfur

BF-5 −13.17 Kcal/mol
TRP812, LYS833, ASP836, LEU838,

ASP841, MET953,
ASP964

H2O-Assisted, Conventional and
Carbon-H type H-bonds, Halogen

interactions, Pi-Alkyl, Alkyl, Pi-Anion,
Pi-Lone Pair, Amide-Pi Stacked,

Pi-Sulfur, etc.

BF-6 −12.90 Kcal/mol
MET953, ASP836, LYS833, ASP964,
ILE831, ILE963, TYR867, ASP964,

GLY966, LEU838

H2O-Assisted, Conventional and
Carbon-H type H-bonds, Halogen

interactions, Pi-Alkyl, Alkyl, Pi-Anion,
Amide-Pi Stacked, etc

Idelalisib −11.42 Kcal/mol

MET953, LYS833,
ASP964, ILE831, ILE963, TYR867,

ASP964, MET804,
VAL882

Conventional and Carbon-H type
H-bonds and Pi-Donor H-bond,
Pi-Alkyl, Alkyl, Pi-Anion, Pi-Pi

T-shaped, etc.

Other than these important cancer molecular targets, the bromobenzofuran-oxadiazole
compounds BF-2, BF-5, and BF-6 were also evaluated via molecular docking studies
against the mTOR, AKT, and Tubulin proteins as well because they are also involved
in several cancers, and compounds carrying the benzofuran moiety have been reported
several times in the literature as potent inhibitors of these proteins. The molecular docking
investigations of bromobenzofuran-oxadiazoles BF-2, BF-5, and BF-6 against these proteins
revealed that out of these three compounds, BF-5 and BF-6 showed higher binding affinities
with mTOR than the standard mTOR inhibitor (Torin-2) and showed significantly good
interactions with its active site. Similarly, docking investigations against the Tubulin protein
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showed that BF-2 and BF-5 also strongly bind and show good interactions with this protein
compared to its standard inhibitor (Colchicine) of Tubulin protein. The binding energies
of these compounds against mTOR and Tubulin proteins are given in Table 5, and the
two-dimensional diagrams of the best binding compounds against the mTOR and Tubulin
proteins are given in Figure 9.

Table 5. Binding affinities of BF-2, BF-5, and BF-6 with mTOR and Tubulin.

Compound Binding Affinity with mTOR Binding Affinity with Tubulin

BF-2 −11.61 kcal/mol −13.14 kcal/mol
BF-5 −11.84 kcal/mol −13.79 kcal/mol
BF-6 −11.89 kcal/mol −10.59 kcal/mol

COLCHICINE Standard against Tubulin – −11.85 kcal/mol
TORIN-2 Standard against mTOR −11.77 kcal/mol –
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Along with these cancer targets, we also investigated these compounds against the
GSK-3β and Akt enzyme, and these studies showed that their binding affinities against the
GSK-3β and Akt enzyme were too low compared to the EGFR, PI3K, mTOR, and Tubulin
protein molecular targets. Moreover, the computational investigations showed that these
compounds bind strongly with the EGFR, PI3K, mTOR, and Tubulin enzymes and have
good binding affinities as well as strong interactions, which suggest that these four impor-
tant cancer-related molecular targets may be the target of these novel bromobenzofuran-
oxadiazole compounds.

3.3.2. ADMET and Drug-Likeness Studies of Bromobenzofuran-Oxadiazoles BF1-9

According to the ADMET assessment (or pharmacokinetics analyses), these bromoben-
zofuran-oxadiazoles had acceptable lipophilic (iLogP) qualities, good Log S (ESOL) water
solubility values, and good human intestine absorptions, and they were designated as
HIA+. They were also non-substrates of the P-gp protein, which controls the efflux of
substances and medicines from cells through membrane transport. These substances can
readily be bio-transformed inside the liver and then be transferred to the excretory organs
for excretion from the body because, according to metabolism studies, the findings showed
that they are substrates of the crucial metabolic enzyme (CYP450 3A4). The organic cation
transporter (OCTs) protein in the kidneys, which is essential for the body’s removal of
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foreign chemicals and medications, was also not inhibited by these compounds. The toxicity
studies of these molecules also showed that they are non-AMES toxic, non-carcinogenic,
and non-interferers of the normal function of the T hERG II ion channel, which controls
cardiac action potential repolarization. The complete profile of its ADME&T investigations
is presented in Table 6 while its structures along with the graphical pharmacokinetic profiles
can be seen in Figure 10.

Table 6. ADME&T profile of bromobenzofuran-oxadiazoles BF-2, BF-5 and BF-6.

Compound iLogP LogS Renal OCTs AMES Toxicity BBB+ Carcinogenicity HIA+

BF-2 3.76 −7.55 Non-inhibitor None 0.97 None 0.87
BF-5 3.99 −6.56 Non-inhibitor None 0.97 None 0.87
BF-6 3.41 −6.34 Non-inhibitor None 0.97 None 0.84
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According to the drug-likeness investigations that involve the identification of the
physicochemical attributes and medicinal chemistry of compounds, these bromobenzofuran
structural hybrids BF-2, BF-5, and BF-6 possessed good topological surface area (TPSA),
acceptable molecular weight values, and good synthetic accessibility scores, as shown in
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Table 7. These substances adhered to all drug-likeness guidelines, including the Lipinski
and Pfizer rules. These substances had good bioavailability scores (greater than 0.10),
did not exhibit any PAINS alarms, and obeyed the Golden Triangle rule. The three lead
bromobenzofuran-oxadiazole compounds BF-2, BF-5, and BF-6 showed noticeably good
ADMET and drug-likeness qualities. On the basis of all the investigations analysis, these
bromobenzofuran-oxadiazoles leads can safely be developed as potential pharmaceuticals.
To evaluate the in depth therapeutic potential and complete mechanism of inhibition of
bromobenzofuran-oxadiazoles BF1-9 against the human hepatocellular carcinoma (HCC),
further in vitro studies on other Human HCC tissue cell lines would be necessitated in our
further studies by utilizing cell proliferation, apoptosis, and autophagy methodologies.

Table 7. Drug-likeness profile of Bromobenzofuran-oxadiazoles BF-2, BF-5 and BF-6.

Compounds Bioavailability Score PAINS Alerts Lipinski’s Rule Pfizer Rule Golden Triangle Rule TPSA

BF-2 0.55 None complied complied complied 106.46 Å2

BF-5 0.55 None complied complied complied 124.92 Å2

BF-6 0.55 None complied complied complied 106.46 Å2

3.3.3. Molecular Dynamic Simulations of Bromobenzofuran-Oxadiazoles BF1-9

The dynamics assessment of the most bioactive docked complexes PI3K+BF-2 and
EGFR+BF-5 were done through a molecular dynamics simulation technique. The simula-
tion trajectories were studied for the structural stability of bromobenzofuran-oxadiazoles
with receptors via the root mean square deviation (RMSD), root mean square fluctuation
(RMSF), and radius of gyration (RoG). All of these analyses were done based on carbon
alpha atoms. Generally, all the analyses predicted the very stable formation of stable
complexes. RMSD plots (A part of Figure 11) reported the very stable behavior of the
PI3K+BF-2 complex throughout the simulation time while the EGFR+BF-5 complex ini-
tially experienced some deviation in the first 35 ns. The RMSD of both system maxima
touches 4 angstroms. This was also complemented with an RMSF analysis, which comple-
mented the RMSD findings and found the receptors residues in the presence of compounds
very stable (B part of Figure 11). The PI3K+BF-2 complex receptor reported the C-terminal
being very flexible compared to the rest of the enzyme structure. The RoG analysis was
another confirmation of the RMSD findings and unveiled the systems to have compact
nature in the compound’s presence.

Binding Free Energy Analysis Further validation of the docking and simulation
findings was accomplished using MMGBSA and MMPBSA methods. Both the meth-
ods are now frequently used in modern drug discovery as they use modest computational
speed and correlate well with the experimental data. The estimated binding free en-
ergy results are tabulated in Table 8. As can be seen, both complexes in MMGBSA and
MMPBSA are very much stable, as can be understood by −38.44 kcal/mol (MMGBSA) and
−42.55 kcal/mol (MMPBSA) for the EGFR+BF-5 complex and −39.54 kcal/mol (MMGBSA)
and −45.13 kcal/mol (MMPBSA) for the PI3K+BF-2 complex.

The results indicated stable binding conformation of the compounds with the receptors
and formed strong intermolecular interactions. The van der Waals and electrostatic energies
played a vital role in the complex’s stability while a negative contribution was seen from
the polar energy component.
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Table 8. Binding free energies of complexes in kcal/mol.

Energy Parameter EGFR+BF-5 Complex PI3K+BF-2 Complex

MMGBSA
Van der Waals −29.10 −33.90
Electrostatic −12.20 −10.85

Polar 12.36 11.75
Non-polar −9.50 −9.55

Delta G gas −41.3 −44.75
Delta G solv 2.86 2.2
Delta Total −38.44 −42.55

MMPBSA
Van der Waals −29.10 −33.90
Electrostatic −12.20 −10.85

Polar 11.11 10.36
Non-polar −9.35 −10.74

Delta G gas −41.3 −44.75
Delta G solv −1.76 −0.38
Delta Total −39.54 −45.13
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3.3.4. DFT Studies of Bromobenzofuran-Oxadiazoles BF1-9

The energy computations of the three bioactive bromobenzofuran-oxadiazole ana-
logues BF-2, BF-5, and BF-6 were undertaken with the Gaussian calculation setups used
in the optimization. From the DFT energy computation outcomes, the total energy, the
HOMO energy, and the LUMO energy were calculated. By using the HOMO and LUMO
energy figures, the other related parameters were calculated with the respective theorems,
as presented in Table 9.

Table 9. The computed energy values and the related parameters for compounds BF-2, BF-5 and
BF-6 (in eV).

Parameters BF-2 BF-5 BF-6

Etotal −30,873.682 −36,325.869 −32,792.474
EHOMO −6.851 −6.163 −6.532
ELUMO −2.667 −2.444 −2.383
∆E 4.184 3.719 4.149
Ionization potential (IP= -EHOMO) 6.851 6.163 6.532
Electron affinity (A = -ELUMO) 2.667 2.444 2.383
Chemical potential (µ = -(I + A)/2) −4.759 −4.304 −4.458
Hardness (η = (I-A)/2) 2.092 1.860 2.075
Mulliken electronegativity (χ = (I + A)/2) [84] 4.759 4.304 −4.458
Softness (S = 1⁄2η) 0.239 0.269 0.241
Electrophilicity index (ω = µ2/2η) [85] 5.413 4.983 4.790
Maximum charge transfer (∆Nmax = (I + A)/2(I-A)) [86] 1.137 1.157 1.074

Both the HOMO and LUMO play an important role in estimating the electrical prop-
erties and chemical affinities of the bromobenzofuran-oxadiazole BF-2, BF-5, and BF-6
compounds. The HOMO depicts the electron donors. On the other hand, the LUMO
depicts the electron acceptors [87,88]. The HOMO energy value of compound BF-5 was
found to be the highest followed by the compounds BF-6 and BF-2, respectively. There-
fore, compound BF-5 is expected to have the highest tendency to give electrons easily as
depicted in Table 8. The HOMO–LUMO energy gap (∆E) exhibits the chemical stability of
compounds. A higher energy gap for a molecule implies higher chemical stability [89]. In
the DFT study, compound BF-2 had the highest energy gap among the three compounds.
Hence, compound BF-2 is expected to have the highest chemical stability. Global hard-
ness depicts the resistance of an atom to electron transfer. Here, compound BF-2 had
the highest global hardness. From these outcomes of DFT analysis, it Is inferred that
bromobenzofuran-oxadiazole compound BF-2 is the least reactive and has the highest
chemical stability among the three bioactive BF-2, BF-5, and BF-6 compounds [90]. The
concentration of tubes for compound BF-2 was around the benzofuran ring. On the other
hand, for compound BF-5, the tubes were concentrated around the dimethoxyphenyl ring.
The LUMO tubes for compound BF-6 were concentrated around the benzofuran and the
oxadiazole rings. However, its HOMO tubes were concentrated not only around the two
heterocyclic structures but also around the fluoro phenyl ring, as presented in Figure 12.
The DFT study revealed that the 2,5-dimethoxy-based benzofuran-oxadiazole BF-5 can be
the lead anti-HepG2 liver cancer structural motifs.
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4. Conclusions

In the present work, nine S-alkylated amide-linked bromobenzofuran-oxadiazole
scaffolds BF1-9 were achieved by employing the phase transfer catalyst BTEAC under
the ultrasonic-assisted synthetic conditions in good yields (75–88%). These synthesized
bromobenzofuran oxadiazoles BF1-9 were evaluated for cytotoxic potential against hu-
man liver cancer cell line HepG2 and obtained promising results with cell viabilities of
10.41 ± 0.66% to 44.69 ± 6.85%. The least active 3,4-dimethyl containing benzofuran-
oxadiazole BF-9 showed maximum cell viability potential (44.69 ± 6.85%), and the most
bioactive 3,4-dimethoxy based benzofuran-oxadiazole demonstrated the minimum cell
viability efficacy (10.41 ± 0.66%) and excellent anti-HepG2 cytotoxic activity. The com-
pounds 3,4-Dichloro-based BF-2 (12.72 ± 2.23% cell viability) and 2-fluoro-based BF-6
(13.08 ± 1.08% cell viability) displayed good cytotoxic potential. The cytotoxic thera-
peutic potential of BF1-9 derivatives decreased in the following order: 2,5-dimethoxy >
3,4-dichloro > 2-flouro > 4-flouro > 2-methoxy > 2-chloro > pheny > 2,4-dimethyl > 3,4-
dimethyl. SAR revealed that the second and fourth positions of phenyl are responsible
for the excellent anti-HepG2 cancer activity of benzofuran-oxadiazoles BF1-9, especially
of 2,5-dimethoxy containing BF-5 derivative. The EWGs such as methoxy, fluoro, and
chloro on the second, fourth, and fifth positions of phenyl in the anilide ring of benzofuran-
oxadiazoles BF1-9 could enhance the cytotoxic potential while substituents pattern of the
electron-donating groups (EDG) on the phenyl of anilide ring decreased the cytotoxic
therapeutic potential of bromobenzofuran-oxadiazoles BF1-9. Furthermore, the in silico
investigations for the identification of its probable mechanism of anti-cancer action revealed
that these compounds showed good binding affinities and stable associations with the
EGFR, PI3K, mTOR, and Tubulin polymerzation enzymes. This study indicates that these
four key enzymes may be the probable molecular targets for these compounds BF1-9. Based
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on the significantly good binding affinities and associations, these in silico studies further
validate the anti-HepG-2 cancer potential as witnessed in the in vitro evaluations. The
novel BF1-9 analogues did not demostrate significant in silico results against the GSK-3β
and AKT enzymes. The ADMET assessment demonstrated that novel bromobenzofuran-
oxadiazoles BF1-9 members have a high degree of drug-likeness profile. The DFT studies
also revealed that bromobenzofuran-oxadiazole compound BF-2 had the highest chemical
stability while on the other hand, bromobenzofuran-oxadiazole structural motif BF-5 was
found to have the highest tendency to give its electrons easily as compared to BF-2 and
BF-6. All the in vitro and in silico findings of the present research work against anti-HepG-2
cancer cell line and four key enzymes EGFR, PI3K, mTOR, and Tubulin polymerization
conclude that the 2,5-dimethoxy based bromobenzofuran-oxadiazole BF-5 could be the
potential lead anti-HepG2 cancer agent.
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