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Abstract: Chronic lung infections in cystic fibrosis (CF) patients are triggered by multidrug-resistant
bacteria such as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia.
The CF airways are considered ideal sites for the colonization and growth of bacteria and fungi that
favor the formation of mixed biofilms that are difficult to treat. The inefficacy of traditional antibiotics
reinforces the need to find novel molecules able to fight these chronic infections. Antimicrobial
peptides (AMPs) represent a promising alternative for their antimicrobial, anti-inflammatory, and
immunomodulatory activities. We developed a more serum-stable version of the peptide WMR
(WMR-4) and investigated its ability to inhibit and eradicate C. albicans, S. maltophilia, and A. xy-
losoxidans biofilms in both in vitro and in vivo studies. Our results suggest that the peptide is able
better to inhibit than to eradicate both mono and dual-species biofilms, which is further confirmed by
the downregulation of some genes involved in biofilm formation or in quorum-sensing signaling.
Biophysical data help to elucidate its mode of action, showing a strong interaction of WMR-4 with
lipopolysaccharide (LPS) and its insertion in liposomes mimicking Gram-negative and Candida mem-
branes. Our results support the promising therapeutic application of AMPs in the treatment of mono-
and dual-species biofilms during chronic infections in CF patients.

Keywords: cystic fibrosis; Candida albicans; Achromobacter xylosoxidans; Stenotrophomonas maltophilia;
antimicrobial peptides; membrane interaction; polymicrobial infections; antibiofilm activity

1. Introduction

Cystic Fibrosis (CF) is a lethal autosomal recessive disease characterized by mutations
in the CF transmembrane conductance regulator (CFTR) gene [1–3]. CFTR dysfunction
produces a thick and viscous mucus layer that congests the lungs of CF patients and favors
trapping of pathogens, which leads to chronic bacterial infections and inflammation [4,5].
Chronic lung infections characterized by ineffective airway functionality, colonization of
multi-resistant pathogens, and progressive tissue damage are the major cause of death in
CF patients [6,7]. In chronic bacterial infections, the co-existence of fungi and bacteria is
very common, and despite intensive antimicrobial therapy, they are nearly impossible to
eradicate due to not only the recurrence of antibiotic resistance, but also their ability to grow
in microbial aggregates or biofilms [8–10]. Biofilms are highly organized microorganism
communities formed on abiotic or biotic surfaces, where cells are entrapped in a self-
produced matrix composed of extracellular polymeric substances (EPS) such as proteins,
polysaccharides, and extracellular DNA.

Several bacterial and fungal species have been identified in CF patients, including As-
pergillus fumigatus, Candida albicans, Hemophilus influenzae, Staphylococcus aureus, Burkholderia
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cepacia complex, Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Pseudomonas
aeruginosa [11,12].

Although pathogens such as P. aeruginosa, S. aureus, and H. influenzae are the most
dominant and common in CF adults, other opportunistic pathogens, such as A. xylosoxidans
and S. maltophilia, are emerging. Specifically, S. maltophilia and A. xylosoxidans have been iso-
lated from approximately 9% and 5% of CF patients, respectively [13,14]. These pathogens
belong to a genus of non-fermenting Gram-negative bacteria and are characterized by a
multi-drug resistance to antibiotics such as cephalosporins and aminoglycosides [15].

In particular, Achromobacter spp. can cause a large variety of infections, including
endophthalmitis, keratoconjunctivitis, catheter-associated infections, endocarditis, pneumo-
nia, meningitis, and peritonitis [16,17]. Among different species, A. xylosoxidans has been
isolated in 35–80% of the sputum collected from patients with CF and is responsible for
serious respiratory tract infections [18–24]. Similarly, significant growth and colonization of
S. maltophilia in bronchial secretions and sputum have been observed in CF lungs [25–27].
Moreover, together with yeasts such as Candida albicans, they make the CF lungs an ap-
propriate site for the onset of polymicrobial infections that are characterized mainly by
formation of biofilms and continuous inflammation [28–30]. For example, several studies
have shown the presence of co-infections between P. aeruginosa and C. albicans or P. aerugi-
nosa and A. fumigatus [31–33], which determine the formation of strong mixed biofilms that
are incredibly difficult to eradicate due to the antibiotic resistance and poor availability of
effective drugs [34].

In this context, finding novel antimicrobial compounds able to inhibit and eradicate
biofilms to avoid CF complications and to improve the quality of life of patients represents a
sizeable challenge. Among promising alternative therapeutics, a growing interest is focused
on antimicrobial peptides (AMPs) because they kill multidrug-resistant pathogens [35,36]
and exhibit both anti-inflammatory and immunomodulatory activities [37,38]. Several
AMPs, such as β-defensins and the cathelicidin LL-37, have been found in airway secretions
of CF patients because they are produced by the respiratory epithelium [39,40], whereas
other AMPs may be produced synthetically. Furthermore, both natural and synthetic AMPs
have been shown to be effective against planktonic bacteria and biofilms in CF patients [41].

For example, the peptide Esculentin-1a isolated from the skin of Rana esculenta eradi-
cates biofilms of P. aeruginosa through membrane-perturbing activity [42,43]. β-defensin
analogues were developed with enhanced antimicrobial activity against P. aeruginosa, even
with elevated salt concentrations, which is a relevant feature in CF patients [44,45]. The syn-
thetic peptide D,L-K6L9 has shown potent antimicrobial and anti-biofilm activity against
P. aeruginosa and high stability to degradation by sputum proteases [46]. Unfortunately, de-
spite their strong effectiveness and potent broad-spectrum activity, the clinical applications
of AMPs are limited due to their poor proteolytic stability [47,48]. Several strategies, includ-
ing the introduction of unnatural amino acids [49], modifications of peptide backbone [50],
and cyclizations [51], are exploited to overcome this issue.

The peptide WMR (NH2-WGIRRILKYGKRSK-CONH2) is an AMP derived from the
marine Myxinidin peptide and previously developed by Cantisani et al. [52]. In previous
studies, WMR showed a significant capacity both to inhibit and eradicate biofilms of
P. aeruginosa and different Candida species [53,54]. Herein, to improve the proteolytic
stability of WMR, we designed a series of five peptides and investigated their ability to
inhibit and eradicate a five-species biofilm model comprising single- and dual-species
biofilms of three emergent CF microorganisms (C. albicans, S. maltophilia, A. xylosoxidans). In
addition, the activity of WMR-4, the most active analogue, on survival rate and virulence
was evaluated in vivo using Galleria mellonella larvae. The hypothetical mechanism of action
of the peptide WMR-4 was examined through biophysical studies such as fluorescence
measurements and circular dichroism (CD) spectroscopy.
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2. Results
2.1. WMR Serum Stability and Design of Novel Analogues

Before investigating the activity of WMR analogues against pathogens implicated
in CF chronic infections, we reasoned upon the improvement of the proteolytic stability
of the native peptide WMR by identifying the most abundant peptide fragments after
incubation with 50% fresh bovine serum within 4 h. The percentage of intact WMR was
monitored by calculating the peak area of the chromatogram from the RP-HPLC analysis;
furthermore, the deleted peptide fragments were analyzed through electrospray ionization
mass spectrometry (ESI-MS). As reported in Figure 1, 68% of WMR was intact after 1 h, and
only 20% was intact after 5 h. The peptide fragments identified with a mass of 1443.86 Da,
1543.86 Da, and 1361.80 Da (Table 1) corresponded to the native sequence WMR without
(i) Lys14, (ii) Lys14 and Ser13, and (iii) Lys14, Ser13 and Trp1, respectively.
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Figure 1. The representative RP-HPLC chromatograms of WMR at different times (0, 1, 3, and 5 h),
and the percentage of intact peptide after incubation with 50% bovine serum at 37 ◦C.

Table 1. Identification of serum proteolytic degradation fragments of the peptide WMR.

MW (Da) Fragment *

1760.15 NH2-WGIRRILKYGKRSK-CONH2

1443.86 NH2-WGIRRILKYGKRS(K)-CONH2

1543.86 NH2-WGIRRILKYGKR(SK)-CONH2

1361.80 NH2-(W)GIRRILKYGKRSK-CONH2

* Fragments were produced following the proteolytic cutting of the residues (in red) indicated in the brackets.

On the basis of the proteolytic degradation of WMR, we thus designed five different
peptides (Table 2).
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Table 2. Peptide sequences of WMR and its analogues designed in this study. The amino acids used
in our study are represented in red.

Name Sequence

WMR NH2-WGIRRILKYGKRSK-CONH2

WMR-1 NH2-WGIRRILKYGKRSk-CONH2

WMR-2 NH2-WGIRRILKYGKRsK-CONH2

WMR-3 NH2-WAibIRRILKYGKRSKCONH2

WMR-4 NH2-WAibIRRILKYGKRskCONH2

WMR-5 NH2-WGIRRILKYGKRSDapCONH2

Lys14 and Ser13 were replaced with their D-enantiomers, yielding peptides WMR-
1 and WMR-2, respectively. Gly2 was substituted with the unnatural amino acid 2-
aminoisobutyric acid (Aib), yielding peptide WMR-3. Aib was selected because it reduces
susceptibility to proteolytic cut and favors the helical structure [55,56], which is key for the
biological activity of WMR, as previously shown by Cantisani et al. [52]. Furthermore, D-
enantiomers and Aib modifications were combined, yielding peptide WMR-4. In addition,
Lys14 was replaced by the unnatural basic amino acid L-2,3-diaminopropionic acid (Dap),
yielding WMR-5.

2.2. Minimal Inhibitory Concentration (MIC)

The susceptibility of the three different strains (C. albicans ATCC 90028, A. xylosoxidans
DSM 2402, and S. maltophilia DSM 50170) which are implicated in CF chronic infections to
WMR and its analogues, fluconazole (FLC), and meropenem (MEM) is shown in Table 3.
All the WMR analogues, except the peptide WMR-4, showed an MIC > 50 µM as the native
peptide towards C. albicans ATCC 90028. However, the activity of the analogue WMR-4 was
slightly improved, reaching an MIC value of 50 µM.

Table 3. Minimal inhibitory concentration (MIC) of WMR analogues, FLC, and MEM against species
used in our study.

MIC (mM)

WMR WMR-1 WMR-2 WMR-3 WMR-4 WMR-5 FLC (µg/mL) MEM (µg/mL)

C. albicans ATCC 90028 >50 >50 >50 >50 50 >50 16 (48) -

A. xylosoxidans DSM 2402 50 >50 >50 >50 25 25 - 65 (250)

S. maltophilia DSM 50170 50 >50 >50 >50 25 25 - 130 (499)

The MIC values obtained against the two Gram-negative bacteria (A. xylosoxidans
DSM 2402 and S. maltophilia DSM 50170) decreased from 50 µM to 25 µM for the peptides
WMR-4 and WMR-5, showing a more significant antibacterial activity compared to the
peptide WMR. Peptides WMR-1, WMR-2, and WMR-3 showed an MIC > 50 µM against
both Gram-negative strains. In addition, the susceptibility of C. albicans to FLC, as well as
that of A. xylosoxidans and S. maltophilia to MEM, is reported in Table 3.

This initial antimicrobial screening on C. albicans, A. xylosoxidans, and S. maltophilia
prompted us to select the peptide WMR-4 as the best candidate for our studies.

2.3. Serum Stability of the Analogue WMR-4

The proteolytic stability of WMR-4 was evaluated by incubation of the peptide with
50% fresh bovine serum within 16 h, and the degradation process was monitored by RP-
HPLC. As expected, the peptide WMR-4 displayed significantly superior stability compared
to WMR (Figure 2). Specifically, we observed that 70% of the intact WMR-4 was present
after 5 h of incubation, compared with 20% of the native peptide WMR at the same time
point. Moreover, about 30% of WMR-4 was detected after an incubation of 16 h. This result
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indicated that the introduction of residues Aib2, DSer13, and DLys14 protected the peptide
WMR-4 from degradation by serum proteases.
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by RP-HPLC and subtracting background peak areas in blank matrix.

2.4. Biofilm Formation Assay and Antibiofilm Activity

The extent of biofilm formation (Figure 3a,b) among the two bacteria was very high,
allowing them to be considered as strong biofilm producers. Otherwise, the biofilm pro-
ducing ability of C. albicans was classified as moderate. To characterize the vital biomass of
mono- and dual-species biofilms, viable cells of the three microorganisms were counted by
colony forming units per well (CFU well-1), and results are reported in Figure 3,b. However,
in the first 24 h, the vital biofilm biomass of C. albicans, S. maltophilia, A. xy-losoxidans, and
the two mixed biofilms (CAx, CSm) was 7.0, 6.1, 7.1, 7.7, and 7.8 log CFU/well, respectively;
at 48 h, there was an increase in about 1 log CFU/well for all biofilms. The mixed biofilm
CAx was composed of 45% C. albicans and 55% A. xylosoxidans at 24 h, and it was composed
of 36% C. albicans and 64% A. xylosoxidans at 48 h. The mixed biofilm CSm was composed
of 60% C. albicans and 40% S. maltophilia at 24 h, and it was composed of 27% C. albicans
and 73% S. maltophilia at 48 h, respectively.

To determine the inhibitory effect of WMR-4 on biofilm formation (Figure 4), the
biofilm-forming abilities of C. albicans, S. maltophilia, A. xylosoxidans, and the two mixed
biofilms CAx (C. albicans and A. xylosoxidans) and CSm (C. albicans and S. maltophilia) were
determined in the presence of variable concentrations of WMR-4. After incubation with the
peptide, the biofilm was analyzed via staining with crystal violet.

The inhibition of biofilm formation was found to be concentration dependent. As
shown in the Figure 4, sub-MIC concentrations of WMR-4 in the range of 2.5 to 20 µM
inhibited biofilm formation. Biofilm formation was similarly affected in the case of both
bacterial strains, and it reached about 100% inhibition at the highest concentration tested,
which was 20 µM. WMR-4 increased the inhibition of the C. albicans biofilm by up to 80% at
a concentration of 20 µM, as well as that of the two mixed biofilms, in which 75% inhibition
was achieved at the highest concentration tested.

As shown in Figure 5, WMR-4 was also involved in the disruption of preformed mono-
and dual-species bio-films. After treatment of the established biofilm with the sub-MIC
of 20 µM, the C. albicans biofilms decreased by 80%, whereas the two bacteria biofilms
decreased by 60%. The peptide WMR-4 showed a moderate capacity to eradicate mature
mixed biofilms, causing an eradication of 40% for Cax and 50% for Csm.
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Figure 5. Disruption of established biofilms of C. albicans, S. maltophilia, and A. xylosoxidans and two
mixed biofilms (CAx, CSm) after the treatment with the peptide WMR-4.

2.5. RT-PCR

Molecular responses of each microorganism in the mono- and dual- species biofilms
to WMR-4 were investigated by qPCR. Because WMR-4 had a significant inhibition activity
on biofilm formation for C. albicans, S. maltophilia, and A. xylosoxidans and for the mixed
biofilms (CAx, CSm), we investigated the hypothetical involvement of WMR-4 in regulating
the expression of some genes associated with stress, biofilm, and quorum-sensing signaling.
For the transcriptional alterations of C. albicans, expression of hyphal adhesin ALS3 and
ergosterol biosynthesis enzyme ERG11, which are involved in the adherence [57], and
HOG1, which plays a key role in virulence and response to stress, were selected [58]. As
shown in Figure 6, ALS3 was significantly down-regulated in all three conditions, whereas
ERG11 and HOG1 were slightly upregulated in both mixed biofilms. These data indicated
that WMR-4 counteracted C. albicans in mono- and dual-species biofilms by exerting effects
on Candida adhesins. The upregulation of the β-1,3-D-glucan synthase showed that WMR-
4 did not interfere with the synthesis of the fungal cell wall, whereas the upregulation of
HOG1 involved in the oxidative stress response showed its activation in response to this
antifungal in both mixed conditions.
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We selected for S. maltophilia: (i) the gene smf-1, which encodes for type-1 fimbriae,
which plays a significant role in adherence to surfaces and in the early stages of biofilm
formation; (ii) the gene rpfF, which plays a critical role in the production of the diffusible
signal factor (DSF), which mediates quorum sensing in S. maltophilia [59]; and (iii) Ax21,
which works as a quorum-sensing factor that significantly impairs motility, induces in-
hibited biofilm formation, and reduces virulence [60]. The remarkable downregulation
of genes smf1, rpfF, and Ax21 during inhibition of single- and dual-biofilm formation of
S. maltophilia showed the involvement of these genes in both conditions, confirming that the
treatment by WMR-4 critically influenced several biosynthetic pathways and signaling sys-
tems. As for A. xylosoxidans, several genes were detected: (i) the epsF gene, which encodes
exopolysaccharide biosynthesis; (ii) AxyA multidrug resistance efflux pump genes; and
(iii) UspA, a universal stress protein [61]. The expression of epsF gene was undetectable in
mono and dual-species biofilms; on the contrary, the expressions of AxyA were significantly
downregulated in both conditions. Notably, as generally expected, the stress protein UspA
was upregulated in both conditions.

2.6. In Vivo Toxicity and Activity of the Peptide on the Infected G. mellonella

The in vivo effect of WMR-4 at different peptide concentrations of 5, 10, and 20 µM
was evaluated using a G. mellonella model system [62]. As shown in Figure 7, larvae showed
about 80% survival at up to 96 h of observation with respect to intact larvae, indicating
that WMR-4 was not toxic at the three concentrations tested. As shown in Figure 8, the
infection induced in G. mellonella with C. albicans, A. xylosoxidans, and S. maltophilia at
concentrations of 106 cells/larvae decreased the number of living larvae by 80%, 90%, and
80%, respectively, after 96 h. However, for the mixed infection with dual species (CAx,
CSm), there was no survival for CAx and only 20% for CSm at 96 h. When we treated larvae
with 10 µM of WMR-4 before or after infection, we observed an increase in survival by
about 20%, and the survival reached about 80% at 96 h. It was more evident in larvae
pretreated with WMR-4 and each microorganism alone than when microorganisms were
used in pairs.
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1× 106 CFU/larva. All groups were treated with 10 µM WMR-4 before or after infection/co-infection.
All groups were compared with control (infected or co-infected larvae). In all panels, survival curves
of intact larvae and larvae treated with PBS are reported. **** Represents p-value < 0.001 (Tukey’s).

2.7. Peptide Secondary Structure

To explore the influence of amino acid replacement on peptide secondary structure,
we performed circular dichroism (CD) spectroscopy for peptides WMR and WMR-4 under
different conditions, including water and 20%, 40%, and 60% of 2,2,2–trifluoroethanol
(TFE). As evidenced in Figure 9, both peptides adopted a random-coil conformation in
water, whereas a different behavior was observed in the presence of TFE. The peptide
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WMR-4 exhibited an α-helical conformation already at the lowest percentage (20%) of TFE,
and this helical content increased in the presence of both 40% and 60% of TFE up to 15%.
However, the peptide WMR adopted a disordered conformation in 20% TFE and a helix
conformation only in the presence of higher percentages of TFE (40% and 60%). These
results indicated that the replacement of Gly2 with the unnatural amino acid Aib induced
and increased the helical content of the peptide WMR-4 in comparison with the native
peptide WMR.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 9. CD spectra of peptides WMR (A) and WMR-4 (B) in water and in presence of 20%, 40%, 
and 60% of TFE. 

2.8. Interaction of WMR-4 with Lipopolysaccharide (LPS) 
The mode of action of the peptide WMR-4 was investigated in the presence of 

lipopolysaccharide (LPS), which is exposed on the outer membrane of Gram-negative 
bacteria and is generally the main agglutination site of AMPs [63]. Firstly, we measured 
the ability of WMR-4 to aggregate in the presence of LPS (100 μg/mL) at different peptide 
concentrations of 20 μM, 30 μM, and 50 μM and when Thioflavin T (ThT) was used as a 
fluorescent probe (Figure 10A). 

 
Figure 10. (A) ThT emission spectra after the incubation of WMR-4 (20, 30, and 50 μM) with LPS. 
(B) Tryptophan fluorescence spectra for the peptide WMR-4 in LPS during the quenching with 
acrylamide at different concentrations. (C) Stern–Volmer (Ksv) quenching constant of WMR-4 in the 
presence of LPS. 

As detected in Figure 10A, we did not observe a significant increase in ThT emission, 
indicating that WMR-4 did not oligomerize in the presence of LPS. Furthermore, we 
performed a tryptophan (Trp) quenching experiment to verify the interaction with LPS 
(Figure 10B,C). The Trp residue is used as a probe to investigate the localization of the 
peptide within the membrane, as its fluorescence emission increases when it is located in 
a more hydrophobic environment. In our study, we evaluated the interaction of WMR-4 

Figure 9. CD spectra of peptides WMR (A) and WMR-4 (B) in water and in presence of 20%, 40%,
and 60% of TFE.

2.8. Interaction of WMR-4 with Lipopolysaccharide (LPS)

The mode of action of the peptide WMR-4 was investigated in the presence of
lipopolysaccharide (LPS), which is exposed on the outer membrane of Gram-negative
bacteria and is generally the main agglutination site of AMPs [63]. Firstly, we measured
the ability of WMR-4 to aggregate in the presence of LPS (100 µg/mL) at different peptide
concentrations of 20 µM, 30 µM, and 50 µM and when Thioflavin T (ThT) was used as a
fluorescent probe (Figure 10A).
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As detected in Figure 10A, we did not observe a significant increase in ThT emission,
indicating that WMR-4 did not oligomerize in the presence of LPS. Furthermore, we
performed a tryptophan (Trp) quenching experiment to verify the interaction with LPS
(Figure 10B,C). The Trp residue is used as a probe to investigate the localization of the
peptide within the membrane, as its fluorescence emission increases when it is located in a
more hydrophobic environment. In our study, we evaluated the interaction of WMR-4 with
LPS through quenching of the accessible Trp1 in the presence of acrylamide [64] at different
concentrations and recorded its change in the fluorescence emission.

Furthermore, we evaluated the Trp emission of the peptide WMR-4 in water (Figure 11).
As shown, WMR-4 interacts strongly with acrylamide in water. The calculated Stern–Volmer
(Ksv) quenching constant is 15.4 ± 1.3 in water and 6.48 ± 0.90 in LPS, clearly confirming
that the Trp is more buried in LPS.
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2.9. WMR-4: Liposome Insertion and Leakage

We also investigated the mode of action of WMR-4 in the presence of large unil-
amellar vesicles (LUVs), which mimic Gram-negative (DOPE/DOPG/CL) and C. albicans
(PE/PC/PI/Erg) membranes. Similarly to what was observed in LPS, the peptide WMR-
4 did not aggregate in LUVs mimicking Gram-negative and C. albicans membranes, but
WMR-4 was buried in both LUVs, as well as in LPS. Specifically, we performed the Trp
quenching experiment, as described above, to monitor the insertion of WMR-4 in lipo-
somes. In DOPE/DOPG/CL, the Trp1 was completely quenched, and the low Ksv value
of 2.20 ± 0.29 confirmed the insertion of WMR-4 in LUVs mimicking which mimic Gram-
negative membrane (Figure 12A,B). In addition, we analyzed the capacity of WMR-4 to
induce liposome leakage after its insertion in lipidic bilayers by using 8-aminonaphtalene-
1,3,6-trisulfonic acid, disodium salt (ANTS), and p-xylene-bis-pyridinium bromide (DPX) as
fluorescent probes. As shown in Figure 12C, a low leakage percentage (~20%) was observed
even at the highest concentration of 50 µM. Thus, we hypothesized that the peptide WMR-
4 had a good capacity to interact and insert in LUVs mimicking that mimic Gram-negative
membranes and induced a low percentage of leakage, as observed previously for the native
peptide WMR [52].

Moreover, regarding the mode of action in the presence of LUVs mimicking Candida
membrane, WMR-4 had the same behavior observed in LUVs of DOPE/DOPG/CL. In
fact, Trp1 was partially accessible to acrylamide quenching, and the peptide WMR-4 was
buried in LUVs of PE/PC/PI/Erg, as shown in Figure 13. In addition, we performed the
leakage assay in the same condition described above, and we did not observe LUV leakage
in the concentration range from 5 µM to 50 µM. Thus, we hypothesized that the peptide
WMR-4 interacts with the fungal membrane, causing disruption through a carpet-like or
other molecular mechanisms that will be further investigated.
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3. Materials and Methods
3.1. Peptide Synthesis

Peptides were synthesized using a standard solid-phase Fmoc (9-fluorenylmethoxycarbonyl)
method, as previously reported [65]. Briefly, a rink amide resin was used, the removal
of the Fmoc protecting group on the resin and amino acids was performed with 20%
(v/v) piperidine in DMF (0.5 + 1 min, under ultrasonic irradiations), and the couplings
were carried out in the presence of 3 equiv. Fmoc-protected amino acid, HOBt (3 equiv.)
and HBTU (3 equiv.), and 6 equiv. DIPEA as the basis (2 × 10 min, under ultrasonic
irradiation) [66]. All crude peptides were obtained with good yields (70–80%). At the end
of the synthesis, peptides were cleaved from the resin with an acid solution of trifluoroacetic
acid (TFA), precipitated in ice-cold diethyl ether, purified by preparative reversed-phase
high-pressure liquid chromatography (RP-HPLC) equipped with a Phenomenex Jupi-ter
4 µm Proteo 90 Å 250 × 21.20 mm column with a linear gradient of solvent B (0.1% TFA in
acetonitrile) in solvent A (0.1% TFA in water) from 5 to 70% in 20 min with UV detection at
210 nm, and analyzed through ESI-MS (see Supplementary Materials Figures S1–S5).
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3.2. Strains and Cultural Conditions

Candida albicans ATCC 90028, Achromobacter xylosoxidans DSM 2402, and Stenotrophomonas
maltophilia DSM 50170 were used in this study. Microbial strains were grown in Tryptone
Soya Broth (TSB, VWR chemicals, Leuven, Belgium), supplemented with 0.1% glucose
only for C. albicans at 37 ◦C overnight. Then, cells were harvested by centrifugation at
5000 rpm, 4 ◦C for 10 min, followed by washing in Phosphate Buffered Saline (PBS, Oxoid
Ltd., Basingstoke, UK) three times. Standardized 1 × 106 CFU mL−1 inoculum was used
in the next experiments.

3.3. Minimum Inhibitory Concentration (MIC)

The minimum inhibitory concentrations (MIC) of WMR-4 against C. albicans, A. xylosox-
idans, and S. maltophilia were determined using a broth microdilution method accord-ing
to CLSI M27-A3 and M07-A9 guidelines [67,68]. Concentrations of WMR-4 from 0.5 to
50 µM were added to wells of a 96-well microplate containing 1 × 106 CFU mL−1 cells.
Fluconazole at a concentration range from 1 to 50 µM and meropenem at a concentration
range from 10 to 200 µM were used as control. The plate was incubated at 37 ◦C for
24/48 h due to poor growth after 24 h for the two bacterial species. Next, the absorbance
at 590 nm was read using a microplate reader (Synergy H4; BioTek Instruments, Agilent
Technologies, Winooski, VT, USA). MIC value was defined as a lowest concentration of
WMR and analogues able to inhibit total microbial growth.

3.4. Proteolitic Stability

The proteolytic stability of WMR and WMR-4 were determined in bovine serum
acquired from ThermoFisher Scientific (Milan, Italy). Peptides were dissolved in sterile
water to prepare stock solutions, then incubated with 50% of bovine serum to obtain a final
concentration of 200 µM [69]. The mixture peptide/serum was incubated at 37 ± 1 ◦C
for different times (0.25, 0.50, 1, 2, 3, 4, 5, and 16 h). At each pre-established time, an
aliquot of reaction was taken, and acetonitrile was added to favor the precipitation of
serum proteins. Then, the solution was cooled at 4 ◦C and centrifuged for 15 min at
13,000× g rpm. The supernatant was analyzed by HPLC in a Phenomenex Jupiter 4 µm
Proteo 90 Å 250 × 21.20 mm column with a linear gradient of solvent B (0.1% TFA in
acetonitrile) in solvent A (0.1% TFA in water) from 5 to 70% in 20 min with UV detection at
210 nm and a flow rate of 1 mL/min.

3.5. Biofilm Formation Assay

The ability to form mono- and dual-species biofilm of C. albicans, A. xylosoxidans and
S. maltophilia was evaluated using a 96-well microplate. A. xylosoxidans and S. maltophilia
were grown in TSB at 37 ◦C for 24 h, the pellet was washed in phosphate-buffered saline
(PBS), and the cells were resuspended in RPMI 1640 medium (ThermoFisher Scientific)
supplemented with 3-(N-morpholino) propanesulfonic acid (MOPS) (pH 7.3). Afterward,
100 µL cell suspension was seeded into each well and incubated at 37 ◦C for 24/48 h.
C. albicans was grown in TSB 1% glucose at 37 ◦C for 24 h. Cell suspensions were adjusted
to the value of 1´106 cells in RPMI 1640 medium supplemented with MOPS (pH 7.3), and
100 µL was seeded into each well of the microtiter plates and incubated at 37 ◦C for 24/48 h.
After pellet collection, dual-species biofilms of C. albicans/A. xylosoxidans (MixCAx) and
C. albicans/S. maltophilia (MixCSm) were obtained when the two microorganisms in RPMI
1640 medium supplemented with MOPS were mixed at a ratio of 1:1 and 100 µL of the
suspension was in each well. Culture media without cells represent the negative control.
Plates were incubated for 48 h at 37 ◦C. Total biofilm biomass was detected by crystal
violet (CV) assay, as per the guidelines of Stepanović et al. with some modifications [70,71].
Briefly, the plates were washed three times with PBS, and the biofilm was fixed at 37 ◦C
for 1 h. In total, 200 µL of CV (0.2% v/v) was added to well, and after 15 min, the excess
was washed with PBS, and the biofilm was resuspended by adding 300 µL of acetic acid
at 32% (v/v). The absorbance at 570 nm was read using a microplate reader (Synergy H4;
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Bio-Tek Instruments, Agilent Technologies, Winooski VT05404 USA). Each experiment was
repeated in triplicate.

ODcut-off (ODc) was calculated to classify the ability of microorganisms to form
bio-film using the following formula: OD570 mean of negative control plus three times the
standard deviation (SD). The classification was as follows: negative (OD ≤ ODc), weak
(ODc ≤ OD ≤ 2 × ODc), moderate (2 × ODc < OD), or strong (OD ≥ 4 × ODc).

To determine the vital biofilm biomass, an assay of colony-forming units (CFUs)
was used.

The biofilm was washed three times to remove non-adherent cells, scraped from the
bottom of the well, vigorously vortexed, and resuspended in PBS. An amount of 100 µL
of biofilm suspension was plated on Tryptone Soya Agar (TSA, VWR chemicals, Leuven,
Belgium), which was supplemented with amphotericin B for bacterial strains, and Rosa
Bengal agar (RB, Sigma-Aldrich, St. Louis, MO, USA), which was supplemented with
chloramphenicol for C. albicans. The CFUs were counted after 24–48 h of incubation at
37 ◦C.

3.6. Antibiofilm Activity

The effect of WMR-4 to inhibit single and mixed-species biofilms was evaluated by
adding scalar concentrations of peptide, ranging from 5 to 20 µM, to microbial inoculum.
The plates were incubated at 37 ◦C for 48 h. After incubation time, biofilm biomass was
evaluated using CV, as reported above.

The influence of WMR-4 on preformed biofilms was assessed as follows: 48 h biofilms
were treated with serial concentrations of the peptide (5 to 20 µM), and the plates were
incubated for another 24 h at 37 ◦C. The ability to eradicate biofilm was evaluated by CV,
as previously described.

Biofilm reduction was calculated as [(OD570 of the control− OD570 of the treated)/OD570
of the control] × 100.

3.7. Quantitative Real Time PCR

The potential mechanisms of WMR-K4 to inhibit biofilms of C. albicans, A. xylosoxi-dans,
and S. maltofilia was investigated trough gene expression analysis of genes involved in
virulence or stress response using qRT-PCR. RNA extraction and real-time PCRs were
performed as described previously [72]. For C. albicans, ERG11, ALS3, and HOG1 were
selected; for A. xylosoxidans epsF, AxyA, and UspA and for S. maltofilia rpfF, smf-1, and Ax21
genes [73]. Actin and 16S RNA were used as control. All primers used in these studies are
shown in Table 4.

Cells of single or mixed biofilm grown together with WMR-4 (10 µM) at 37 ◦C for
24 h were scraped and washed in PBS, and the pellets were used to extract total RNA
according to the manufacturer’s protocol of DirectzolTM RNA Miniprep Plus Kit (ZY-MO
RESEARCH, Irvine, CA, USA). Nanodrop spectrophotometer 2000 (Thermo Scientific Inc.,
Waltham, MA USA) was used to determine the concentration and the purity of extracted
RNA.

An amount of 1000 ng of RNA was retrotranscribed with the QuantiTect Reverse
Transcription Kit (Qiagen, Valencia, CA, USA). The QuantiTect SYBR Green PCR Kit
(Qiagen, Valencia, CA, USA) was used to perform Real-Time PCR. Briefly, 25 µL of SYBR
Green was added to 100 ng of cDNA, 1 µM of each primer, 12.5 µL of QuantiFast SYBR
Green PCR Master Mix (2×). PCR cycling was performed as described in a previous
study [54]. RT-PCR was performed in a Rotor-Gene Q cycler (Qiagen, Valencia, CA, USA).
The Pfaffl method was used to analyze and normalize the values of expression of each
gene [74,75].
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Table 4. Primer sequences used in this study.

Micro-Organism Primer Primer Sequence (5′->3′)

A. xylosoxidans

Usp-A F: CCACGAAGATCCGTACCAGG
R: AGGCCTTCTTGCGGTACAC

AxyA F: CTGGAAGACGGGTCGCAATA
R: TGAGTTCACGCAGTTCCACT

espF F: GCGTTCATCTATCCGGCCAT
R: TGATCTCCATGATCGGCAGC

rRNA16S F: GCAGCAGTGGGGAATTTTGG
R: ATTTCACTGCTACACGCGGA

S. maltophilia

smf-1 F: GGAAGGTATGTCCGAGTCCG
R: GCGGGTACGGCTACGATCAGTT

Ax21 F: GGCTACAACGTCGAAATCGC
R: ATTCTTCAGCTCGCCGTTCA

xanB F: TATGCGATCGATGCGTCCAA
R: CGAATGCGATCTCTTCGGGA

rpfF F: CTGGTCGACATCGTGGTG
R: TGATCCGCATCATTTCATGC

rRNA 16s F: ACTGAGACACGGTCCAGACT
R: CTTCTTCACCCACGCGGTAT

C. albicans

ERG11 F: ATTGTTGAAACTGTCATTG
R: CCCCTAATAATATACTGATCTG

HOG1 F: GACTTGTGGTCTGTGGGTTG
R: ACATCAGCAGGAGGTGAGC

ALS3 F: CTAATGCTGCTACGTATAATT
R: CCTGAAATTGACATGTAGCA

ACT F: AGCCCAATCCAAAAGAGGTATT
R: GCTTCGGTCAACAAAACTGG

3.8. In Vivo Effect of WMR-4 on Galleria mellonella Larvae

The G. mellonella microorganism infection model was used to evaluate the antimi-
crobial effect of WMR-4 in vivo, and a survival assay was performed as described pre-
viously [76,77]. Briefly, to test toxicity of WMR-4, larvae were treated with different
concentrations (5, 10, 15, and 20 µM) of peptide, and survival was monitored every 24 h for
a duration of 4 days.

The non-toxic concentration of peptide was selected to conduct experiments of pre-
vention and therapeutic treatment of infection by C. albicans, A. xylosoxidans, or S. maltofilia
alone or in combination (MixCAx and MixCSm). Larvae were infected using an inoculum of
1 × 106 CFU mL−1. Infected larvae were treated with WMR-4 at a concentration of 10 µM,
2 h pre-infection (prophylactic treatment) or 2 h post-infection (therapeutic treatment), and
were incubated at 37 ◦C for 96 h. Every 24 h, the survival was monitored. Each experiment
used groups containing 20 larvae. The groups included groups of non-injected larvae and
groups of larvae injected with PBS, which served as control, and experiments were repeated
twice.

3.9. Statistical Analyses

Statistical analyses were executed using GraphPad Prism Software (version 8.02 for
Windows, GraphPad Software, La Jolla, CA, USA, www.graphpad.com, accessed on 3 De-
cember 2022). Data are the result of three independent experiments, which are represented
as mean ± standard deviation (SD). The Kaplan–Meier method was used to plot survival
curves. For a multiple comparison test, one-way ANOVA following Tukey’s test was
used. Asterisks show significant differences, (* = p < 0.05, ** = p < 0.01, *** = p < 0.001,
**** = p < 0.0001).

3.10. Circular Dichroism (CD) Spectroscopy

CD spectra of peptides WMR and WMR-4 at a concentration of 70 µM were recorded
using quartz cells of 0.1 cm path length at 25 ◦C. CD spectra were performed in aqueous
solvent and in the presence of 20%, 40%, and 60% TFE. Each spectrum was measured in the
260–196 nm and converted into mean molar ellipticity.

www.graphpad.com
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3.11. Liposome Preparations

Large unilamellar vesicles (LUVs) mimicking Gram-negative bacteria (DOPE/DOPG/CL,
63/25/12, ratio in moles) and Candida (PE/PC/PI/Ergosterol, 5:4:1:2, ratio in moles) were
prepared according to the extrusion method, as previously reported [78–80]. LUVs were
loaded with ANTs and DPX fluorescent probes to monitor their leakage induced by WMR-4.
Briefly, the dry lipid films were dissolved with a solution of ANTs (12.5 mM) and DPX
(45 mM) in water and then lyophilized overnight. The lipid films with encapsulated ANTS
and DPX were hydrated with PBS 1× buffer; the lipid suspension was freeze-thawed
6 times and extruded 10 times through polycarbonate membranes with 0.1 µm diameter
pores to obtain LUVs.

Regarding peptide aggregation in LUVs, the lipid films were hydrated with 100 mM
NaCl, 10 mM Tris-HCl, 25 µM Tht buffer, pH 7.4, vortexed for 1 h, and treated to obtain
LUVs [81].

3.12. Peptide Aggregation by Thioflavin T Assay

The aggregation of peptide WMR-4 in the presence of LPS and liposomes that mimic
Gram-negative and Candida membranes was measured using Thioflavin T as a fluorescent
probe. WMR-4 was incubated with LPS (100 µg/mL) and ThT (25 µM) at the concentrations
of 20, 30, and 50 µM for 1 h.

Firstly, lipid films were prepared at the concentrations of 100 µM and 50 µM for Gram-
negative and Candida liposomes, respectively. Then, LUVs were titrated with different
peptide concentrations of 5, 10, 15, and 20 µM. Each ThT emission spectrum was recorded
at a fluorescence excitation of 450 nm (slit width, 10 nm) and a fluorescence emission of
482 nm (slit width, 5 nm) before and after the peptide addition [82,83].

3.13. Liposomes Leakage by ANT/DPX Assay

The liposome leakage was evaluated using ANTS and DPX as fluorophores [84,85].
Lipid films that mimic Gram-negative (final concentration = 100 µM) and Candida (final
concentration = 50 µM) membranes with encapsulated fluorophores (12.5 mM ANTS and
45 mM DPX) were prepared as described above [78]. LUVs were titrated with peptide
concentrations of 5, 10, 15, 20, and 50 µM. Each ANTS emission spectrum was measured
by setting an excitation fluorescent at 385 nm (slit width, 5 nm) and a fluorescent emission
at 512 nm (slit width, 5 nm). The percentage of leakage was calculated as: %leakage = (Fi–
F0)/(Ft – F0), where F0 is the intensity of ANTS fluorescence before the peptide treatment,
Ft is the fluorescence after the treatment with Triton-X (10% v/v) to obtain a complete
liposome leakage, and Fi is the intensity after the addition of the peptide.

3.14. Tryptophan Quenching by Acrylamide

The tryptophan (Trp) insertion in LPS and in LUVs mimicking Gram-negative and
Candida membranes was monitored using acrylamide as the Trp quencher [86]. Specifically,
the tryptophan residue of WMR-4 (peptide concentration = 5 µM), both in water and
incubated with LPS (100 µg/mL) and LUVs (Cf = 200 µM), was quenched by acrylamide at
different concentrations of 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, and 0.16 M [79]. The Trp emission
spectrum was measured at a fluorescence excitation of 295 nm and a fluorescence emission
of 340 nm to eliminate interference from the Raman band of water [87]. The data were
analyzed using the Stern–Volmer equation F0/F = 1 + Ksv [Q], where F0 is the fluorescence
intensity in the absence of the quencher (Q), F is the fluorescence intensity in the presence
of quencher, and Ksv is the Stern–Volmer quenching constant. This constant is a reliable
reflection of the bimolecular rate constant for collisional quenching of the tryptophan
residue present in the aqueous phase.

4. Conclusions

The inadequacy and deficiency of antibiotics for treating CF patients have led re-
searchers to consider alternative strategies to fight lung infections characterized by polymi-
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crobial infections. Biofilms are considered to be an important factor in the microorganism’s
ability to cause diseases. The composition and diversity of these infections change through-
out the patient’s lifetime. Herein, we designed and developed a more serum-stable version
of the peptide WMR, namely WMR-4, which is able to inhibit and eradicate single- and
dual-species biofilms of three emergent CF microorganisms, such as C. albicans, S. mal-
tophilia, and A. xylosoxidans. The serum-stability results showed that peptide WMR-4,
which bears D-enantiomers (D-Ser13 and D-Lys14) and Aib modifications, emerged as the
most stable compound to the proteolytic cut because about 70% of the intact peptide was
detected after 5 h of incubation. The biological data showed that the MIC values of the
peptide WMR-4 against the two Gram-negative bacteria (A. xylosoxidans DSM 2402 and
S. maltophilia DSM 50170) decreased from 50 µM to 25 µM, showing a better antibacterial
activity than that of the native peptide WMR, whereas an MIC of 50 µM was observed on
C. albicans ATCC 90028. In addition, WMR-4 increased the inhibition of C. albicans biofilm
by up to 80% at a concentration of 20 µM, as well as for the two mixed biofilms Cax and
Csm, in which 75% inhibition was achieved at the same concentration. Concerning the
eradication activity, WMR-4 displayed a moderate capacity to eradicate mature mixed
biofilms, causing an eradication of the two dual-species biofilms of 40% Cax and 50% Csm,
respectively. Moreover, the peptide WMR-4 was found to be non-toxic in an in vivo model
using G. mellonella and increased the survival of infected larvae. We also investigated the
mode of action of the peptide WMR-4 through biophysical studies, showing that WMR-4 is
unable to aggregate in LPS, and in liposomes mimicking Gram-negative and fungi mem-
branes, whereas its Trp residue is more inserted in Gram-negative and fungi membranes
than in LPS. The absence of leakage led us to hypothesize not only that the mechanism of
action is likely to be a carpet model, but also that other intracellular mechanisms may be
involved. In conclusion, the present work reveals the potential therapeutic applications of
the antimicrobial peptides for fighting polymicrobial infections present in CF patients.
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