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Abstract: Prostate cancer (PCa) is one of the most frequently diagnosed cancers among men in
the world. Its prevention has been limited because of an incomplete understanding of how en-
vironmental exposures to chemicals contribute to the molecular pathogenesis of aggressive PCa.
Environmental exposures to endocrine-disrupting chemicals (EDCs) may mimic hormones involved
in PCa development. This research aims to identify EDCs associated with PCa hub genes and/or
transcription factors (TF) of these hub genes in addition to their protein–protein interaction (PPI)
network. We are expanding upon the scope of our previous work, using six PCa microarray datasets,
namely, GSE46602, GSE38241, GSE69223, GSE32571, GSE55945, and GSE26126, from the NCBI/GEO,
to select differentially expressed genes based on |log2FC| (fold change) ≥ 1 and an adjusted
p-value < 0.05. An integrated bioinformatics analysis was used for enrichment analysis (using
DAVID.6.8, GO, KEGG, STRING, MCODE, CytoHubba, and GeneMANIA). Next, we validated
the association of these PCa hub genes in RNA-seq PCa cases and controls from TCGA. The influ-
ence of environmental chemical exposures, including EDCs, was extrapolated using the chemical
toxicogenomic database (CTD). A total of 369 overlapping DEGs were identified associated with
biological processes, such as cancer pathways, cell division, response to estradiol, peptide hormone
processing, and the p53 signaling pathway. Enrichment analysis revealed five up-regulated (NCAPG,
MKI67, TPX2, CCNA2, CCNB1) and seven down-regulated (CDK1, CCNB2, AURKA, UBE2C, BUB1B,
CENPF, RRM2) hub gene expressions. Expression levels of these hub genes were significant in PCa
tissues with high Gleason scores ≥ 7. These identified hub genes influenced disease-free survival and
overall survival of patients 60–80 years of age. The CTD studies showed 17 recognized EDCs that
affect TFs (NFY, CETS1P54, OLF1, SRF, COMP1) that are known to bind to our PCa hub genes, namely,
NCAPG, MKI67, CCNA2, CDK1, UBE2C, and CENPF. These validated differentially expressed hub
genes can be potentially developed as molecular biomarkers with a systems perspective for risk
assessment of a wide-ranging list of EDCs that may play overlapping and important role(s) in the
prognosis of aggressive PCa.

Keywords: endocrine disruptive chemicals; prostate cancer; gene ontology; protein–protein interaction;
molecular biomarkers; environmental health risk assessment

1. Introduction

Prostate cancer (PCa) is the second leading cause of cancer death among men in
the U.S. [1] and the world [2]. In the U.S., PCa is the most frequently diagnosed cancer
(26% of all sites of cancer) and the second leading cause of death in men (11%) after lung
cancer (22%) [3,4]. The standard diagnostic tools for PCa are prostate-specific antigen
(PSA) serum levels, digital rectal examination, and biopsy [5]. PSA has been the most
routinely utilized biomarker to screen and diagnose men for PCa [6]. However, PSA
levels do not necessarily indicate PCa, which may be affected by different stimuli, such as
inflammation or sexual activity, leading to overdiagnosis, overtreatment, and false-positive
results [7,8]. Additionally, magnetic resonance imaging (MRI) has provided a significant
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advantage in the evaluation of PCa; however, it was discovered that MRI missed some
intermediate and high-risk lesions of PCa [9]. The growth of PCa depends on androgens
such as testosterone. These hormones interact with the androgen receptor (AR) whose
dysregulated gene expression is linked to the development and aggressiveness of PCa. Since
endocrine-disrupting chemicals (EDCs) found in the environment can mimic endogenous
hormones, these environmental chemicals can activate molecular pathways involved in the
growth and development of PCa. EDCs are associated with PCa’s poor prognosis [10–15].
Our earlier study showed the association of environmental phenols and parabens with
patient-reported cases of PCa diagnoses [10]. In this study, we expand the scope of our work
to include 22 environmental chemicals, especially EDCs, which are reported to influence
PCa etiology in studies from the Chemical Toxicogenomic Database (CTD).

Microarray databases, high-throughput sequencing technology, and bioinformatics
have played significant roles in the advancement of the medical field [10]. The Gene Expres-
sion Omnibus (GEO) online public microarray database allows analysis of differentially
expressed genes (DEGs) that participate in biological processes (BP), cell components (CC),
molecular functions (MF), gene regulatory networks, and pathways of PCa [7,15–18]. How-
ever, prior studies of DEGs’ analyses indicated proximate limitations, such as no reliable
biomarker specified to differentiate tumors from normal tissues [19,20]. Additionally, most
studies have concentrated on the differences in expression between various samples, and
gene-to-gene interactions were mainly overlooked [15–19]. Single or multiple microarray
datasets analysis in GEO has explored genes that play a significant role in the occurrence
and progression of PCa, such as CASP5 and CASP8 [21], CDH1 and EPCAM [18], FOXO1
and NPM1 [19], TWIST1 and VEGFA [7], LMNB1 and ZWINT [22], IGF2 and KRT8 [23],
PIK3R1 and ITGB4 [24], PPARG and PRKAR2B [25], CDCA8 and CDCA5 [26], and CYP3A4
and CYP3A7 [27]. However, the critical genes identified in these earlier studies are dis-
tinguishable from each other and have little in common, which can be attributed to the
heterogeneous nature of the PCa [18].

Transcription factors (TF) bind to specific DNA sequences to regulate and control gene
expressions. TFs are frequently altered in cancers due to DNA mutations, chromosomal
abnormalities, chromatin amplifications, deletions, or landscape remodeling [28]. There-
fore, a combination of several target gene expressions (TGE) can be used as a measure of
TF signature activities [27]. TFs and gene regulators may impact the biological processes of
cancer with their significant influence on biochemical pathways contributing to carcinogen-
esis. TFs such as AR, TWIST1, FOXA1, SOX9, E2F, and ASCL1 [28], or TATA, CEBPB, E2F,
SRY, and NFKAPPAB [27], and modulators such as BUB1B, TOP2A, UBE2C, RRM2, and
CENPF [28] have been indicated to be directly involved in biological processes creating
numerous phenotypic modifications, proliferation, and differentiation in PCa progression.
Furthermore, specific TFs targeting genes of PCa pathways may be acting as conduits to
manifest the effects of the environmental chemicals and EDCs on the aggressive prognosis.
Proteins are the functional entity of gene expressions and transcription activity. In a study,
using the mining of proteomics studies, 41 differentially expressed proteins between cancer
and normal or benign tissues were used to construct an extended PPI network related to
PCa [29,30]. Nevertheless, such studies have not taken the influence of environmental
chemicals into account to construct the PPI network. In our previous study, we used a
risk assessment approach to demonstrate the association of environmental phenol and
paraben exposures detected in urine samples, along with PCa, in U.S. men (NHANES data
2005–2015). We revealed a significant association of higher environmental phenols and
parabens in the urine samples, categorical and numerical confounders, with self-reported
PCa cases [10].

In this study, we used STRING database tools to construct the PPI network of the DEGs
participating in PCa prognosis. We filtered the PPIs which appeared to be responsive to the
chemicals, and the recognized EDCs that were evaluated for their potential contribution
through the hub genes in the aggressiveness of PCa.
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Our research aimed to identify EDCs associated with PCa hub genes and/or tran-
scription factors (TF) of these hub genes that influence molecular pathways in prostate
carcinogenesis. The application of these PCa hub genes and/or their TFs as molecular
biomarkers for risk assessments of EDCs may help in the prevention and control of PCa
from exposure to EDCs found in the environment.

2. Results
2.1. Screening of DEGs (Up- and Down-Regulated Genes)

Six PCa microarray datasets (GSE46602, GSE38241, GSE69223, GSE32571, GSE55945,
and GSE26126) were analyzed using GEO2R online tools. We identified 2188, 6048, 2213,
1083, 3761, and 8300 DEGs, respectively, from each of the datasets. A total of 2832 up-
regulated and 2931 down-regulated common genes from all six microarray datasets were
downloaded. Standardization and normalization of the microarray datasets by GEO2R
ensured that all selected samples had identical value distribution to determine the suitability
of the study for further analysis and application of any queries. The gene expression profiles
and data processing with the criteria of the cutoff standards of p-value < 0.05 and |log2FC|
(fold change) > 1 are shown in Figure 1. The overlapping DEGs among six GEO microarray
datasets included 369 genes, as illustrated in the Venn diagram (Figure 2A), and the
overlapping down-regulated (260) and up-regulated (109) genes were identified (Figure 2B)
for further analysis.

2.2. Gene Ontology Enrichment Analysis for DEGs in PCa

To associate the overlapping DEGs in PCa with biological functions, we performed
gene ontology (GO) enrichment analyses, functional annotation, and pathway analysis
using the Database for Annotation, Visualization, and Integrated Discovery (DAVID 6.8)
online tool. This included the following three categories: BP (biological process), CC (cell
component), and MF (molecular function). The top five pathway enrichment analyses
for BP, CC, MF, and KEGG of up-regulated and down-regulated overlapping DEGs are
shown in Tables S1 and S2. Down-regulated genes were markedly associated with BP
(cell division, mitotic spindle organization, mitotic cytokinesis, mitotic cell cycle phase
transition, and response to estradiol). For CC, down-regulated genes aligned with enriched
cytosol, nucleoplasm, midbody, chromosome, centromeric region, and cyclin-dependent
protein kinase holoenzyme complex. For MF, the down-regulated genes aligned with
chromatin binding, protein binding, protein kinase binding, microtubule binding, and
protein N-terminus binding. For the KEGG analysis, down-regulated DEGs were signifi-
cantly enriched in the p53 signaling pathway, prostate cancer, apoptosis, and microRNAs
involved in cancer pathways. The up-regulated DEGs were significantly involved in the
BP of peptide hormone processing, long-chain fatty acid transport, regulation of gluco-
neogenesis, low-density lipoprotein particle remodeling, and calcium-mediated signaling.
For CC, up-regulated genes aligned with extracellular exosome, neuronal cell body, ba-
solateral plasma membrane, plasma membrane, and extracellular matrix. Additionally,
the up-regulated genes in the MF aligned with oxidoreductase activity, long-chain fatty
acid-CoA ligase activity, long-chain fatty acid transporter activity, structural molecule
activity, and dicarboxylic acid transmembrane transporter activity. For the KEGG enrich-
ment analysis, up-regulated DEGs were significantly associated with the calcium signaling
pathway, metabolic pathways, Rap1 signaling pathway, and Ras signaling pathway. The
TFs binding sites enrichment analysis of 109 up-regulated and 260 down-regulated genes
showed overlapping DEGs in PCa by UCSC-TFBS. The analysis demonstrated the top
ten TFs with the number of their target genes (Table 1). Nuclear transcription factor Y
(NFY) with p-value = 6.69 × 10−3, FDR = 9.89 × 10−1, connected with (57 genes), was
significantly associated with up-regulated genes. MAX Gene—MYC Associated Factor X
(MYCMAX) with p-value = 5.35 × 10−6, FDR = 4.07 × 10−4, correlated with (133 genes),
was significantly associated with down-regulated genes (Table 2).
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Figure 1. Identification of DEGs by volcano plot for PCa. Volcano plot for six GEO microarray da-
tasets: (A): GSE46602, (B): GSE38241, (C): GSE69223, (D): GSE32571, (E): GSE55945, and (F): 
GSE26126. The criteria of DEGs cutoff standard are p-value < 0.05 and |log2FC| (fold change) > 1. 
Color code—gray: up-regulated genes; yellow: down-regulated genes; orange: no change in expres-
sion levels of DEGs; blue: non-DEGs). 

  

Figure 1. Identification of DEGs by volcano plot for PCa. Volcano plot for six GEO microarray datasets:
(A): GSE46602, (B): GSE38241, (C): GSE69223, (D): GSE32571, (E): GSE55945, and (F): GSE26126. The
criteria of DEGs cutoff standard are p-value < 0.05 and |log2FC| (fold change) > 1. Color code—gray:
up-regulated genes; yellow: down-regulated genes; orange: no change in expression levels of DEGs;
blue: non-DEGs).

Table 1. UCSC_TFBS enrichment analyses showed TFs that putatively bind to the subsets of the
genes by protein interactions option of the functional annotation tool of 109 up-regulated overlapping
genes in PCa.

# Term Count p-Value FDR

1 NFY 57 6.69 × 10−3 9.89 × 10−1

2 CETS1P54 31 2.88 × 10−3 9.89 × 10−1

3 OLF1 50 3.99 × 10−2 9.89 × 10−1

4 SRF 73 6.28 × 10−2 9.89 × 10−1

5 COMP1 52 8.19 × 10−2 9.89 × 10−1

6 RP58 27 6.91 × 10−1 1.3 × 10−2

7 HMX1 21 1.23 × 10−1 1.99 × 10−2

8 NF1 30 1.32 × 10−1 1.99 × 10−2

9 PPARA 23 1.68 × 10−1 2.25 × 10−2

10 GFI1 22 6.7910−1 7.61 × 10−2
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Figure 2. Venn diagram of the: (A) overlapping DEGs from six GEO microarray datasets for PCa, 369
DEGs were identified among the six GEO microarray datasets; and (B) DEGs (11668), up-regulated
genes (2931), down-regulated genes (2832), and overlapping DEGs (369) from GEO microarray
datasets for PCa. Overlapping up-regulated (109) and down-regulated (260) DEGs were identified.
Color code.

Table 2. UCSC_TFBS enrichment analysis showed TFs that bind to the subsets of the genes by the
protein interactions option of the functional annotation tool of 260 down-regulated overlapping genes
in PCa.

# Term Count p-Value FDR

1 MYCMAX 133 5.35 × 10−6 4.07 × 10−4

2 PAX4 179 7.63 × 10−6 4.07 × 10−4

3 PAX5 138 1.26 × 10−5 4.07 × 10−4

4 USF 142 1.27 × 10−5 4.07 × 10−4

5 NRSF 149 2.76 × 10−5 6.44 × 10−4

6 HEN1 140 3.02 × 10−5 6.44 × 10−4

7 P300 97 4.28 × 10−5 7.83 × 10−4

8 MAZR 61 1.55 × 10−4 2.37 × 10−3

9 AP4 148 1.83 × 10−4 2.37 × 10−3

10 NMYC 82 1.94 × 10−4 2.37 × 10−3

2.3. PPI Network Construction and Module Analysis

We conducted a functional analysis of the DEGs to construct the PPI network of the
DEGs participating in PCa prognosis by utilizing the STRING database tool. There were
369 overlapping genes (nodes) and 2637 edges with a degree > 11.2, a clustering coefficient
of 0.40, an average node degree of 5.53, and a PPI enrichment p-value < 1.0 × 10−16, which
displayed the PPI enrichment for the network that was statistically significant as shown in
Figure 3. Based on the PPI network, we used Cytoscape to identify hub genes among the
369 overlapping DEGs.
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yielded DEGs for 369 overlapping genes (nodes) and 2637 edges with degree > 11.2 and PP enrichment
p-value < 1.0 × 10−16.

PPI network nodules were developed by employing MCODE (Figure 4). The DEGs
generated two modules of the PPI network. Module-1 was associated with a score of 31.9
and included 33 genes (nodes) and 511 edges, and module-2 was associated with a score
of 6.0, consisting of 6 genes (nodes) and 13 edges. The top six genes recognized in the
module-2 network incorporated five clustered proteins (PEX10, SLC27A2, AMACR, PAOX,
and DECR2), and one seed protein (HAO1), which was emphasized in the square-shaped
node accountable for constructing the clusters. Additionally, we used the Cytohubba plugin
of Cytoscape for classifying the top 20 genes (nodes) in the above PPI network according to
four topological analysis techniques, including maximal clique centrality (MCC); degree,
density of maximum neighborhood component (DNMC); and degree and edge percolated
component (EPC) as shown in Table S4. Together, we identified 12 overlapping up-regulated
(NCAPG, MKI67, CCNA2, CCNB1, TPX2) and down-regulated (CDK1, CCNB2, AURKA,
UBE2C, BUB1B, CENPF, RRM) hub genes for subsequent analysis.

A protein–gene interaction network for the hub genes and their effects on proteins/genes
was developed through the GeneMANIA plugin of Cytoscape. The network of hub genes
is shown in a black circle, and their related genes are shown in a gray circle (Figure 5).
GeneMANIA revealed that 5 up-regulated hub genes were associated with 20 genes. The
ranking order based on the score ranging from high to low is shown in Figure 5A. The
predicted weight percentages of the up-regulated hub gene networks were as follows: physical
interaction = 77.64, co-expression = 8.01, predicted = 5.37, co-localization = 3.63, genetic
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interaction = 2.87, pathway = 1.88, and shared protein domain = 0.6. GeneMANIA also
demonstrated that 7 down-regulated hub genes were connected with 20 genes with the
ranking order based on the score ranging from high to low as shown in Figure 5B. The
predicted weight percentages of the down-regulated hub gene networks were as follows:
co-expression = 55.12, physical interaction = 24.35, pathway = 12.69, predicted= 4.04, and
co-localization = 3.8.

2.4. Dataset Validation for Expression of Hub Genes in PCa Tissues

A full landscape of differential analysis of gene expression between PCa (497) and
normal prostate (52) tissues from the RNA-Seq, TIMER database was performed based
on the Cancer Genome Atlas Prostate Adenocarcinoma dataset (TCGA-PRAD) (Figure 6).
Transcript per million (TPM) enrichment analysis was utilized to classify PCa-specific
expression compared with normal tissues. It demonstrated the expression differences of
12 hub genes between PCa and normal prostate tissues. TPM value described the number
of transcripts that were observed for a given gene or isoform. The results indicated that
all hub genes (five up-regulated and seven down-regulated) were significantly changed in
PCa tissues (p-value < 0.001) compared with the normal prostate.

Further, we used the UALCAN database to validate the transcript expression levels of
12 hub genes in PCa (492) and normal prostate tissues (52) from TCGA-PRAD. TPM enrich-
ment analysis classified their expression in PCa. The threshold was set as |log2FC| (fold
change) ≥ 1 and an adjusted p-value < 0.05. The results indicated for box whisker plots that
all hub genes (up-regulated: NCAPG, MKI67, CCNA2, CCNB1, TPX2; and down-regulated:
CDK1, CCNB2, AURKA, UBE2C, BUB1B, CENPF, RRM) were significantly changed in PCa
tissues (p-value < 0.001) compared with the normal prostate tissues (Figure S1). The results
demonstrated in box whisker plots that three up-regulated (NCAPG, MKI67, and CCNA2)
and two down-regulated (CDK1, UBE2C) genes were significantly higher in PCa samples
in patients aged 60–80 years compared with patients aged 41–60 years (p-value < 0.05)
(Figure S2). It was also observed that hub genes (up-regulated: NCAPG, MKI67, CCNA2,
CCNB1, TPX2; and down-regulated: CDK1, CCNB2, AURKA, UBE2C, BUB1B, CENPF,
RRM) were significantly altered in PCa samples based on patients’ age (41–60 years and
60–80 years) (p-value < 0.05) compared with normal prostate tissues (Figure S2). Moreover,
Figure S3 shows the positive relationship between hub genes and Gleason’s scores of the
PCa samples.

High expression levels of the 12 hub genes were associated with advanced stages
(Gleason score ≥ 7) and recurrence, and the hub genes were significantly higher in the PCa
tissues with the most aggressive stage (Gleason score = 10). Box whisker plot results showed
that 10 hub genes (NCAPG, MKI67, CCNA2, CCNB1, TPX2, CDK1, AURKA, UBE2C,
CENPF, RRM2) were significant (p < 0.001 or p < 0.01) with advanced stages (Gleason score
≥ 7) with the highest aggressiveness and the poorest prognosis. The other two hub genes
(CCNB2, BUB1B) were also significant (p < 0.001 or p < 0.01 or p < 0.05) with advanced
stages (Gleason score ≥ 7) and the most aggressive PCa with the poorest prognosis.

Figure S4 shows the positive association between hub genes and the TP53 mutation
status of the PCa samples. Box whisker plot results showed that 10 hub genes (NCAPG,
MKI67, CCNA2, CCNB1, TPX2 CCNB2, AURKA, BUB1B, CENPF, RRM2) were significant
(p < 0.001) with TP53-mutant status (n = 38) compared with the normal (n = 52) and
nonmutant (295) samples. The other two hub genes (CDK1, UBE2C) were also significant
(p < 0.001) with TP53-mutant status (n = 38) compared with the normal (n = 52) samples
only. High expression levels of the 12 hub genes were associated with TP53-mutant status
(n = 38) compared with the normal (n = 52) and nonmutant (295) samples.
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Figure 4. The two modules were generated from the DEGs PPI network by MCODE. (A) Module-1:
associated with a score of 31.9, and includes 33 genes (nodes) and 511 edges. (B) Module-2: associated
with a score of 6.0, consists of 6 genes (nodes) and 13 edges. Includes the top five clustered proteins
(PEX10, SLC27A2, AMACR, PAOX, and DECR2), and one seed protein (HAO1) which is emphasized
in the square node shape.

The hierarchical clustering of the heatmap indicated that hub genes could distinguish
PCa samples from noncancerous samples (Figure 7). The heatmap of the hub genes in
PCa groups was significantly expressed compared with the normal groups by UCSC-Xena
(Figure 7A,B). In addition, the hub genes had the nearest association to the Gleason score
(Figure 7). We adjusted the most elevated color according to 100% saturation parameters of
log2 (norm_count + 1) ≥ 10.4, and the lowest color according to 100% saturation parameters
of log2 (norm_count + 1) ≤ 2.65 (Figure 7A). We compared solid normal tissue to primary
tumor tissue (Figure 7B). The results showed that MKI67, TPX2, CDK1, CCNB2, UBE2C,
CCNA2, CCNB1, BUB1B, CENPF, and RRM2 were overexpressed consistently in the TCGA-
PRAD 568 samples by utilizing gene expression RNAseq–IlluminaHiSeq with a max of log2
(norm_count + 1) = 10.4 and min of log2 (norm_count + 1) = 2.65. Consequently, these hub
genes were closely interconnected to PCa carcinogenesis and higher Gleason score stages.

2.5. Survival Analysis of Hub Genes

We used the TCGA-PRAD modules in GEPIA2 to analyze the differential expression of
the hub genes between PCa and normal tissues. To evaluate the association between hub genes
and the progression of PCa, we performed overall survival (OS) and disease-free survival
(DFS) analyses using the GEPIA online tools as shown in Figure 8. The results showed CCNA2
(up-regulated) and CENPF (down-regulated), was significantly influenced (p-value < 0.05)
in the OS of the PCa patients (Figure 8D,K). The expression changes of all other genes (high
or low) showed no effect on the OS of PCa patients (Figure 8A–C,E–J,L). We further applied
survival analysis to evaluate DFS utilizing the GEPIA2 online database as shown in Figure 9.
Cox regression analysis showed that DFS of PCa patients was significantly affected due
to all up-regulated (NCAPG, MKI67, TPX2, CCNA2, CCNB1) and down-regulated (CDK1,
CCNB2, AURKA, UBE2C, BUB1B, CENPF, RRM2) genes as shown in Figure 9A–E and
Figure 9F–L, respectively.
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cantly changed in PCa tissues (p-value < 0.001) compared with the normal prostate tissues 
(Figure S1). The results demonstrated in box whisker plots that three up-regulated 
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aged 41–60 years (p-value < 0.05) (Figure S2). It was also observed that hub genes (up-
regulated: NCAPG, MKI67, CCNA2, CCNB1, TPX2; and down-regulated: CDK1, CCNB2, 
AURKA, UBE2C, BUB1B, CENPF, RRM) were significantly altered in PCa samples based 
on patients’ age (41–60 years and 60–80 years) (p-value < 0.05) compared with normal 
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(52) tissues from Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) by TIMER: Tumor
Immune Estimation Resource. (A): Query for 5 up-regulated hub genes. (B): Query for 7 down-
regulated genes. ***: p-value < 0.001. TPM is transcripts per million with a normalization method for
RNA-seq.
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Figure 8. Prognostic survival analysis of the overall survival (OS) based on the high or low expression
of 12 hub genes from TCGA in PCa patients, using the GEPIA online tool. OS analysis for 5 up-
regulated (A–E) and 7 down-regulated (F–L) genes is presented. The dotted line on both sides of
the curve represents the 95% confidence interval (95% CI), and log-rank p < 0.05 is considered as a
statistically significant value. The red and blue lines represent high and low expressions of individual
Hub genes (A–L), respectively in the PCa patient samples compared to the normal tissues.
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Figure 9. Prognostic survival analysis of DFS based on the high or low expression of 12 hub genes
from TCGA in PCa patients was performed using GEPIA. OS analysis for 5 up-regulated (A–E) and
7 down-regulated (F–L) genes is presented. The dotted line on both sides of the curve represents
the 95% confidence interval (95% CI), and log-rank p < 0.05 is considered as a statistically significant
value. The red and blue lines represent high and low expressions of individual Hub genes (A–L),
respectively in the PCa patient samples compared to the normal tissues.
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The effect of gene expressions on the TCGA-PRAD patients’ survival based on their
Gleason scores was performed using UALCAN. We demonstrated that all up-regulated
(NCAPG, MKI67, TPX2, CCNA2, CCNB1) and all down-regulated (CDK1, CCNB2, AU-
RKA, UBE2C, BUB1B, CENPF, RRM2) genes significantly affected (p < 0.001) the Gleason
scores and TCGA-PRAD patients’ survival, as shown in Figure 10A–L.
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Figure 10. Predictive survival analysis based on the high or low expression of 12 hub genes from
TCGA-PRDA in PCa patients was performed using the UALCAN. Survival analysis for 5 up-regulated
(A–E) and 7 down-regulated (F–L) genes is presented. The survival analysis is based on the gene
expression level and Gleason scores from the Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-
PRAD) patients’ survival. p < 0.05 is considered statistically significant.

2.6. Chemical-Gene Interaction Analysis for DEGs

We conducted analyses of the curated studies on the CTD for gene–disease connections,
chemical–disease relationships, and chemical–gene interactions [31], and we utilized the
PubMed database for cross-referencing. The Venn diagram (Figure 11) shows CTD analyses
of chemicals that were associated with 5 up-regulated hub genes (NCAPG, MKI67, TPX2,
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CCNA2, CCNB1) and 7 down-regulated hub genes (CDK1, CCNB2, AURKA, UBE2C,
BUB1B, CENPF, RRM2) associated with PCa in the CTD curated studies. There were
50 chemicals associated with the 5 up-regulated, and 186 chemicals associated with the
7 down-regulated hub genes. The overlapping 22 chemicals affecting the 12 hub genes
were identified and listed in Table 3. Of the 22 identified chemicals, 17 were classified as
recognized EDCs, and one chemical was carcinogenic.
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Figure 11. Venn diagram generated from CTD analyses of chemicals associated with 5 up-regulated
hub genes (NCAPG, MKI67, TPX2, CCNA2, CCNB1) and 7 down-regulated hub genes (CDK1,
CCNB2, AURKA, UBE2C, BUB1B, CENPF, RRM2) associated with PCa. Fifty chemicals are associated
with 5 up-regulated and 186 with 7 down-regulated hub genes, and 22 chemicals have been shown to
have effects on the expression levels of 12 hub genes.

Table 3. The list of chemicals includes heavy metals, PAH, environmental phenols, pesticides,
estrogenic compounds, and others. In this list, 17 are recognized EDCs that are associated with the
hub genes in CTD studies.

Chemical Name Group EDCs/Carcinogenic

1 Arsenic

Heavy metals

EDCs

2 Copper EDCs

3 Cadmium EDCs

4 Zinc EDCs

5 Benzo(a)pyrene Polycyclic aromatic hydrocarbons (PAH) EDCs

6 Benzophenone-3

Environmental phenols

EDCs

7 Bisphenol A EDCs

8 Methylparaben EDCs

9 Propylparaben EDCs

10 Sodium arsenate
Inorganic compounds

Carcinogenic

11 Copper sulfate No

12 Dietary fats Type of nutrient No

13 Diethylstilbestrol Synthetic (manufactured)
form of estrogen EDCs



Int. J. Mol. Sci. 2023, 24, 3191 16 of 30

Table 3. Cont.

Chemical Name Group EDCs/Carcinogenic

14 Dihydrotestosterone
Steroid hormone

No

15 Testosterone No

16 Estradiol Estrogenic steroid EDCs

17 Genistein Polyphenolic isoflavone EDCs

18 DDT

Pesticides

EDCs

19 Heptachlor EDCs

20 Aldrin EDCs

21 Chlordecone EDCs

22 Phthalates Polyvinyl chloride (PVC)/plasticizers EDCs

3. Discussion

PCa is a highly malignant cancer with complex molecular pathogenesis. The incom-
plete understanding of how environmental exposures to EDCs mimic hormones in the
activation of cancer pathways is a critical barrier to the prevention and control of PCa.
Long-term survival of PCa patients is still unsatisfactory due to delayed diagnosis, recur-
rence, medication resistance, and lack of understanding of the influence of environmental
chemicals on the aggressiveness of PCa prognosis compounding these clinical gaps in the
treatment of this disease. Despite the advances in the understanding of molecular pathol-
ogy, PCa causes high morbidity and mortality in the male population [1,3,32]. In one of our
earlier studies, we showed that environmental phenols and parabens were associated with
patient-reported PCa with high Gleason scores through a set of hub genes [9]. Nonetheless,
studies associating the risk of one or two chemical exposures for PCa or other cancers do
not represent real-life scenarios where individuals are exposed to complex mixtures of
many chemicals. In our study, we identified EDCs associated with PCa hub genes and/or
TFs of these hub genes that play critical roles in the development and metastasis of PCa by
the integration of gene microarray and RNA-seq datasets [15,24,25,27,33–35].

This study has expanded the scope of our earlier work in an attempt to include a
comprehensive list of chemicals, especially EDCs, at least those for which information
on their contribution to the molecular pathology of PCa prognosis or aggressiveness is
available on curated databases (e.g., CTD or PubMed). In our first steps, we integrated
and incorporated six PCa microarray studies from different groups and employed bioinfor-
matics methods to examine gene expression profiles matching with clinical data from the
TCGA and GEO databases. This study identified significant DEGs (11,668) and we selected
up-regulated (2931) and down-regulated (2832) genes from the PCa studies. From this
list, we picked overlapping (369) DEGs genes from all six GEO PCa microarray datasets.
The number of down-regulated genes (260) was significantly higher than the number of
up-regulated genes (109). To obtain a comprehensive view of the underlying molecular
pathogenesis, it is important to focus on the gene networks that are participating in the
PCa etiology as well as respond to environmental chemicals including EDCs. We used
comprehensive bioinformatic tools including GO enrichment analysis of the selected 369
DEGs to understand how alterations in the expression of these genes may impact the
biological pathways involved in the prognosis of PCa and patient survival. Our results
indicated that the down-regulated DEGs were enriched in BP, including cell division,
response to estradiol, and epithelial cell differentiation [36]. Cancer fibroblasts perform
essential functions in cancer progression that involve inflammation and differentiation
of cell division and epithelial cells [7]. For instance, the type 2 fibroblast growth factor
receptor (FGFR2) blocked and intercepted prostate stem cell differentiation from the basal
compartment cells and maintained stemness [37]. While the androgen receptor is the
familiar target for PCa detection and therapy, more estrogens and their receptors have been



Int. J. Mol. Sci. 2023, 24, 3191 17 of 30

involved in developing prostatic carcinoma [7,37]. In addition, cytokinesis or mitotic failure
can potentially be the important mechanism contributing to the suffering of direct DNA
damage [38]. During mitotic cytokinesis, weakening chromosomes are often partitioned
into micronuclei, where they receive DNA damage in the following cell cycle, which builds
cancer genomes by manipulating both numerical and structural alterations in chromosomes
involved in tumor initiation and cancer progression [39,40]. Moreover, the KEGG pathway
enrichment analysis of these down-regulated DEGs shows that they are involved in the
main event of cancers, and prostate carcinoma including pathways in cancer, p53 signaling
pathway, prostate cancer, apoptosis, and MicroRNAs in cancer.

Our results then, indicated that the up-regulated DEGs were enriched in BP pep-
tide hormone processing, long-chain fatty acid transport, oxidation–reduction process,
low-density lipoprotein particle remodeling, and calcium-mediated signaling. Peptide
hormones illustrate a primary category of hormones created from amino acids by special-
ized endocrine glands. However, an excessive amount of circulating peptide hormones is
often connected with the presence of different tumors [41,42]. Metabolism deviation is a
hallmark of cancer [42]. It is well documented that the cancerous cellular metabolisms are
continuously encouraged to adapt to the increased proliferation rate and fulfill the nutri-
tional needs to support the heightened cell division [42–44]. Similar to our results for PCa,
one of the most noticeable metabolic changes is fatty acid or lipid metabolism [19,45,46].
Lipid biosynthesis is important for cell signaling and membrane formation. For example,
the metabolic mediators of lipogenesis can operate as second messengers and influence
PCa migration and invasion [47]. Additionally, the lipid metabolism of PCa is nearly
connected to androgen by the androgen receptor (AR) signaling pathway. The AR signal-
ing pathway can stimulate the uptake of exogenous lipids by PCa tissues and encourage
adipose tissues to discharge fatty acids [48,49]. The oxidation–reduction process includes
intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS). The most
recognized enzymes generated by ROS and RNS are cyclooxygenases (COX) and lipoxyge-
nases (LOX) [49]. Both COX and LOX mediate fatty acid metabolism, during which ROS
are produced. The overexpression of COX and LOX in specific cancers indicates a possible
involvement in carcinogenesis and progenesis in prostate carcinoma [50,51]. KEGG enrich-
ment analysis reveals that up-regulated DEGs are affected in the main occurrence of cancer,
including pathways in cancer, calcium signaling pathway [51], metabolic pathways [52],
Rap1 signaling pathway [53], and Ras signaling pathway [54]. Therefore, all the above
biological functions and pathways confirmed with our bioinformatics analysis results are
closely interconnected to the development and progression of PCa.

We subjected the enrichment analyses to TFs binding sites of our identified 369 DEGs
in the PCa pathway. The most significant TFs identified were nuclear transcription factor
Y (NFY) for up-regulated, and MYC-associated factor X (MYCMAX) for down-regulated
genes. Nuclear transcription factor Y (NFY) attaches to the CCAAT box, a component
enriched in promoters of genes overexpressed in tumors [55]. NFY plays a major role in
biochemical characterization of the target sequence of a DNA-binding matrix and various
promoters, and NFY-regulated genes have a high density of biosynthetic pathways of
purines and polyamines [56]. Examples of regulated genes AMD1 and ODC1 in several
cancers, notably PCa, and ODC1, are needed for tumor appearance, and overexpression
indicates patient survival [57]. While MYCMAX is an important regulator of growth in
normal cells, it is also repeatedly connected with cancer progression, treatment resistance,
and fatal outcomes in most human cancers [58]. Current conclusions have highlighted
the potential significance of MYCMAX overexpression in the earliest phases of tumor-
initiating cells and PCa formation. Various somatic genetic and epigenetic alterations in
PCa cells, including loss of the tumor suppressors PTEN and p53, are connected to disease
progression [59].

The research established on individual cancer types (such as PCa) recommended that
genes often share the same functional pathway, therefore, the association between cancer
modules and functional connectivity has been suggested to be investigated [60,61]. The
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two modules generated from the DEGs network in this study revealed module-1 with a
score of 31.9 which included 33 nodes/genes and 511 edges, and module-2 with a score
of 6.0, which included 6 nodes/genes, and 13 edges. In addition, the modules network of
GeneMANIA predicted the 25 most significant up-regulated genes and 27 most significant
down-regulated genes.

Before we investigated the influence of EDCs on molecular pathology, it was important
to determine the hub genes from our identified 369 DEGs which may have a pivotal role
in the gene network of PCa prognosis. We applied STRING, MCODE, Cytohubba, and
GeneMANIA analysis to determine five up-regulated (NCAPG, MKI67, TPX2, CCNA2,
CCNB1) and seven down-regulated (CDK1, CCNB2, AURKA, UBE2C, BUB1B, CENPF,
RRM2) hub genes. The full name and description of the 12 hub genes are listed in Table S3.

NCAPG has been indicated to be bonded to the overexpression of CCNB1. It is rec-
ommended to be a candidate target for hepatocellular carcinoma (HCC) therapy [62,63].
NCAPG is connected with NVAPG and functions as a target of miR-99a-3p in PCa cells.
Overexpression is connected to castrate-resistant prostate cancers (CRPC), in which a sus-
tained AR signal is considered the primary cause of CRPC [64]. It is associated with two
markers for PCa: PSA for tumor cell differentiation and KI-67 for tumor cell proliferation
and the epithelial–mesenchymal transition [65]. KI-67 may enhance the prognosis of PCa
outcomes found on pathological parameters, enhancing the prognosis and monitoring of PCa
subjects [64]. TPX2 is a microtubule-connected protein that targets TPX2-suppressed breast
cancer by activating p53 and impeding the PI3k/AKT/P21 signaling pathways [66,67]. Lately,
studies have demonstrated that targeting TPX2 in PCa reduced the rate of chromosome mis-
segregation and, consequently, TPX2 is considered as a candidate biomarker for therapy [68].
TPX2 expression in PCa tissues was shown to be increased compared with normal tissues,
and targeting TPX2 is a therapy strategy for PCa [66–68]. CCNA2 contributes to PCa invasion
by modulating the expression of MMPs and VEGF and interacting with AR. CCNA2 is a cell
cycle controller involved in the progression of PCa with metastatic activities, including VEGF
and MMPs PCa [69]. Recent studies have demonstrated that CCNB1 particularly binds to
CDC2 to increase cell migration, connected to the development of CRPC [70]. Higher levels of
CCNB1 in PCa cells may have a beneficial effect on polyploidy and a prognostic biomarker
for chemotherapy [70]. CDK1 controls mitochondrial metabolism for bioenergetics needed
for tumor cell survival, and overexpression of CDK1 is associated with poor prognosis and
metastasis in PCa [71]. CNB2 particularly binds CDC2 to improve cell migration which
is connected to the development of CRPC and also plays a critical part in transforming
growth factor beta-mediated cell cycle control [70,71]. UBE2C is key for the progression of
PCa, and the level of UBE2C is important to predicting the prognosis of patients [72]. The
AURKA gene has a crucial role in cell cycle development. Studies have indicated that it
is correlated to the pathological stage and metastasis in HCC [73]. AURKA is a possible
prognostic biomarker for the progression of high-risk small-cell PCa because it has been
established to strengthen in 67% of PCa patients with highly aggressive hormone-naive
castration-resistant cancer [74]. BUB1B is a critical mitotic checkpoint kinase identified as
the top-scoring kinase by RNA interaction [75]. CENPF encodes a protein associated with
the G2 phase, cell growth, protein synthesis, and the centromere–kinetochore complex and
chromosomal segregation, and is related to aggressive prostate cancer [76]. RRM2 is an
enzyme that specifies the rate of DNA synthesis and repair. Particularly, RRM2 was shown
to be overexpressed in PCa patients with a high Gleason score and a progressive T stage
and is considered a biomarker for PCa patients [77,78].

In our study, we conducted an extensive analysis to validate DEGs through TCGA-
PRAD by using the UALCAN, TIMER, and UCSC-Xena databases. Our results indicated
that all up-regulated (NCAPG, MKI67, CCNA2, CCNB1, TPX2) and down-regulated (CDK1,
CCNB2, AURKA, UBE2C, BUB1B, CENPF, RRM2) genes were expressed significantly
higher in PCa tissues compared with normal prostate tissues. In addition, up-regulated
(NCAPG, MKI67, CCNA2) and down-regulated (CDK1, UBE2C) genes were highly ex-
pressed in older ages (61 years or older). A lower Gleason score (≤6) showed a better
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prognosis with no risk of metastasis, whereas an elevated Gleason score (>8) was associated
with an increased risk of metastasis. All up-regulated (NCAPG, MKI67, CCNA2, CCNB1,
TPX2) and down-regulated (CDK1, CCNB2, AURKA, UBE2C, BUB1B, CENPF, RRM2)
genes were expressed significantly higher in aggressive PCa (Gleason score > 7) tissues.
The hierarchical clustering of heatmap indicated that the hub genes could distinguish PCa
samples from noncancerous ones. Heatmap also demonstrated that the hub genes in PCa
groups were more significantly expressed than in normal groups. The results showed
that MKI67, TPX2, CDK1, CCNB2, UBE2C, CCNA2, CCNB1, BUB1B, CENPF, and RRM2
were overexpressed consistently in the Cancer Genome Atlas Prostate Adenocarcinoma
samples. Therefore, it appears that the DEGs validation through TCGA-PRAD for hub gene
expressions in PCa samples from different datasets identifies NCAPG, MKI67, CCNA2,
CDK1, and UBE2C as the unique hub genes associated with PCa carcinogenesis.

To further strengthen the relationship between hub genes and the progression of PCa,
we performed OS and DFS using the GEPIA2 online database. The results showed that
CCNA2 up-regulated and CENPF down-regulated genes significantly influenced the OS of
the PCa patients. Utilizing TCGA-PRAD cohorts, all hub genes significantly influenced
PCa patients’ DFS. Collectively, CCNA2 up-regulation and CENPF down-regulation were
significantly associated with increased OS and DFS. To investigate the effect of hub gene
expressions and Gleason scores we used the TCGA-PRAD patients’ survival and applied the
UALCAN. The expression level and Gleason score were presented by high/low/medium
expression + Gleason scores X (n). We demonstrated from patients’ survival analysis
that there were positive relations with Gleason scores and hub genes. All hub genes (up-
regulated: NCAPG, MKI67, TPX2, CCNA2, CCNB1; and down-regulated: CDK1, CCNB2,
AURKA, UBE2C, BUB1B, CENPF, RRM2) affected the survival of the PCa patients with
high Gleason scores (Figure 10).

Interactions between EDCs and the PCa hub genes and/or proteins were determined
using the CTD. These data are integrated with functional and pathway data to aid in the
development of hypotheses about the mechanisms underlying environmentally influenced
diseases [31]. We also utilized the PubMed database for cross-referencing. There were
50 chemicals associated with up-regulated, and 186 chemicals with down-regulated hub
genes. In addition, of the overlapping 22 chemicals, 17 were classified as EDCs, and one
chemical was carcinogenic (Table 3). Exposure to different EDCs may disrupt normal
androgen and estrogen balance and possibly lead to sex hormone diseases [79–82]. Due to
synergistic or additive effects, exposure to several chemicals in a mixture may be significant.
These chemicals may have substantial impacts at lower concentrations than the NOAELS
(no observed adverse effect levels) documented for individual chemicals [83,84]. The inte-
grated toxicological effects of two or more mixtures can carry one of three conditions: dose
addition, independent action, or interaction [85,86]. A meta-analysis study of persistent
organic pollutants (POPs) was conducted regarding POP levels and the risk of PCa in the
general population. POPs belong to EDCs and can be present in several food items. The
study examined the PCa risk associated with each single and mixture of compounds [87].
Case-control studies showed positive linear and inverted U-shape associations between
EDCs and the risk of PCa [88,89]. A case-control study revealed a positive association
between plasma EDCs levels and metastatic PCa risk in Norwegians performed in 2015 [90].
Additionally, a positive association was discovered between high EDCs exposure among
pesticide applicators and a positive history of PCa [91,92]. Of note is the fact that exposure to
EDCs, primarily with estrogenic and androgenic actions, during embryonic evolution, at the
various stages of susceptibility, can generate permanent changes that determine the tendency
to PCa later in life. Using comprehensive bioinformatic tools and a CTD platform, the data
presented here highlight the need for health risk assessment research on EDCs mixtures to
sufficiently understand their function and influence on the molecular pathology of PCa. Taken
together, our results here suggest that 17 EDCs from the chemical list (Table 4) affect the
differential expressions of the discovered 12 hub genes. These genes, when aligned with their
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unique functional pathways, appear to influence the aggressiveness of PCa in patients with
high Gleason scores.

Table 4. Characteristics of the selected GEO microarray dataset profiles associated with PCa.

GEO Profile Case Control Platform Annotation Platform References

GSE46602 36 14 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array [93]

GSE38241 18 21 GPL4133 Agilent-014850 Whole Human Genome Microarray [94]

GSE69223 15 15 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array [95]

GSE32571 95 39 GPL6947 Illumina HumanHT-12 V3.0 expression BeadChip [96]

GSE55945 4 4 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array [33]

GSE26126 95 98 GPL8490 Illumina HumanMethylation27 BeadChip [34]

Total 227 191

EDCs can interrupt hormone synthesis and regular physiological functions of the
male system. Most EDCs attach to nuclear hormone receptors (steroid hormone receptors),
including ER and AR. As EDCs disrupt the activities of endogenous hormones, they may
cause abnormal functions and stimulation of cancer growth (such as PCa) and dysfunctional
immune and neuronal systems. EDCs can bind to ER and influence the transcription of
target genes through genomic (transcriptional processes undergoing nuclear translocation)
and non-genomic (passes signal transduction starting from steroid hormone receptors)
pathways. Dysregulation of nuclear receptors is one mechanism by which EDCs may alter
the expression of PCa hub genes contributing to the development or progression of PCa.
In addition to nuclear receptor signaling, EDCs may also impact oxidative stress in cells.
Oxidative stress can be a key regulator of EDC adverse effects on transcription regulation
as many of these processes depend on redox reactions. Emerging studies describe TFs
as target proteins of oxidative stress and hence EDCs-induced oxidative stress can be an
essential regulator of TFs observed in the pathways identified previously. The biochemical
pathways associated with EDCs may affect the ER-dependent signaling pathway. Exposure
to EDCs has destructive effects on metabolism and endocrine and reproductive systems
that can last for numerous generations [97,98].

There are limitations to our research. It was a predictive risk assessment of potential
exposures of various EDCs and their effects on the aggressive PCa prognosis. All the data
in the current study were based on the online mining of public databases for bioinformatics
analysis and the data quality was not evaluated and assessed. Our results were restricted
to selecting candidate hub genes connected with pathogenesis and PCa prognosis, which
may have inadvertently overlooked some critical data. Nonetheless, the available datasets
and tools presented the opportunity to conduct a thorough analysis to raise awareness and
develop risk assessment methods to pave the way for further experimental validations of
the identified 12 hub genes as biomarkers responsive to various EDCs exposures tested in
this study for aggressive PCa prognosis.

4. Materials and Methods

The steps to evaluate PCa molecular prognosis from GEO microarray datasets to
identify the molecular and biological pathways, EDCs exposure (CTD), bioinformatics
databases, gene set variation, and experimental validation analysis, are shown in a flow
chart in Figure 12.

4.1. Microarray Datasets: Downloaded

The datasets are associated with PCa from the NCBI/GEO database (https://www.
ncbi.nlm.nih.gov/geo/, accessed on 15 January 2022) [99]. Six PCa gene expression microar-
ray datasets GSE46602 [93], GSE38241 [94], GSE69223 [95], GSE32571 [96], GSE55945 [33],

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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and GSE26126 [34], were identified, acquired, and downloaded from the NCBI/GEO. The
characteristics of databases that were employed to detect the DEGs between PCa tissues
and corresponding normal prostate tissues are shown in Table 4. Together, we analyzed
227 PCa tissues and 192 control samples.
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4.2. Data Processing: Screening and Identification of DEGs

The GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/, accessed on 15 January 2022)
was used to screen DEGs between PCa samples and noncancerous control samples from
six microarray datasets. GEO2R is a tool that permits researchers to identify DEGs by
comparing different sample groups. The DEGs were screened and sorted, and the selection
criteria were based on significance. The selection criteria for the DEGs were established
on |log2FC| (fold change) ≥ 1 and an adjusted p-value < 0.05. The data of the individual
microarrays and across the six datasets were used for the normalization of distribution. A
Venn diagram was used to find the overlapping DEGs among the six microarray datasets.
Volcano plots were used to indicate both median fold change and p-value using GraphPad
Prism version 9.0 (GraphPad Software, Boston, MA, USA).

4.3. DEGs: GO, Biological Functional and Enrichment Analysis

DAVID.6.8 (https://david.ncifcrf.gov/, accessed on 30 February 2022) is a functional
enrichment tool for high-throughput sequencing of gene datasets and proteomic research
that provides biological, cellular, and molecular descriptions of a set of genes [100]. Kyoto
Encyclopedia of Genes and Genomes (KEGG) was utilized for high-level and higher-
order functions of cells and organisms of the biological system, molecular-level data
generated by genome sequencing, and other high-throughput experimental technologies

http://www.ncbi.nlm.nih.gov/geo/geo2r/
https://david.ncifcrf.gov/
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(https://www.genome.jp/kegg/, accessed on 10 March 2022) [101]. Biological process
(BP), molecular function (MF), and cellular component (CC) analysis were examined in
gene ontology (GO) (http://www.geneontology.org, accessed on 16 March 2022) [102] of
the determined genes with the criterion for significance at a p-value < 0.05. Jointly, the
GO and KEGG pathway analysis were employed to associate DEGs with their potential
biological, molecular, and cellular functions and their processes in PCa pathways.

4.4. Protein–Protein Interaction (PPI) Network Construction

Tool for the Retrieval of Interacting Genes (STRING) version 11.5 was implemented to
construct an analysis of direct and indirect PPI networks. STRING is an online database
tool (http://string-db.org/, accessed on 25 March 2022) that performs as an access point
for interpreting relationships between diverse proteins on a genome-wide scale, which
is beneficial for understanding protein interaction functions [103]. The analysis criteria
conditions were human species, gene fusion databases, experiments, co-recurrence, local
clustering coefficient 0.44, average node degree 7.59, PPI enrichment p-value < 1.0 × 10−16,
and the minimum required interaction score of 0.4.

4.5. Modules Selection and Clustering Analysis

Cytoscape software (version 3.9.0) was used for module analysis and selection. Gen-
eMANIA, Molecular Complex Detection (MCODE), and CytoHubba were also used.
MCODE was utilized to investigate the significant modules and select possible func-
tional modules in the PPI network. MCODE parameters were: MCODE scores > 7, node
score cutoff = 0.1, max depth = 100, degree cutoff = 2, and k-score = 2 [104]. CytoHubba
is widely utilized to investigate the most significant node (genes) in different biological
networks [105]. CytoHubba contains eleven topological analysis procedures for repeated
measurements to reinforce the observation of the interactions. In our study, we conducted
and included our results on MCC: maximal clique centrality; DNMC: degree, density
of maximum neighborhood component; degree and EPC: degree and edge percolated
component. GeneMANIA is a user-friendly web interface for investigating gene function,
examining gene lists, and prioritizing genes for biological function. GeneMANIA extends
the gene list with functionally similar genes that it specifies by utilizing functional genomics
and proteomics data [106]. GeneMANIA was used to construct a molecular interaction net-
work for DEGs, including co-expression networks, physical interaction, genetic interaction,
co-localization pathway, and predicted and shared protein domain information [107].

4.6. External Dataset Validation and Evaluation of the Analysis of Hub Genes

The hub genes identified and illustrated in the prognosis of PCa were validated on
NCI’s Genomic Data Commons (TCGA-GDC), TCGA prostate cancer (TCGA-PRDA), and
Prostate Adenocarcinoma (TCGS-PanCancer-Atlas). We applied a TIMER 2.0: Tumor Immune
Estimation Response, to determine the differential gene expression analysis between PCa
(492) and normal prostate (52) tissues. TIMER 2.0 (http://timer.cistrome.org/, accessed on
30 March 2022) is an online tool that provides a comprehensive resource for systematically
analyzing immune infiltrates across different cancers. Validation of associations between gene
expressions and tumor features in TCGA used immune estimations: expression profiles by
TIMER, CIBERSORT, quanTIseq, xCell, MCP-counter, and EPIC algorithms [108] were studied.
We then implemented the UALCAN (The University of Alabama at Birmingham Cancer data
analysis Portal) database to investigate the expression of hub genes between PCa and normal
samples based on: 1—sample types, 2—patients’ age, 3—patients’ Gleason score, and 4—TP53
mutation status, which is one of the most common genetic aberrations in cancer. UALCAN
(http://ualcan.path.uab.edu/, accessed on 30 March 2022) is an interactive web resource
that is user-friendly and widely used for analyzing cancer OMICS data. TP53 mutation
status was acquired from TCGA whole-exome sequencing data by UALCAN, downloaded
mutation annotation format (MAF) files (derived from VarScan2) from the Genomic Data
Commons portal. The samples with/without TP53 mutation were matched with RNA-seq
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data. UALCAN accesses cancer OMICS data (TCGA, MET500, CPTAC, and CBTTC), and
allows researchers to recognize biomarkers or conduct in silico validation of potential genes
of interest [109]. At the University of California Santa Cruz (UCSC-Xena), online tools enable
researchers to investigate functional genomic datasets for correlations between genomic and
phenotypic variables [110]. Hierarchical clustering and heatmapping of hub genes were
constructed by employing the UCSC-Xena (https://xenabrowser.net/, accessed on 30 March
2022). Highly expressed genes were calculated by (log2 (norm_count + 1), and Gleason score
was ranked from 5 (light pink) to 10 (dark pink).

4.7. Survival Analysis with Hub Genes

UALCAN was used for prognostic survival analysis of the OS based on the high or
low expression of hub genes from TCGA in PCa patients. The OS analysis is based on the
effect of gene expression level and Gleason score on PCa (TCGA-PRDA) patients’ survival. To
incorporate the heterogeneity of PCa samples at different stages of PCa progression among
TCGA-PRAD patients, the gene expression levels and Gleason score were presented as follows:

High expression and Gleason score 6 (n)
High expression and Gleason score 7 (n)
High expression and Gleason score 8 (n)
High expression and Gleason score 9 (n)
High expression and Gleason score 10 (n)
Low/medium expression and Gleason score 6 (n)
Low/medium expression and Gleason score 7 (n)
Low/medium expression and Gleason score 8 (n)
Low/medium expression and Gleason score 9 (n)
Low/medium expression and Gleason score 10 (n)

The Gleason scores were categorized based on the risk as defined in Table S5. In addition,
the online web GEPIA established on the TCGA database was applied for the OS and DFS of
hub genes’ expression in PCa [111]. GEPIA2 is a revised version of GEPIA, created by a Peking
University project team and qualified to examine the gene expression data of 9736 tumors
and 8587 normal samples from TCGA and GTEx projects [29]. GEPIA and GEPIA2 perform
OS and DFS analysis established on gene expression. GEPIA2 uses the log-rank test, at the
Mantel–Cox test (Cox regression analysis), for the hypothesis test. The Cox regression analysis
proportional hazard ratio and the 95% confidence interval information were included in the
survival plots. The Kaplan–Meier (KM) OS and DFS (a 95% confidence interval (95% CI) and
log-rank p < 0.05 was considered statistically significant) were employed for the evaluation of
each hub gene’s prognostic value in PCa. We also used Gene Expression Profiling Interactive
Analysis (GEPIA: http://gepia.cancer-pku.cn/index.html/, accessed on 30 March 2022 and
GEPIA2: http://gepia2.cancer-pku.cn/#index/, accessed on 30 March 2022), an interactive
web server, to analyze the comprehensive RNA sequencing expression data of genes from the
TCGA and the GTEx projects, using a standard processing pipeline.

4.8. Chemical-Gene Interaction Analysis for DEGs in PCa

To investigate the interaction between chemical exposure and differentially expressed
hub genes in PCa, we performed the analysis using the manually curated research studies on
the Comparative Toxicogenomic Database (CTD) [112]. We used this analysis to investigate
the chemical–disease relationships, gene–disease connections, and chemical–gene interactions
collected from the literature. We examined the PCa and discovered hub genes connected
with EDCs. For the chemical–gene interaction query, we searched EDCs with PCa. Data
showing curated association with the PCa, hub genes, and EDCs were downloaded, screened,
sorted with studies that included only human samples, and cross-referenced using the PubMed
database [31,113]. Transcription factors of the hub genes and their activity in response to EDC
and other chemical exposure were identified by DAVID.6.8 (https://david.ncifcrf.gov/UCSC_
TFBS/, accessed on 30 March 2022) [99].
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4.9. Statistical Analysis

GEO2R was implemented to screen DEGs between PCa and normal tissue samples.
GEO2R performs comparisons on original submitter-supplied processed data tables op-
erating the GEO-query and linear models for microarray analysis (limma) R packages
from the Bioconductor project. Bioconductor supplies access to statistical and graphical
procedures for analyzing genomic data established on the R programming language. The
GEO-query R package joins GEO data into R data structures that different R packages (Ver.
3.6.0) can use [113]. The limma R package was used as a statistical test for identifying
DEGs, including normalization, background adjustment, and summarization [114]. The
adjusted p-values and Benjamini and Hochberg FDR (false discovery rates) were used
to balance the finding of statistically significant genes and to decrease the likelihood of
false-positive errors.

5. Conclusions

The transcriptional expression levels of identified hub genes were significantly higher
in PCa tissues of patients 60–80 years of age. Interestingly, all hub genes were associated
with advanced stages (Gleason score ≥ 7) of PCa, suggesting their significant influence
on the severity of PCa patients and their DFS. Further analysis using CTD revealed that
22 listed chemicals on CTD influence the selected hub genes in PCa prognosis. Seventeen
of these chemicals are recognized EDCs and they specifically and significantly influence
6 of the 12 hub genes identified. We also delved into looking at the transcription factors
(TF) of these identified 12 hub genes of the prostate cancer pathway considering that they
may function as the conduit to the EDCs and other tested environmental chemicals’ effects
in this study. What is striking about this research is that it uses comprehensive tools of
bioinformatics to even include protein–protein interaction (PPI), which is the functional
pathway of any gene transcription. The alignment of the identified 12 hub genes influenced
by 22 chemicals (including 17 EDCs), with patient survival (PS), overall survival (OS), and
disease-free survival (DFS), suggests that these hub genes potentially play a role(s) through
various biological processes to contribute to the enhanced aggressiveness of prostate cancer
in older patients. This observation suggests a significant influence of recognized EDCs
on the molecular pathology of aggressive conditions in PCa patients and their disease-
free survival. Combined and cumulative EDCs risk assessment on human health is very
challenging [115], mostly due to the complexity of accurately extrapolating the effects,
particularly when merging two or more EDCs with different toxicities. However, the vali-
dation of the 6 hub genes specific to EDC influences using UALCAN, UCSC-Xena, GEPIA2,
and TCGA-PRDA strengthens the possibility of developing them as molecular biomarkers
for EDC health risk assessments and early detection of prostate cancer aggressiveness in
the older populations which may attain high Gleason scores > 7.
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AR Androgen receptor
AURKA Aurora kinase A
BP Biological process
BUB1B BUB1 mitotic checkpoint serine/threonine kinase B
CRPC Castrate-resistant prostate cancers
CC Cellular component
CCNA2 Cyclin A2
CCNB1 Cyclin B1
CCNB2 Cyclin B2
CDK1 Cyclin dependent kinase 1
COX Cyclooxygenases
CENPF Centromere protein F
CTD Comparative Toxicology Database
DEGs Differentially expressed genes
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EDCs Endocrine-disrupting chemicals
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FDR False discovery rates
GEO Gene expression omnibus
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KEGG Kyoto Encyclopedia of Genes and Genomes
LOX Lipoxygenases
MCODE Molecular complex detection
MYCMAX MAX Gene—MYC-associated factor X
MKI67 Marker of proliferation Ki-67
MF Molecular function
NCAPG Non-SMC condensin I complex subunit G
NFY Nuclear transcription factor Y
PCa Prostate cancer
POPs Persistent organic pollutants
PPI Protein–protein interaction
PSA Prostate-specific antigen
RNS Reactive nitrogen species
ROS Reactive oxygen species
RRM2 Ribonucleotide reductase regulatory subunit M2
STRING Search tool for the retrieval of interacting genes/proteins
TCGA-PRAD The Cancer Genome Atlas Prostate Adenocarcinoma
TF Transcription factor
TPM Transcript per million
TPX2 Targeting protein for Xenopus kinesin-like protein 2
FGFR2 Type 2 fibroblast growth factor receptor
UBE2C Ubiquitin-conjugating enzyme E2 C
UCSC-TFBS University of California, Santa Cruz–transcription factor binding sites
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