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Abstract: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease
with unknown etiology or effective treatments. Post-exertional malaise (PEM) is a key symptom that
distinguishes ME/CFS patients. Investigating changes in the urine metabolome between ME/CFS
patients and healthy subjects following exertion may help us understand PEM. The aim of this pilot
study was to comprehensively characterize the urine metabolomes of eight female healthy sedentary
control subjects and ten female ME/CFS patients in response to a maximal cardiopulmonary exercise
test (CPET). Each subject provided urine samples at baseline and 24 h post-exercise. A total of
1403 metabolites were detected via LC-MS/MS by Metabolon® including amino acids, carbohydrates,
lipids, nucleotides, cofactors and vitamins, xenobiotics, and unknown compounds. Using a linear
mixed effects model, pathway enrichment analysis, topology analysis, and correlations between urine
and plasma metabolite levels, significant differences were discovered between controls and ME/CFS
patients in many lipid (steroids, acyl carnitines and acyl glycines) and amino acid subpathways
(cysteine, methionine, SAM, and taurine; leucine, isoleucine, and valine; polyamine; tryptophan; and
urea cycle, arginine and proline). Our most unanticipated discovery is the lack of changes in the urine
metabolome of ME/CFS patients during recovery while significant changes are induced in controls
after CPET, potentially demonstrating the lack of adaptation to a severe stress in ME/CFS patients.

Keywords: ME/CFS; metabolomics; urine; exercise

1. Introduction

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease
affecting an estimated 1.5–3 million adults and children in the United States alone [1,2]. The
majority of ME/CFS patients are unable to work due to their illness, leading to an estimated
minimum economic impact of 35–51 billion USD per year in medical costs and lost productivity
combined [1]. Symptoms of this acquired, systemic disease include a new onset of persistent
physical and mental fatigue severe enough to prevent normal activities, unrefreshing sleep,
pain, cognitive impairment, orthostatic intolerance, immune manifestations such as recurrent
flu-like symptoms and sore throat, and neuroendocrine manifestations such as intolerance to
heat and cold [3].

In addition, the hallmark symptom of ME/CFS is post-exertional malaise (PEM),
which is a worsening of symptoms after any type of exertion, including both physical
and cognitive exertion, beginning from immediately following the exertion to more than
24 h later [4]. PEM may last hours to months, and the duration varies extensively even
for individual patients [4,5]. Therefore, unlike most chronic illnesses, in which exercise is
beneficial, people with ME/CFS are exercise intolerant. This exercise intolerance can be
clinically assessed using a two-day cardiopulmonary exercise test (CPET).

In the two-day CPET protocol, the first CPET is used to measure “baseline functional
capacity” while inducing PEM [6]. The second CPET, 24 h later, measures the impaired
performance at a time when most patients will already be experiencing PEM symptoms
from the first CPET. Subjects with other various illnesses are able to perform similarly on
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a CPET two days in a row, whereas ME/CFS patients are unable to perform as well the
second day [7,8]. This reduced performance ability can be documented with objective
measures including reduced maximal oxygen consumption and peak workload greater
than the typical variability of repeated testing, despite subjects maintaining a respiratory
exchange ratio (RER) above 1.1, which corresponds to maximum effort [6].

Although there is a growing body of knowledge describing the pathophysiology of
ME/CFS, the etiology of the disease remains unknown and there are currently no diagnostic
laboratory tests nor FDA-approved treatments. Despite the lack of diagnostic biomarkers,
there are many documented molecular pathophysiological changes occurring in ME/CFS,
including in metabolomics [9,10].

The plasma metabolome of ME/CFS patients has received a substantial amount of at-
tention for over a decade, although often on limited cohort sizes, with an increasing number
of metabolites measured (from just over 20 to about 1200 metabolites more recently) [11–22].
On the contrary, previous studies of urine metabolomics in ME/CFS patients are very
limited. The few published studies have measured only 28–42 metabolites, which have
primarily been amino acids [19,20,23,24]. While most findings have not been consistent
between studies, two studies did find phenylalanine at lower concentrations in ME/CFS
patients than healthy controls [23,24]. Although one study by McGregor et al. examined
urine metabolites in the context of self-reported PEM [19], and our group recently published
a thorough investigation of the plasma metabolome (1157 metabolites) before and after
exercise [25], no studies of ME/CFS patients have measured metabolites in urine after a
deliberate exercise challenge.

Measuring compounds in urine is advantageous due to non-invasive and easy sample
collection which makes it ideal for diagnostics. Additionally, altered excretion of metabo-
lites in ME/CFS patients after an exercise challenge may yield insights into the patho-
physiology of PEM that complement the changes documented in the plasma metabolome.
The aim of this pilot study was to comprehensively investigate changes in the urine
metabolomes of eight female healthy sedentary control subjects and ten female ME/CFS
patients in response to a maximal cardiopulmonary exercise test (CPET). This study repre-
sents an approximate 30-fold increase in the number of metabolites measured in the urine
of ME/CFS patients, from less than 50 in previous studies to 1403 in the current study.

Our extensive analysis reveals numerous and significant differences in the urine
metabolomes of ME/CFS and control groups in response to exercise, despite the small
number of subjects studied. Such changes are predominantly present in the lipid and
amino acid metabolic superpathways. We found a large number of metabolites with
increased levels in the urine of controls 24 h post-exercise. The post-exercise increase in
urinary excretion did not occur in the ME/CFS patients, which is evidence of a metabolic
dysregulation during exercise recovery.

2. Results
2.1. Study Design and Subject Characteristics

Eight female healthy sedentary control subjects and ten female ME/CFS patients
provided a baseline urine sample in the morning prior to exercise testing (Figure 1). All
subjects performed the CPET on a stationary bicycle and were monitored to ensure that
they used maximal effort (RER > 1.1). A post-exercise urine sample was collected from all
subjects 24 h later. Metabolites were measured in all urine samples by Metabolon® using
their Precision Metabolomics™ LC-MS/MS global metabolomics platform.
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Figure 1. Study schematic. Eight sedentary healthy controls and ten ME/CFS patients were included
in this study. ME/CFS patients were diagnosed with the Canadian Consensus Criteria. All subjects
provided a baseline urine sample in the morning prior to exercise testing and 24 h later. Schematic
created with Biorender.com.

Table 1 shows the demographic information for all of the subjects. The subjects were
highly age-matched with median ages of 52.5 and 51.5 years in the control and ME/CFS
groups, respectively. The ME/CFS group had significantly lower BMI than the control
group. Only one participant identified as Hispanic (an ME/CFS patient) and most subjects
identified as white, except for one Asian ME/CFS subject.

Table 1. Study demographics.

ME/CFS Controls

Median IQR Median IQR p-Value

Age (years) 51.5 5.3 52.5 6.5 0.96

BMI 24 10.9 33.3 8.2 0.03 *

Bell disability scale 30 15 90 22.5 0.0004 *

SF-36 physical component summary (PCS) 25.6 7 54.5 7.1 0.00005 *

SF-36 mental component summary (MCS) 48 4.6 57 6.2 0.07

Multidimensional fatigue inventory (MFI) 83 10.3 NA NA NA

ME/CFS duration (years) 7.5 7.3 NA NA NA

Shown are the median and interquartile range (IQR) for demographic parameters in ME/CFS patients and control
subjects. For the Bell disability scale and SF-36, a higher number corresponds to better health. For the MFI
total score, a higher number corresponds to increased fatigue. The p-values are from a Wilcoxon rank sum test.
* indicates a significant difference between the ME/CFS and the control groups (p < 0.05). NA: not applicable.

As expected, the ME/CFS patients scored significantly lower on multiple measures of
physical function, including the Bell disability scale and the SF-36 physical component. On
the Bell scale, the median for the controls was 90, which corresponds to “No symptoms
at rest; mild symptoms with activity; normal overall activity level; able to work full-time
without difficulty” [26]. The median for the ME/CFS patients was 30, which corresponds to
“Moderate to severe symptoms at rest. Severe symptoms with any exercise; overall activity
level reduced to 50% of expected. Usually confined to house. Unable to perform any
strenuous tasks. Able to perform desk work 2–3 h a day, but requires rest periods” [26]. The
ME/CFS patients had a wide range of disease duration of 2–27 years (median 7.5 years).

Biorender.com


Int. J. Mol. Sci. 2023, 24, 3685 4 of 29

2.2. Many Differences in the Urine Metabolomes of ME/CFS Patients and Controls Emerge
through Analysis of Changes between Pre- and Post-Exercise Samples

Metabolon® detected a total of 1403 metabolites in these samples using their Precision
Metabolomics™ LC-MS/MS global metabolomics platform. Out of the 1403 metabo-
lites measured, 886 are known metabolites, 64 are partially characterized molecules, and
453 are unknown compounds (Supplementary File S1—Raw Data). All data were osmo-
lality normalized to account for differences in overall concentration of each urine sample.
Osmolality data for each experimental group are shown in Supplementary Figure S1 and
was not significantly different between ME/CFS patients and controls at either time point.
There was a trend toward increased osmolality in the controls 24 h post-exercise (p < 0.1,
linear mixed effects model, followed by pairwise comparisons with Tukey’s posthoc test).
By normalizing to the osmolality, we ensured that any differences detected in metabolite
levels both between ME/CFS and control groups and from baseline to post-exercise within
cohorts are not simply a reflection of changes in osmolality.

Missing values were imputed with the minimum as recommended by Metabolon®,
except in the case of drugs and tobacco, where the missing values were imputed with 0. The
data for each metabolite were median centered to 1, and all data were log10 transformed
using MetaboAnalystR (available at www.metaboanalyst.ca, accessed on 14 December
2022). Filtering was applied to eliminate compounds with a large amount of missing data
from the analysis according to the modified 80% rule: a metabolite is included if it is
detected in at least 80% of the samples in either the ME/CFS patients, the controls, or both
groups [27]. In total, 1154 metabolites met the criteria and were included in the analysis.

A linear mixed effects model (LMM) for each metabolite was utilized to determine
the differences between ME/CFS and control groups at each time point (baseline or post-
exercise), the change over time within the ME/CFS and control groups, and which metabo-
lites were changing differently after exercise in the ME/CFS and control groups. The model
formula is as follows:

Metabolite ~ Disease status ∗ Time Point + Age + BMI + (1|Subject)

The p-values for each metabolite were adjusted for multiple comparisons using the
Benjamini–Hochberg (BH) procedure with a significance threshold of q < 0.1 (Supplemen-
tary File S2—Linear Mixed Model Results) [28]. Because we adjusted for the confounders
age and BMI, the significant differences we detected with this model are not due to the
difference in BMI in the two groups.

No significant differences were detected between controls and ME/CFS patients at
baseline (Figure 2A). At 24 h post-exercise, four compounds were significantly different, all
of which were at lower concentrations in the ME/CFS patients compared to the controls
(Figure 2B). The four compounds included three acyl glycines and one unknown compound.

The control group exhibited large-scale changes in the urine metabolome when compar-
ing the baseline and post-exercise urine samples, with 255 compounds significantly altered at
the q < 0.1 threshold (Figure 2C). All except five compounds showed increased concentrations
after exercise. This is in stark contrast to the ME/CFS group, in which we did not detect any
compounds with significant changes in concentration due to exercise (Figure 2D).

A significant interaction between disease status (ME/CFS vs. control) and time point
(baseline vs. post-exercise) in the linear mixed effects model shows which metabolites are
changing differently in the ME/CFS and control groups during exercise recovery (i.e., over
time). Figure 2E displays 110 significantly different metabolites at the q < 0.1 threshold (red
dots), and 35 metabolites are also below q < 0.05 (1.3 on the -Log10q y-axis of Figure 2E).
In this volcano plot, the log2 fold change is a ratio of ratios; the ratio of the mean post-
exercise/baseline ratios in the ME/CFS patients to the mean post-exercise/baseline ratios in
the controls. The post-exercise/baseline ratio for each subject shows whether the metabolite
is increased or decreased in urine in each subject during exercise recovery. The mean
normalized concentrations for the controls and ME/CFS patients at both time points for the
56 known compounds included in these 110 compounds show that for most compounds,

www.metaboanalyst.ca
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there is a post-exercise increase in the controls that is not seen in the ME/CFS patients
(Supplementary Figure S2). Therefore, the compounds which are changing differently
during recovery in the control and ME/CFS groups are predominantly increased post-
exercise in the control group and not significantly altered in the ME/CFS group, leading
to a negative log2 fold change for the ME/CFS vs. control post-exercise/baseline ratios.
In total, 102 of the 110 compounds that are changing differently over time in patients vs.
controls are also significantly increased in the controls post-exercise.

Figure 2. Linear mixed modeling results (A–E). The p-values from within and between group
contrasts were adjusted for multiple comparisons using the BH procedure. Each dot represents one
of 1154 metabolites that passed filtering. The y axis shows the negative log of the q value, so a higher
number represents compounds that are more statistically significant. The dashed horizontal line
shows the significance threshold q < 0.1 and the red dots are the compounds that are significant at
that threshold. The gray dots are compounds that are not significant. The x axis shows the log2 fold
change for each comparison.
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The fact that there are metabolite changes in the controls and not in the patients is
not due to increased variation in metabolite levels in the ME/CFS patients compared to
the controls. There is no trend toward higher standard deviation in the ME/CFS group
when comparing the standard deviations for ME/CFS to controls for each compound
(Supplementary Figure S3). Additionally, these changes are detected despite normalizing
to urine osmolality, which is trending toward an increase in the controls from baseline to
post-exercise (Supplementary Figure S1). In order to increase significantly after normal-
ization, levels of a metabolite have to increase even higher than any increase in overall
urine concentration.

Together, these results demonstrate that exercise induces a significant increase in many
metabolites in urine 24 h post-exercise in healthy sedentary controls, and the lack of these
changes in the ME/CFS patients is a key component of their disease state and could be
related to exercise intolerance.

2.3. Two Approaches to Enrichment Analysis Reveal Metabolic Subpathways with the Most
Significant Changes

We then performed enrichment analysis using Metabolon®’s pathway annotations and
ChemRICH (in R) [29,30]. This analysis does not rely on any background or reference
metabolome and contains non-overlapping pathway assignments for each metabolite. Unlike
the standard ChemRICH analysis which assigns metabolites to clusters by chemical similarity,
this analysis used non-overlapping pathway assignments by Metabolon®. By looking at
the pathways as opposed to single metabolites, we can identify metabolite sets which are
significantly altered as a group, whereas individual metabolites in that set may not have
achieved significance in the LMM on their own. Additionally, we can holistically describe
the changes in the urine metabolome occurring post-exercise and how they are significantly
altered in the ME/CFS patients. The input for this analysis is the fold change of the mean
normalized concentration for each comparison and the p-values from the LMM contrasts for
the 734 known compounds out of 1154 total analyzed (assigned to 84 subpathways out of
92 subpathways for all detected metabolites). Enrichment is assessed using the Kolmogorov–
Smirnov test, with BH FDR correction (significance threshold q < 0.05).

Figure 3 shows the significantly altered subpathways for the same comparisons as in
Figure 2: ME/CFS vs. controls at baseline, post-exercise, and for the post-exercise/baseline
ratios, and the change post-exercise in the control group alone. We also analyzed the change
post-exercise in the ME/CFS patients, but there were no significantly altered pathways.

In this figure, the subpathways are organized by Metabolon® by chemical similarity
and then superpathways are organized alphabetically, with amino acids first, followed
by carbohydrates, lipids, nucleotides, vitamins and cofactors, and finally xenobiotics. An
altered ratio of 1 means every compound we measured in a pathway was significantly
altered (p < 0.05 in the LMM). Red bubbles indicate that all significantly altered compounds
increased in that comparison, and blue bubbles indicate that all significantly altered com-
pounds decreased in that comparison. We also performed ChemRICH analysis using the
Medical Subject Headings (MeSH) ontology and Simplified Molecular Input Line Entry
System (SMILES) codes to assign compounds to clusters based on chemical similarity (Sup-
plementary Figure S4). Only 516 compounds could be matched to SMILES codes for this
analysis. We chose a significance threshold of q < 0.15 for the MeSH ontology enrichment,
because we did not want to exclude potentially interesting findings for this pilot study, and
at q < 0.15 all clusters originally had p < 0.025. For the Metabolon® subpathway enrichment,
only at q < 0.05 were all significant clusters also at p < 0.05.
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Figure 3. Metabolon subpathway enrichment analysis. Shown are Metabolon® subpathways
that were significantly altered for each comparison (Kolmogorov–Smirnov test, q < 0.05, BH FDR
correction). The clusters are ordered by chemical similarity according to Metabolon®. Bubble size
shows the ratio of significantly altered metabolites to total metabolites in that cluster (p < 0.05). The
color gradient shows the increased ratio, where blue indicates all of the altered metabolites were
decreased, and red indicates all altered compounds were increased. The post-exercise vs. baseline
comparison for the ME/CFS patients was also evaluated but no significantly altered pathways were
identified. All 734 identified metabolites assigned to 84 subpathways were included. Analysis was
performed using ChemRICH in R.

At baseline, only xanthine metabolism and the xanthines’ chemical cluster were
significantly different between ME/CFS patients and controls, with lower concentrations of
all compounds found in the urine of ME/CFS patients (Figure 3, q < 0.05 and Supplementary
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Figure S4, q < 0.15). Xanthines include caffeine and theophylline, so this chemical cluster is
affected by diet.

Twelve Metabolon® subpathways were significantly altered post-exercise in the ME/CFS
patients vs. controls, again with predominantly lower metabolite concentrations in the
ME/CFS patients (Figure 3). Five of these subpathways belong to the lipid super-pathway
and are involved in fatty acid metabolism (including acyl glutamine, acyl glycine, and acyl
carnitine). Within the amino acid metabolism superpathway, tyrosine metabolism was sig-
nificantly different 24 h post-exercise and within nucleotide metabolism, uracil containing
pyrimidine metabolism was significantly altered. 24 h post-exercise, only three chemical clus-
ters were significantly altered in the ME/CFS patients using the MeSH ontology, including
fatty acids (10:1), xanthines, and sugar acids (Supplementary Figure S4).

When comparing the exercise recovery (the change over time) in ME/CFS patients
vs. controls using the post-exercise/baseline ratios, even more pathways are found to be
significantly different, namely seven amino acid subpathways, seven lipid subpathways,
and two carbohydrate subpathways. For this comparison, there are 13 chemical clusters
which are significantly different between patients and controls (Supplementary Figure S4).

The highest number of significantly altered Metabolon® subpathways and chemical
clusters was found in the control group when comparing the post-exercise and baseline time
points (Figures 3 and S4), with the large majority of compounds increased post-exercise
(red color). Only the adenine containing purine metabolism subpathway, the histidine
metabolism subpathway, and the methylhistidines chemical cluster had a similar amount
of increased and decreased compounds.

Most of the Metabolon® subpathways and chemical clusters increased in the controls
after exercise are the same ones that were significantly altered in the ME/CFS vs. controls
when comparing the post-exercise/baseline ratio, showing that they were changing dif-
ferently during exercise recovery in the ME/CFS patients vs. healthy sedentary controls.
For both of these comparisons, the subpathway with the lowest q-value for subpathway
enrichment was corticosteroids. Overall, 8/13 compounds were significantly altered in
the ME/CFS patients vs. controls (and all had lower post-exercise/baseline ratios in pa-
tients), and 11/13 compounds significantly increased in controls after exercise (p < 0.05 in
the LMM).

Four subpathways, all belonging to the lipid superpathway, had significantly altered
concentration in urine in all three comparisons: ME/CFS vs. control at the post-exercise
time point, ME/CFS vs. control post-exercise/baseline ratios, and post-exercise vs. baseline
in the control group. These subpathways include two acyl carnitine fatty acid metabolism
subpathways (medium chain and dicarboxylate), androgenic steroids, and secondary bile
acid metabolism.

There are also several amino acid subpathways in which most altered compounds
are significantly increased in the urine in controls post-exercise, and decreased when
comparing the ME/CFS to control post-exercise/baseline ratios. Of these subpathways,
the altered ratio is the highest for polyamine metabolism (and it has the lowest q value for
the ME/CFS vs. controls): 6/9 metabolites are significantly increased in controls, and 5/9
are significantly decreased in the ME/CFS vs. controls post-exercise/baseline ratio. These
compounds include acisoga, (N(1)+N(8))-acetylspermidine, diacetylspermidine, N1,N12-
diacetylspermine, and N-acetyl-isoputreanine (for this subpathway, all compounds also
have q < 0.1 in the LMM).

The arginine and proline metabolism subpathway of the urea cycle in the amino acid
superpathway is the only one with a metabolite that is increased in ME/CFS vs. controls for
the post-exercise/baseline ratios (besides food component/plant), with 8/10 metabolites
significantly altered and methylurea being the only increased metabolite (p < 0.05 in LMM).
Methylurea is also significantly decreasing in the controls over time (p < 0.05 in LMM), and
is the only one of 11 altered compounds in this subpathway that is not increasing. However,
the changes in methylurea were not significant when considering the univariate LMM
analysis with the q < 0.1 threshold. Nevertheless, four compounds in this subpathway
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do have q < 0.1 in the LMM for the ME/CFS vs. controls post-exercise/baseline com-
parison: carboxy-methyl-arginine, proline, symmetric dimethylarginine, and asymmetric
dimethylarginine.

The leucine, isoleucine, and valine metabolism subpathway has the lowest q-value
in the controls of the subpathways in the amino acid superpathway. This subpath-
way has 36 compounds, with six changing differently over time in ME/CFS vs. con-
trols: 3-methylglutarylcarnitine, tiglylcarnitine(C5), valine, beta-hydroxyisovalerate, beta-
hydroxyisovaleroylcarnitine, and methylsuccinoylcarnitine. Sixteen out of thirty-six com-
pounds are significantly increased in the controls, including all six changing differently
over time in the ME/CFS patients vs. controls.

2.4. A Pathway Topology Analysis Highlights Altered Carbohydrates and Amino Acid Metabolism
as a Result of Exercise

Differences between ME/CFS and control subjects at the metabolic pathway level were
assessed using the pathway analysis module within the Metaboanalyst 5.0 webtool (www.
metaboanalyst.ca, accessed on 14 December 2022), which combines quantitative enrichment
analysis and pathway topology analysis. In total, 453 out of 734 known compounds of the
1154 compounds analyzed were included in this analysis, due to limitations in Human
Metabolome Database (HMDB) ID matching. This analysis was carried out twice for each
comparison, with the Kyoto encyclopedia of genes and genomes (KEGG) and then the small
molecule pathway database (SMPDB) human reference metabolomes to define pathways.
The quantitative enrichment analysis uses the global test to compare the two groups, which
employs a logistic regression method to test whether the metabolites in the pathway help
to improve classification of the samples as ME/CFS or control, with the null hypothesis
that no metabolite in the pathway has a different concentration in either group [31,32].
The p-values from this test are adjusted for multiple comparisons using the BH procedure,
with q < 0.2 as the significance threshold. This threshold was chosen to allow review of
potentially interesting findings considering the small sample size, while ensuring that all
significant pathways still have p < 0.05. This analysis is different from the ChemRICH
enrichment analysis above in that it allows overlap, so several pathways may have the same
key compounds. When evaluating the key compounds, we also report their significance as
individual compounds in the LMM, where we employed a more stringent cutoff (q < 0.1).
The outcome of the topology analysis is an impact score ranging from 0 to 1. This score is
derived from metabolite node importance values calculated using the relative betweenness
centrality measure, which are then normalized so that the maximum importance of each
pathway is 1. The impact score is the sum of the importance measures for each matching
metabolite node in a pathway.

Again, there were no significant differences between the urine metabolites at baseline in the
ME/CFS and control groups. However, comparing ME/CFS patients and controls at the post-
exercise time point and the change over time using the within subject post-exercise/baseline
fold change, both had several significantly altered metabolic pathways (Figure 4).

At 24 h post-exercise, seven pathways in the SMPDB and one pathway in KEGG were
significantly altered in the ME/CFS patients vs. controls (Figure 4A, q < 0.2). Five of the
eight significantly altered pathways are involved in sugar metabolism, which is related to
energy production. Fructose is the key compound in all of the sugar metabolism-related
pathways, with p < 0.01 in the LMM when comparing the ME/CFS patients and controls
post-exercise; however, fructose is not significant in the univariate analysis after multiple
comparisons correction. The pathways with the highest impact scores are catecholamine
biosynthesis followed by tyrosine metabolism. Both pathways have dehydroascorbate
(p < 0.01) as a key compound, but again, this compound is not significant in the LMM after
FDR correction. For tyrosine metabolism, ascorbate (vitamin C) (p < 0.01) is an additional
key compound but is also not significant after FDR correction.

www.metaboanalyst.ca
www.metaboanalyst.ca
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Figure 4. Pathway topology and enrichment analysis (A,B). Significantly different pathways for
each comparison are listed in alphabetical order. The x axis shows the negative log of the q-values
from BH FDR correction. All pathways shown have q < 0.2 (global test). The size of the bubble
shows the impact score, which is a normalized measure of the importance of the altered metabolites
in each pathway. ME/CFS and control groups were also compared at baseline but there were no
significantly altered pathways after FDR correction. A total of 453 compounds were included in this
analysis performed with Metaboanalyst 5.0. (A) For the post-exercise time point, all significant path-
ways were from the SMPDB reference metabolome except the one with (K) which was from KEGG.
(B) For the post-exercise/baseline comparison, all significant pathways were from the
KEGG reference metabolome.

Ten pathways, all in the KEGG database, had significantly different post-exercise/baseline
ratios in the ME/CFS patients vs. controls, indicating they are changing differently over time
(Figure 4B, q < 0.2). The four pathways with the highest impact are all involved in amino acid
metabolism: arginine and proline metabolism, cysteine and methionine metabolism, lysine
degradation, and aminoacyl-tRNA biosynthesis. All of the proteinogenic amino acids are
involved in the aminoacyl-tRNA biosynthesis pathway, so it makes sense that the pathway
is significantly affected since several of these amino acids are significantly different in this
comparison (see Supplementary Figure S2). For the KEGG arginine and proline metabolism
pathway, proline is the only compound that is also significant in the LMM (q < 0.1) and also
has one of the highest importance scores.

Cysteine is changing differently after exercise in the ME/CFS patients vs. controls in
the LMM model (q < 0.1) and is the key compound in the KEGG pathways cysteine and
methionine metabolism and pantothenate and Coenzyme A (CoA) biosynthesis. CoA is
a ubiquitous cofactor that is required for fatty acid metabolism and the tricarboxylic acid
(TCA) cycle. Its biosynthesis requires cysteine, which is a unique amino acid as it is the
only one that contains a thiol group. Valine is also involved in the significantly altered
pantothenate and Coenzyme A (CoA) biosynthesis pathway and has q < 0.1 in the LMM.

The most highly significant pathway for this comparison was ether lipid metabolism,
but it had a low impact score. Although only two metabolites that we detected were
matched to this pathway, they are both significant in the LMM with q < 0.1: glycerophos-
phoethanolamine and glycerophosphorylcholine (GPC) (both categorized as phospholipid
metabolism by Metabolon®, see Supplementary Figure S2). Purine metabolism was also
highly significant, with adenosine 3′,5′-cyclic monophosphate (cAMP) as the key compound
(q < 0.1 in LMM).
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2.5. Acyl Glycines Have Lower Concentrations in the Urine of ME/CFS Patients Compared to
Controls 24 Hours Post-Exercise

The four metabolites found at significantly lower concentrations in ME/CFS vs. control
subjects at the post-exercise time point in the univariate LMM analyses (q < 0.1) were 3-
hydroxyoctanoylglycine, hexanoylglycine (C6), 2-octenoylglycine, and unknown X–24334.
The three known compounds are all in the Metabolon® subpathway acyl glycine fatty acid
metabolism. The heatmap in Figure 5A shows the osmolality-normalized concentration
post-exercise for these metabolites for every subject. Using agglomerative hierarchical
clustering, the subjects clustered into three groups: (1) six control subjects, (2) two control
subjects and one ME/CFS subject, and (3) the remaining nine ME/CFS subjects. The cluster
of control subjects predominantly shows higher concentrations for all four metabolites
while the cluster of ME/CFS subjects shows lower concentrations for all four metabolites.
The small cluster with subjects from both groups shows intermediate values. The boxplots
in Figure 5B demonstrate the minimal amount of overlap between the ME/CFS and control
groups for these metabolites. Out of those four metabolites, only X-24334 is also changing
significantly differently over time between controls and ME/CFS patients in the LMM and
is increased after exercise in the control group.

Figure 5. The four metabolites found to be significantly different between controls and
ME/CFS patients post-exercise. (A) Heatmap showing hierarchical clustering of subjects for these
4 compounds. Colored rectangles show the normalized concentration of each metabolite for each
subject 24 h post-exercise. (B) Boxplots showing the same data with the q-values for each compound.

2.6. Metabolites That Are Changing Differently during Exercise Recovery in ME/CFS Patients vs.
Controls Are Predominantly Amino Acids and Lipids

The superpathways with the most altered compounds are amino acid and lipid, when
considering the 110 compounds that have a significant interaction (q < 0.1) between disease
status (ME/CFS vs. control) and time (baseline vs. post-exercise) (Supplementary Figure S2).
Figure 6 shows the data for every subject in both groups at both baseline and post-exercise
for the significantly altered compounds in several amino acid subpathways (Figure 6A–D).
Figure 7 shows the data for all subjects at both baseline and post-exercise for the significantly
altered compounds in the selected lipid subpathways (Figure 7A,B). For this figure, we com-
bined the three subpathways involved in acyl carnitine fatty acid metabolism (dicarboxylate,
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hydroxy, and medium chain) and the four steroid subpathways (androgenic, cortico-, preg-
nenolone, and progestin). Every compound shown in Figures 6 and 7 is also significantly
increasing in urine post-exercise vs. baseline in the sedentary controls.

Four compounds in the urea cycle; arginine and proline metabolism subpathway are
changing differently after exercise in the ME/CFS patients and controls: carboxy-methyl-
arginine, proline, symmetric dimethylarginine (SDMA), and dimethylarginine (ADMA)
(Figure 6A). Proline is a building block of collagen and is therefore a key component of
connective tissues. SDMA and ADMA are both regulators and competitive inhibitors of
nitric oxide (NO) production. NO aids in vascular maintenance in healthy individuals [33],
and decreased NO production is associated with endothelial dysfunction and cardiovascular
disease [34]. ADMA can be removed through urinary excretion or it can be degraded in the
liver [35]. The increased excretion of SDMA and ADMA in controls but not in patients after
exercise implies that controls may be removing excess NO synthase inhibitors in order to
maintain vascular homeostasis and that this beneficial adaptation to exertion may not be
occurring in patients. The relationship of NO and ME/CFS is unclear; plasma from ME/CFS
subjects at baseline was found to induce less NO production by endothelial cells in vitro [36],
but it is unknown whether or not that was due to higher levels of ADMA or SDMA in
ME/CFS plasma, as they were not measured in that study and NO regulation is complex.

Three compounds in the methionine, cysteine, S-adenosylmethionine (SAM), and tau-
rine subpathway are significantly altered: methionine sulfone, cysteine, and s-methylcysteine
sulfoxide (Figure 6B). Cysteine is a unique amino acid in that it contains a thiol group and
can participate in redox reactions [37]. Cysteine can also be converted into pyruvate, the
starting point for the TCA cycle.

The polyamine metabolism subpathway has five significantly different metabolites:
asicoga, (N(1)+N(8))-acetylspermidine, diacetylspermidine, N1,N12-diacetylspermine, and
N-acetyl-isoputreanine (Figure 6C). Polyamines have a wide variety of biological functions
and are involved in cellular proliferation, differentiation, and apoptosis [38]. An increase in
polyamines is part of the normal response to stressors, including exercise [39].

The leucine, isoleucine, and valine metabolism subpathway also has five significantly
altered metabolites: 3-methylglutarylcarnitine, tiglyl carnitine, valine, beta-hydroxyisovalerate,
and beta-hydroxyisovaleroylcarnitine (Figure 6D). Leucine, isoleucine, and valine are the
branch chain amino acids (BCAAs). These essential amino acids promote protein anabolism in
human muscle which helps build muscle following exercise [40]. The catabolism of the three
BCAAs leads to energy metabolism pathways and valine is glucogenic, meaning it is converted
into glucose precursors which can enter the TCA cycle. While most amino acids are catabolized
in the liver, BCAAs are mostly catabolized in other tissues including skeletal muscle, brain,
kidney, and adipose tissue [41]. Isoleucine is both glucogenic and ketogenic, and leucine is
ketogenic. These significantly different metabolites are produced during the catabolism of
all three BCAAs. 3-methylglutarylcarnitine as well as 3-hydroxyhexanoylcarnitine (which
is categorized as an acyl carnitine by Metabolon®, see Figure 7A) are produced as leucine is
converted to acetyl-CoA and acetoacetate. During isoleucine degradation into acetyl-CoA or
propionoyl-CoA, tiglylcarnitine is produced at two different steps. Beta-hydroxyisovalerate is
produced at three different steps of the valine degradation pathway.

Five of the significantly altered compounds between ME/CFS patients and controls are
involved in acyl carnitine fatty acid metabolism: pimeloylcarnitine/3-methyladipoylcarnitine, 3-
hydroxyhexanoylcarnitine, hexanoylcarnitine, suberoylcarnitine, and 3-hydroxyoctanoylcarnitine
(Figure 7A). Acyl carnitines play a key role in long-chain fatty acid β-oxidation, which is the
primary mode of energy metabolism during aerobic exercise [42].
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Figure 6. Select amino acid compounds changing differently during exercise recovery in ME/CFS
patients vs. controls. (A–D) Shown are all data points for ME/CFS and healthy controls for both
time points, baseline and post-exercise. The red circle and the blue triangle represent the mean at each
time point of the healthy controls and the ME/CFS patients, respectively. Each line is one subject.
All compounds shown have q < 0.1 in the interaction term of the LMM, and are also significantly
increasing in the controls from baseline to post-exercise (q < 0.1). The compounds within each section
are in order of lowest to highest q-value. (A) Urea cycle; arginine and proline metabolism, amino acid.
(B) Methionine cysteine, SAM, and taurine metabolism. (C) Polyamine metabolism. (D) Leucine,
isoleucine, and valine metabolism.
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Figure 7. Select lipid compounds changing differently during exercise recovery in ME/CFS pa-
tients vs. controls. (A) Acyl carnitines. (B) Steroids. (A,B) Shown are all of the data points for
ME/CFS and healthy controls for both time points, baseline and post-exercise. The red circle and the
blue triangle represent the mean at each time point of the healthy controls and the ME/CFS patients,
respectively. Each line is one subject. All compounds shown have q < 0.1 in the interaction term of
the LMM, and are also significantly increasing in the controls from baseline to post-exercise (q < 0.1).
The compounds within each section are in order of lowest to highest q-value.

Five of the significantly altered compounds are classified as steroids (Figure 7B). 11-
ketoetiocholanolone glucuronide is an androgenic steroid. 3alpha,21-dihydroxy-5beta-
pregnane-11,20-dione 21-glucuronide and cortolone glucuronide are corticosteroids. 17alpha-
hydroxypregnanolone glucuronide is a pregnenolone steroid. pregnanediol-3-glucuronide is
a progestin steroid. Glucuronides are produced in the liver to aid in excretion of substances
by making them more water soluble. Corticosteroids function as signaling molecules in
a variety of processes, including promoting protein catabolism during exercise or other
stressors [43], in mediating responses to inflammation [43], and in maintaining healthy salt
and fluid levels [44]. Altered corticosteroid metabolism could be contributing to orthostatic
intolerance, another ME/CFS symptom. Progestin steroids, androgenic steroids, and cor-
ticosteroids were also found at lower concentrations in female ME/CFS patient plasma
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compared to controls in another study, although that study investigated baseline levels
only [11].

2.7. The Same Metabolites in Urine and Plasma Are Highly Correlated

Our group previously published plasma metabolomics data from these same sub-
jects [25]. These subjects underwent the complete two-day CPET protocol and along with
urine collection, blood was drawn from each subject at four time points: baseline (P1),
15–30 min after the CPET (P2), 24 h after the CPET (P3), and 15–30 min after the second
CPET (P4) which was performed 24 h after the first CPET (Figure 1A in [25]). Out of the
1403 urine metabolites and 1157 plasma metabolites detected by Metabolon®’s platforms,
727 compounds were measured in both urine and plasma. The relationship between the
urine and plasma metabolomes as well as the influence of exercise on this relationship
was evaluated by calculating the Pearson correlation coefficients®) between the urine
and plasma datasets for each metabolite at all possible time point and time point ratio
combinations (Supplementary File S3). For the time points, we chose to focus on the
combinations of urine and plasma from the same day (baseline urine (U1) with P1 and P2,
and post-exercise urine (U3) with P3 and P4). We also examined correlations between the
post-exercise/baseline ratio in urine (U3/U1) and three different post-exercise ratios in
plasma (P4/P1, P3/P2, P3/P1) to explore how the metabolite levels are changing during the
24 h recovery period in urine vs. plasma. The p-values were calculated for each correlation
using a t-test with the null hypothesis of R = 0 (BH FDR correction, q < 0.15). The number
of strong correlations, which we defined as R > 0.7 or R < −0.7, amounts to approximately
40% of the 727 metabolites when looking at time point correlations (Figure 8). Notably,
for all time point pairs, there are very few strong negative correlations between urine and
plasma. For the ratio correlations, the number of strong negative correlations is increased
in the healthy controls. For all correlations, the number of strong positive correlations is
higher in the ME/CFS patients than the controls.

Figure 8. Number of compounds with strong correlations between urine and plasma for the same
metabolite. Shown are the number of compounds with correlation coefficients (Pearson’s R) above
0.7 or below −0.7 out of 727 metabolites for which correlations were analyzed for each time point
comparison. The key in the top right shows definitions for each time point abbreviation. U1 and U3
were correlated with plasma samples obtained the same day (U1 with P1 and P2; U3 with P3 and P4).
The U3/U1 ratio was correlated with three plasma ratios: P4/P1, P3/P2, and P3/P1.

2.8. Probing Compounds with Correlations between Urine and Plasma That Are Different in
ME/CFS Patients and Controls

We proceeded to screen for compounds with the most significant differences between
controls and patients, using the following stringent criteria: (1) |R| > 0.7, p < 0.05, and q < 0.15
in either ME/CFS patients or controls; (2) R < 0.3 with the same sign or an R value with
an opposite sign (i.e., negative if the significant correlation was positive) in the other cohort
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(controls or patients); (3) compounds that had extreme outliers usually affecting the linear
relationship were removed (modified z-score method of outlier detection, with a threshold of
z > 6). When the outlier was only found in the time point data, that compound was removed
for all but only the time point comparisons. When the outlier was found in the ratio data,
that compound was removed for all but only the ratio comparisons. The summary of the
compounds that met the above criteria is displayed as a heatmap of R values in Figure 9.

The heatmap contains metabolites spanning 35 subpathways with an overrepresenta-
tion of subpathways in the amino acid superpathway, 11 out of 15. Within the amino acid
subpathways, tryptophan metabolism as well as leucine, isoleucine, and valine metabolism,
had the most affected compounds, with 9/21 (43%) and 8/27 (30%), respectively.

Kynurenate is part of the tryptophan pathway and is one the metabolites with
the most drastic difference in correlation coefficients between the ME/CFS and the
control cohorts (Figure 9, P4/P1 with U3/U1). The kynurenate correlation graphs for all
comparisons from the heatmap of Figure 9 are shown in Figure 10A. We can clearly see
the inverted correlations in the “P4/P1 with U3/U1” graph where R = 0.74 (ME/CFS)
and R = −0.77 (controls). The strong positive correlation in the ME/CFS patients is
consistent throughout the ratio correlations, whereas the negative correlation in the
controls is not as consistent. The time point correlations show a similar pattern, with
a strong positive correlation for the ME/CFS group. While kynurenate is the only
tryptophan compound with correlations in both the time point and the ratio sides of
the heatmap, the differences seen in plasma and urine correlations in the other eight
compounds, which appear at various locations in the tryptophan pathway, attest to
a profound dysregulation of this pathway in the ME/CFS patients compared to the
controls. Additionally, another compound on the heatmap, quinolinate, is the metabolite
that links tryptophan metabolism to nicotinate and nicotinamide metabolism, which
is a crucial pathway for the formation of NAD+ and NADP+. A dysregulation in the
kynurenate pathway has been hypothesized to be the underlying cause of ME/CFS
pathophysiology due to its central role in cellular energy production and involvement in
mediating the immune response as reviewed by Kavyani et al. [45].

Eight compounds in the leucine, isoleucine, and valine subpathway had differences
in the correlations between ME/CFS patients and controls for the selected time point and
ratio comparisons (Figure 9). For five of these compounds, the differences were in the post-
exercise ratios, with four out of the five compounds having differences when correlating the
U3/U1 (24 h post-exercise/baseline urine) with P3/P2 (the 24 h post-exercise/15 min post-
exercise plasma). Beta-hydroxyisovalerate is one such compound, with a strong and signifi-
cant positive correlation in the ME/CFS patients between U3/U1 and P3/P2 and a weak,
non-significant negative correlation in the controls (Figure 10B). Beta-hydroxyisovalerate
is also changing significantly differently over time in the urine in the ME/CFS patients
compared to the controls in the LMM (Figure 6D). These eight compounds span all three
branches of the BCAA catabolism pathway. Isovalerylglycine and isovalerylcarntine are
produced during leucine catabolism (ketogenic). 2-methylbutrylcarnitine and 3-methyl-2-
oxovalerate are produced during isoleucine catabolism (ketogenic and glucogenic). Beta-
hydroxyisovalerate, as mentioned above, is downstream of valine catabolism (glucogenic).
This is further evidence that there is dysfunctional metabolic recovery from exercise in the
ME/CFS patients related to BCAA catabolism, which is affecting all three BCAAs. The
three BCAAs have a common enzyme involved in the first step of the pathway, BCAA
aminotransferase. However, considering that there is dysregulation in so many amino acid
subpathways, it is likely that this is evidence of a more global metabolic problem.
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Figure 9. Compounds with correlations between urine and plasma that are different in ME/CFS
patients and controls. The heatmap shows the correlation coefficient (Pearson’s R) in both ME/CFS
and control groups for compounds and comparisons which meet the following criteria: (1) |R| > 0.7,
p < 0.05, and q < 0.15 in either ME/CFS patients or controls; (2) R < 0.3 with the same sign or an R
value with an opposite sign (i.e., negative if the significant correlation was positive) in the other cohort
(controls or patients); (3) compounds that had extreme outliers were removed (modified z-score
method of outlier detection, z > 6). Within each compound, the R values for the comparisons that
did not meet the criteria are not shown (gray boxes). The left panel of the heatmap shows the time
point comparisons and the right panel shows the ratio comparisons. The table shows the biochemical
name and to which Metabolon® subpathway and superpathway it belongs.
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Figure 10. Correlations between urine and plasma for all comparisons for select compounds from
Figure 9. Each dot is one subject. The lines are linear regression lines for each group, ME/CFS or
control, and the shaded regions show the 95% confidence intervals. Pearson’s R is shown on each plot
for controls (red) and ME/CFS patients (blue). * indicates correlations that are significant (p < 0.05
and q < 0.15). The time points are defined in the key in the bottom left.
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Within the lipid superpathway, four subpathways pertaining to steroids also caught
our attention. Indeed, eight steroid compounds from four subpathways had different
correlations between plasma and urine in the ME/CFS patients and controls, including an-
drogenic steroids, corticosteroids, pregnenolone steroids, and progestin steroids (Figure 9).
Pregnanediol-3-glucuronide, which is a progestin steroid and a product of progesterone
catabolism, has a strong and significant positive correlation (R = 0.78) between U3/U1
and P3/P1 in the ME/CFS patients and a strong and significant negative correlation in
the healthy controls (R = −0.8) (Figure 10C). In the ME/CFS patients, when pregnanediol-
3-glucuronide increases in plasma 24 h post-exercise, it also increases in the urine and
vice versa. Whereas in the healthy controls, the subjects with the largest increases in urine
concentration of pregnanediol-3-glucuronide 24 h post-exercise have a decrease in plasma
levels. This same trend is seen in the urine and plasma correlation for the other ratio com-
parisons. This compound is also changing significantly differently in the LMM between
ME/CFS patients and controls, where the controls have a consistent post-exercise increase
in urine concentration that is not seen in the ME/CFS patients (Figure 7B). At all four time
point comparisons, the plasma and urine levels of pregnanediol-3-glucuronide are highly
correlated in both groups of subjects, which has been shown before [46]. It is only when
examining the change over time after exercise that the differences between the ME/CFS
patients and healthy controls emerge. Although pregnanediol-3-glucuronide levels are not
reported in acute exercise studies, it has been measured over the course of menstrual cycles
in exercising vs. sedentary females, and the exercising females typically have lower urinary
levels overall compared to sedentary females [46,47]. Given our results, it is possible that
acute exercise initially leads to an increase in urinary pregnanediol-3-glucuronide levels
in healthy sedentary females as they are excreting it and not replacing it. This healthy
response to exercise is not occurring in the ME/CFS patients, which is yet further evidence
for their overall altered metabolic response to exercise.

We generated another heatmap that contains unknowns, partially characterized
molecules and food components meeting the same criteria used to generate Figure 9
(Supplementary Figure S5). This is provided as additional information to illustrate the
potential of some yet to be identified metabolites. As an example, X–25524 consistently
shows strong positive correlation for the ME/CFS group but no correlation for the control
group regardless of exercise. Identifying such a compound could potentially help develop
a diagnostic marker for ME/CFS by measuring blood and urine concentrations.

3. Discussion

This is the first time that the urine metabolome of ME/CFS patients has been character-
ized before and after an exercise challenge, when ME/CFS patients are experiencing PEM.
Many of these metabolites have never before been measured in ME/CFS patients, since pre-
vious urine metabolomics studies in ME/CFS have been limited to less than 50 metabolites
and the current study measured 1403. Moreover, the use of sedentary healthy controls to
account for physical activity level, which can affect baseline and post-exercise metabolite
levels, is a key advantage of the current study design that has not been utilized in previ-
ous studies. Our results showed widespread increases in the levels of metabolites in the
urine of the controls 24 h post-exercise that were not seen in the ME/CFS patients, with
110 of these compounds having a significant interaction between disease status (ME/CFS
or control) and time (baseline vs. post-exercise) (Supplementary Figure S2). In addition to
numerous analyses of urinary metabolite levels, correlating metabolite levels in urine and
plasma yielded additional evidence of metabolic dysregulation in the ME/CFS patients
post-exercise. This analysis provided further evidence of pathophysiological changes in
multiple subpathways as well as evidence of differences in additional subpathways that
did not have many significant differences between the ME/CFS patients and controls when
looking at urine metabolite levels in isolation.
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3.1. Comparison to Previous Urine Metabolomics Studies in ME/CFS Patients

Overall, our results are not consistent with the few previous studies measuring urine
metabolites in ME/CFS patients compared to control non-ME/CFS subjects. To better
compare our results with previous studies, which measured fewer metabolites, we com-
pared the results at baseline for p < 0.05 in the LMM to the previous studies. The only
compound that was found to be significant in another study and ours was alanine, al-
though the previous study found alanine to be lower in female patients than in controls
(BH-adjust p-value < 0.05) and in our study the mean normalized concentration was higher
in the ME/CFS patients than in controls [20]. However, several of the studies found differ-
ences at baseline in compounds that we found were changing differently in the ME/CFS
patients and controls during exercise recovery, including phenylalanine (lower in ME/CFS
patients [23,24]) and valine (lower in ME/CFS patients [20]). Both phenylalanine and valine
were also significantly increased in the sedentary controls following exercise in the current
study, so it is possible that the controls in other studies were more active and already had
higher levels of urinary phenylalanine. No other studies specifically recruited sedentary
non-ME/CFS subjects, although one study did seek to match “general lifestyle” [23]. Arm-
strong et al. looked at Pearson’s correlations between urine and plasma metabolites in
ME/CFS patients and controls at baseline, and found differences in acetate, lactate, and
phenylalanine with a threshold of |R| > 0.4 in either group [20]. Acetate is too small to be
detected in our assay and we did not detect differences in plasma and urine correlations in
lactate nor phenylalanine.

McGregor and colleagues also investigated changes in the urine and plasma metabolomes
in ME/CFS patients experiencing PEM [19]. They used a survey to separate ME/CFS patients
currently experiencing PEM in the last seven days and discovered that eight out of thirty
urine metabolites measured had significantly lower concentrations in the ME/CFS group
compared to the controls. Of these, only serine had significant differences in any of our
analyses; it increased after exercise in the control group (Supplementary Data File S2—LMM
Results). Levels of two urine metabolites, acetate and methylhistidine, were also significantly
different in the PEM vs. the no PEM group [19]. Levels of the methylhistidines assayed in this
study were not significantly different in the LMM analysis, but we did find differences in the
plasma and urine correlations of 1-methylhistidine and N-acetyl-3-methylhistidine (Figure 9).
McGregor et al. also found associations of seven-day PEM scores with several metabolites in
plasma and urine [19].

3.2. The Post-Exercise Increase in Urinary Metabolite Levels in Sedentary Controls Is Consistent
with Previous Studies

The urine metabolome in females 24 h post-exercise has not been well characterized.
To the best our knowledge, no studies have measured the urine metabolome at baseline
compared to 24 h post-exercise in females. One study measured 32 metabolites in urine
before exercise and 24 h post-exercise in men, comparing nine competitive cyclists to
eight healthy but untrained men of the same age (50–60 years old) [48]. While their study
focused on comparing the athletes to the untrained subjects, they did see high fold change
increases post-exercise (greater than two-fold) in the control subjects in lactate, acetate,
and hypoxanthine levels. Acetate was not measured in our study, and neither lactate nor
hypoxanthine were different from baseline to post-exercise in our female control group.
Mukherjee et al. did find significant differences between the athlete and control groups
in eight of the measured metabolites linked to a variety of biochemical pathways [48].
Therefore, a strength of the current study is the selection of sedentary healthy controls as
opposed to more active individuals, who may have an altered urine metabolome due to
regular exercise.

While there is a dearth of published literature on the urine metabolome 24 h post-
exercise, there are several studies measuring urine metabolites in both males and females
at earlier post-exercise time points (reviewed in [49]). One of the findings which was
consistent between studies is that the concentration of most lipids increases in biofluids
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post-exercise, including in urine. In particular, acyl carnitine concentrations have been
shown to increase in blood and urine in response to exercise. This is consistent with the
results of our study in which several acyl carnitine compounds were significantly increased
post-exercise in the urine of the controls (Figure 7A).

The largest study which included females (255 total subjects, 107 female) also found
extensive metabolic changes in urine post-exercise, with 37 out of 47 measured metabolites
significantly altered after FDR correction, and 33 of those were increased post-exercise [50].
This is consistent with our finding of large-scale metabolic change post-exercise in the urine
of control subjects, with the majority of the compounds that were altered found to have
increased concentrations. This study also completed a sex-stratified comparative analysis
but only found two metabolites with significantly different post-exercise/baseline ratios in
females and males.

In the Schranner et al. review, the findings for amino acids are not as consistent as those
for lipids, which generally increase post-exercise [49]. However, there were some findings in
urine that were consistent across at least two studies (although all post-exercise time points
are combined), including that the following compounds increased in urine post-exercise:
alanine, O-acetyl-homoserine, 5-hydroxyindolepyruvate, xanthurenate, L-metanephrine,
N-acetylvanilalanine, and N-(carboxyethyl) arginine. The following compounds were
found to be decreased in urine post-exercise in at least two studies: glycine, histidine,
trimethylamine n–oxide. Comparing these results to our study, most of the metabolites
were either not significantly different pre- and post-exercise, or were not measured in our
study. However, we also found a significant increase in alanine levels in the controls, which
is consistent with the studies reviewed. In our study, glycine levels were also increased
post-exercise in controls as opposed to decreased. However, the Kistner et al. study, which
included a large number of females, also found glycine levels to be significantly increased
post-exercise [50].

3.3. Differences between Sedentary Controls and ME/CFS Patients in the Lipid Superpathway

Many lipid subpathways were significantly different in the urine of the patients
and controls in this study, including acyl carnitine fatty acid metabolism. Acyl carnitine
metabolites were increased post-exercise in the urine in healthy controls and the changes
induced by exercise were significantly different between the controls and ME/CFS patients
(Figures 3, 7 and S4). Additionally, although not an acyl carnitine, deoxycarnitine in the
carnitine metabolism lipid subpathway correlated differently between plasma and urine in
the ME/CFS patients compared to controls (Figure 9). Acyl carnitines are very important in
energy metabolism, as they are required to transport fatty acids into the mitochondria for
β-oxidation. Long-chain fatty acid β-oxidation is the primary mode of energy metabolism
during aerobic exercise. Disrupted acyl carnitine metabolism during exercise could be
contributing to exercise intolerance and PEM in ME/CFS patients. In another study looking
only at subjects at baseline and that did not specifically recruit sedentary controls, the
acyl carnitine subpathway was found to be significantly different in ME/CFS patients
vs. controls, with five of eight compounds found to have a lower concentration in the
patients [11]. When only baseline subjects were analyzed, specific measurements of acyl
carnitine in serum indicated that the compound was lower in ME/CFS patients than
the controls in one report [51] but no differences in urine or plasma levels were seen in
another study [52]. In the plasma of the larger cohort of which the subjects of the current
study are a subset, the carnitine chemical cluster was also significantly altered in female
sedentary controls during recovery (defined as the difference between 24 h post-exercise
and 15 min post-exercise) with the majority of the compounds increasing post-exercise [25].
The carnitine chemical cluster was not found to be significantly altered during exercise
recovery in ME/CFS patients. While this cluster does include more than just acyl carnitines,
acyl carnitines are members and are contributing to its significance in chemical similarity
enrichment analysis in the current study as well (Supplementary Figure S4). It has also
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been shown ex vivo that palmitoylcarnitine, which is increased in muscle transiently
post-exercise, may act as an exertion signal from muscle to a subset of neurons [53].

Acyl glycine fatty acid metabolites are the only compounds that were found in urine
at significantly different concentrations in ME/CFS vs. controls at a single time point (24 h
post-exercise) and a different acyl glycine compound, 3-hydroxybutyroylglycine, had a
significant negative correlation in the ME/CFS patients when correlating U3/U1 with
P3/P1 (Figures 5 and 9). Additionally, cis-3,4-methyleneheptanoylglycine was changing
differently during exercise recovery in the ME/CFS patients vs. controls (LMM, Supple-
mentary Figure S2). While acyl glycine metabolism is not one of the subpathways that
was significantly increased post-exercise in the controls alone, it was significantly different
in the ME/CFS patients vs. controls both at the 24 h post-exercise time point and when
analyzing the difference in the post-exercise/baseline ratios (Figure 3). Urinary excretion
of particular acyl glycines is also altered by disorders linked to fatty acid β-oxidation in the
mitochondria, including medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD)
deficiency [54]. Our group has observed that fatty acid oxidation differs in immune cells
from ME/CFS patients vs. controls [55].

3.4. Differences between Sedentary Controls and ME/CFS Patients in the Amino
Acid Superpathway

We also found many differences in urine in amino acids in the ME/CFS patients and
controls post-exercise. Two of those pathways stood out because they had significant
alterations in the ME/CFS patients vs. controls in all of our analyses, including the KEGG
pathway analysis, and are discussed further below.

The urea cycle in the liver is an important part of exercise metabolism because it
is needed to remove high levels of ammonia that are produced during exercise [56,57].
Germain and colleagues also found that the urea cycle and the ammonia recycling SMPDB
pathways were significantly altered in the plasma between ME/CFS female patients and
controls in a pathway analysis when comparing the difference between metabolite levels
at 24 h post-CPET (P3) and 15 min post-CPET (P2) [25]. Ammonia buildup has been
previously linked to neurotoxicity and exercise-induced fatigue [56,57]. It is possible that
the dysregulation of the urea cycle in the urine and plasma metabolomes after exercise
in ME/CFS patients is causing ammonia buildup, but the 1403 compounds measured by
Metabolon® in the urine did not include ammonia because it is a volatile compound and
also smaller than the detection limit of Metabolon®’s platform.

Cysteine, methionine, SAM, and taurine are important amino acids as they are the
only ones that contain sulfur, and cysteine is unique in its ability to form disulfide bonds.
Cysteine may also be converted into glutathione and taurine. Cysteine and methionine play
numerous roles in cellular metabolism but they are also key building blocks of proteins [37].
Because of its thiol group, cysteine is involved in catalyzing many enzymatic reactions
and maintaining redox homeostasis. Changes in cysteine metabolism occur in many
neurodegenerative disorders, including Alzheimer’s disease, Huntington’s disease, and
Parkinson’s disease [58]. While cysteine, methionine, SAM, and taurine metabolism showed
many differences between the patients and controls in our urine metabolome analyses, the
urine and plasma correlations revealed additional compounds with significant differences
between the ME/CFS patients and controls, including in cystine, which is produced
when two cysteines are oxidized to form a disulfide bond, and cystathione which is an
intermediate in cysteine production in the methionine cycle [37].

3.5. Limitations

Our study has several important limitations. First, the diet of the subjects was not
controlled, and dietary intake of metabolites can affect their excretion in urine. Second, we
acknowledge that the lack of BMI matching is not ideal and is a limitation of this study.
Our larger cohort of ME/CFS patients and healthy sedentary controls is BMI-matched,
and therefore if this pilot study is expanded, this will not be an issue in the future. Third,
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our results are limited to female ME/CFS patients. While it is very important to study
both sexes in ME/CFS and an increasing number of sex differences in pathophysiology are
being discovered [25,59,60], we chose to focus our pilot study on females because of the
higher disease burden of ME/CFS in females (60–65% female) [2]. Additionally, because
we captured the urine metabolome only at two time points, baseline and 24 h post-exercise,
we cannot say whether or not the ME/CFS patients have altered excretion levels of some
of these metabolites at either an earlier or later time point than the controls. It is possible
that these increases in excretion products are happening in patients but with a larger delay,
similar to how the ME/CFS patients show a delayed overall recovery to exercise. However,
it is also possible that this lack of altered metabolic excretion is part of an overall lack of a
healthy metabolic response to exercise.

4. Materials and Methods
4.1. Study Subjects

Eight healthy sedentary controls and ten ME/CFS patients were included in this
study. ME/CFS patients were diagnosed with the Canadian Consensus Criteria [3]. The
18 subjects included in this study were part of a larger cohort of 173 participants total
(ClinicalTrials.gov Identifier: NCT04026425) [61]. For this pilot study, all subjects included
were female. Subjects were recruited with the following criteria. All participants must
be between 18–70 years old. Subjects were excluded from either group if they were a
smoker, pregnant or breastfeeding, were diabetic, consumed excessive amounts of alcohol,
or had an orthopedic limitation preventing them from performing the CPET. Diagnoses of
schizophrenia, major depressive disorder, bipolar disorder, or an anxiety disorder were also
exclusion criteria in both groups. Additionally, healthy sedentary controls were excluded
if they were diagnosed with any autoimmune disorders. Renal function was normal in
all of the subjects for this study, as assessed by the following Quest Diagnostics standard
laboratory blood tests: serum creatinine, blood urea nitrogen, and estimated glomerular
filtration rate (eGFR).

Seventeen subjects performed the exercise testing at Ithaca College in Ithaca, New
York and one subject performed the exercise testing at ID Med in Torrance, California. All
participants were asked to stop nutritional supplements including probiotics for two weeks
prior to exercise testing. Participants were asked to stop pain and stimulant medication for
two days prior to the exercise testing. All patients provided written informed consent, and
all protocols were approved by Ithaca College IRB #1017-12Dx2. All participants completed
the Bell Disability Scale [26], Short Form-36 health survey [62], and custom questionnaires.
The ME/CFS patients additionally completed the multidimensional fatigue inventory [63].

4.2. Cardiopulmonary Exercise Testing and Urine Sample Collection

The CPET was performed on a stationary cycle ergometer, with the following protocol:
3 min of rest followed by continuous cycling in which the incremental workload increases
15 watts per minute of exercise until volitional exhaustion (approx. 8–10 min). The
respiratory exchange ratio (RER), which is the rate of carbon dioxide production divided by
the rate of oxygen consumption, was measured to ensure that participants were performing
the test with sufficient effort (RER > 1.1 indicates maximal effort).

All urine samples were collected in the morning: (1) 15–20 min prior to the CPET
and (2) 24 h later. Urine was collected mid-stream in sterile urine collectors, aliquoted,
centrifuged at 10,000× g for 10 min to remove cell debris, and stored at −80 ◦C. Urine
samples underwent one freeze/thaw cycle for further aliquoting and the aliquots were
shipped overnight to Metabolon® on dry ice.

4.3. Metabolomics Assay

Metabolites were measured using the Precision Metabolomics™ liquid chromatography–
tandem mass spectrometry (LC-MS/MS)global metabolomics platform at Metabolon®. De-
tailed methods have been described previously [64]. Briefly, samples were extracted in
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methanol (5:1 methanol:sample) and then evaporated. Metabolites were detected in each
sample using four different LC-MS/MS platforms that were optimized for hydrophilic and hy-
drophobic compounds and using both positive and negative ionization. All chromatography
utilized a Waters Acquity ultra-high performance (UP)LC and a 5 µL injection volume (with
samples reconstituted in appropriate solvents for each platform). All mass spectrometry was
performed with a ThermoScientific Q-Exactive high resolution/accurate mass spectrometers
with heated electrospray ionization (HESI-II) sources and Orbitrap mass analyzers operated
at 35,000 mass resolution with scan range 70–1000 m/z. Metabolon® proprietary software was
used to match experimental samples with a reference library of Tier 1 identification standards
as defined by the Metabolomics Standards Initiative, and the area under the curve was used
for peak quantification. Values are normalized in terms of raw area counts, and all samples
were run in one batch so no batch correction was necessary. The unknown compounds do not
have a standard, and partially characterized molecules are those that have not been officially
confirmed based on a standard or for which a standard is not available, but Metabolon® is
reasonably confident in its identity.

4.4. Data Processing

Raw data were normalized by osmolality for each sample and the data for each
metabolite were median-centered to 1 (raw data including osmolality are available in
Supplementary File S1). Missing values were imputed with the minimum value, except for
drugs which were imputed as 0. Data were log10 transformed with a variance stabilizing
transformation (MetaboanalystR) [65,66]. A total of 1403 metabolites were originally
measured. Metabolites were filtered according to the modified 80% rule: a compound was
included if it was detected in at least 80% of the samples in either of the ME/CFS or control
groups [27]. Overall, 1154 metabolites met the criteria and were included in subsequent
analyses. The only analysis carried out without filtering was on the correlations with
plasma metabolites. The post-exercise/baseline ratios for each metabolite were calculated
in log base 10 as the post-exercise value minus the baseline value for each subject. For
plotting on the volcano plot, the mean log10 fold changes (ME/CFS patients vs. controls)
were converted to log base 2 using the change of base formula.

4.5. Data Analysis and Statistics

Univariate statistical analysis for each metabolite was performed using a linear mixed
model with fixed effects of disease status, time point, age, and BMI and a random effect
of subject (lmertest [67] and emmeans [68] R packages). The Benjamini–Hochberg (BH)
method was used to correct for false discovery rate, with q < 0.1 used as the threshold for
significance. The EnhancedVolcano R package was used for volcano plots [69].

ChemRICH in R was used to perform the non-overlapping pathway analysis with the
Metabolon®-defined subpathways and the pathway order [29]. The ChemRICH webtool
was used to perform the chemical similarity clustering analysis [30]. For that analysis,
only compounds that had a known SMILES code were able to be included, for a total of
516 compounds. For both ChemRICH analyses, the enrichment statistics were performed
using the Kolmogorov–Smirnov test, which does not use a p-value significance cutoff but
rather compares the probability distribution with a null hypothesis probability distribu-
tion [70]. For the Metabolon® subpathways, q < 0.05 was selected as the threshold for
significance and q < 0.15 was selected for the chemical clusters (BH FDR correction). For
both, all clusters below the q thresholds chosen also had p < 0.05.

Pathway enrichment and topology analysis was performed using the Metaboanalyst
5.0 web tool [65], for both the KEGG and SMPDB human reference metabolomes with the
following parameters selected: global test for the statistics test and relative betweenness
centrality as the node importance measure. Compounds were included in this analysis
if the HMDB ID provided by Metabolon® matched the HMDB ID in Metaboanalyst. For
duplicate compounds for one HMDB ID, only the first one was included. This resulted in
453 included compounds.
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The clustering of the subjects using the four compounds that were significantly dif-
ferent between the patients and controls post-exercise was performed using hierarchical
clustering, with the Euclidean distance as the distance metric, and the method “Ward.D2”
(pheatmap R package [71]).

Pearson correlations between urine and plasma for 727 metabolites measured in
both biofluids were performed in R (hmisc package). p-values were calculated for each
correlation using a t-test with the null hypothesis that the correlation coefficient equals 0,
followed by BH FDR correction with q < 0.15 as the threshold for significance. For Figure 8,
compounds were screened to remove those which had extreme outliers using the modified
z-score method, which calculates a z score using the median and median absolute deviation
(outliers R package, z threshold = 6).

Unless otherwise specified, all data visualizations were performed using the ggplot2
R package. BH FDR correction was chosen for all analyses instead of the more stringent
Benjamini and Yekutieli FDR correction because an extremely small number of compounds
were found to be colinear (0.75% of targets had an absolute value Pearson’s correlation
coefficient > 0.7).

5. Conclusions

Overall, there were significant differences in the urine metabolome in the healthy
sedentary controls and the ME/CFS patients in response to a CPET challenge in a large
range of metabolic super and subpathways, spanning amino acids, lipids, carbohydrates,
nucleotides, xenobiotics, and unknowns. These pathways are involved in a multitude of
physiological functions including but not limited to energy metabolism. This indicates
that ME/CFS patients have a general metabolic dysregulation that is part of their exercise
intolerance and PEM in which altered metabolic excretion is a contributing factor. Our data
suggest that the metabolisms of sedentary individuals who do not have ME/CFS undergo
major changes that allow them to recover from exertion, while ME/CFS patients fail to
make similar adaptive responses. Future work will include expanding this study to a much
larger cohort that includes both sexes to validate these results, examine sex differences in
the urine metabolome, and explore whether there are more subtle differences in urinary
metabolites in ME/CFS patients at baseline that could potentially contribute to a diagnostic
test for the disease in the future.
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