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Abstract: Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), multiple sclerosis (MS), spinal cord injury (SCI), and amyotrophic lateral
sclerosis (ALS), are characterized by acute or chronic progressive loss of one or several neuronal
subtypes. However, despite their increasing prevalence, little progress has been made in successfully
treating these diseases. Research has recently focused on neurotrophic factors (NTFs) as potential
regenerative therapy for neurodegenerative diseases. Here, we discuss the current state of knowledge,
challenges, and future perspectives of NTFs with a direct regenerative effect in chronic inflammatory
and degenerative disorders. Various systems for delivery of NTFs, such as stem and immune cells,
viral vectors, and biomaterials, have been applied to deliver exogenous NTFs to the central nervous
system, with promising results. The challenges that currently need to be overcome include the amount
of NTFs delivered, the invasiveness of the delivery route, the blood–brain barrier permeability, and
the occurrence of side effects. Nevertheless, it is important to continue research and develop standards
for clinical applications. In addition to the use of single NTFs, the complexity of chronic inflammatory
and degenerative diseases may require combination therapies targeting multiple pathways or other
possibilities using smaller molecules, such as NTF mimetics, for effective treatment.
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1. Introduction

Neurodegenerative diseases of the central nervous system (CNS), such as multiple
sclerosis (MS), Alzheimer′s disease (AD), Parkinson′s disease (PD), Huntington′s disease
(HD), amyotrophic lateral sclerosis (ALS), and in acute cases, spinal cord injury (SCI), are
still incurable and have high individual and societal costs [1–3]. PD and AD are the most
common neurodegenerative diseases. As the world′s population ages, the prevalence of
AD and PD is rapidly increasing. It is estimated that 50 million people worldwide suffer
from neurodegenerative diseases, and this number will rise to 115 million by 2050 [4].

Unfortunately, currently available treatment options are inadequate to halt neurode-
generative processes [5,6]. Moreover, our understanding of the pathogenic processes and
the consequent development of effective treatments is significantly complicated by the com-
plexity of the mechanisms associated with neuronal loss and the conflicting physiological
causes of these diseases. Furthermore, the difficulty in addressing widespread neuronal cell
death, combined with the enormous limitations for the vast majority of drugs not to cross
the blood–brain barrier (BBB), further complicates the treatment of these diseases [7,8].
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From an evolutionary point of view, the nervous system would be able to protect
itself from any injury [9]. In the early 20th century, pioneering work by Tello and Cajal
demonstrated that the CNS has the ability to regenerate itself after injury [10–12]. In recent
years, researchers have accumulated detailed in vitro and in vivo mechanistic evidence sup-
porting the idea that an innate self-maintenance program is activated in the brain, not only
during inflammatory and degenerative diseases, but also in healthy individuals [11,13,14].
These observations support the idea that chronic inflammatory and degenerative disorders
of the brain can be the result of defective repair mechanisms, rather than uncontrollable
pathogenic events [11,15–17]. We can, therefore, subscribe the idea that failure of molecular
and cellular mechanisms sustaining the “brain-repair program”—which can be considered
as an intrinsic part of the physiological activities of the brain—might be, at least partially, a
cause of neurodegenerative diseases [11,18]. Therefore, research into the molecular and
cellular events sustaining intrinsic brain-repair mechanisms and a better understanding
of why they fail over time in chronic disorders might provide an attractive conceptual
framework, in which new and efficacious therapies for neurodegenerative diseases can
be developed.

Neurotrophic factors (NTFs) and their receptors play a crucial role in neural cell
maturation and proliferation. NTFs regulate the development and survival of neurons, and
they appear to be involved in the endogenous neuroprotection of different neurons. Several
studies have reported that NTFs, particularly glial cell-derived neurotrophic factor (GDNF),
ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF), nerve growth
factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5), act regeneratively
in different animal models [19–55] and patients [56–73] with neuroinflammatory and
neurodegenerative diseases. Consistent with their known role in maintaining neuronal
homeostasis, these NTFs, with regenerative properties, have been proposed as novel
therapies for several neuroinflammatory and neurodegenerative diseases [74–76]. In this
review, we provide an overview of the various and known NTFs described in the literature
with their effects in the CNS. As well, we summarize the different approaches where NTFs
have been administered via direct delivery or delivery through a vehicle, such as stem and
immune cells, viral vectors, and biomaterials, into animal models or in patients suffering
from a neurodegenerative disease.

2. Functions and Mechanisms of Neurotrophic Factors in Neurogenesis and Brain Repair

Glial cell-derived neurotrophic factor (GDNF) was originally isolated from the su-
pernatant of a rat glioma cell line and found to have pronounced effects on the survival
of midbrain dopaminergic neurons [77–79]. GDNF has further critical roles outside the
nervous system in the regulation of kidney morphogenesis and spermatogenesis [80]. In
the case of potential therapy for neurodegenerative diseases, GDNF has a relatively high
specificity for dopaminergic neurons and, thus, has significant potential for the treatment
of PD, which is mainly characterized by progressive depletion of dopaminergic cell pop-
ulations in the midbrain [79]. Subsequently, GDNF was also shown to have trophic and
protective effects on noradrenergic neurons in the locus coeruleus and on peripheral mo-
tor neurons, giving hope for its therapeutic potential in HD and ALS [24,25,35,51,81–83].
Translational research has focused mainly on the treatment of PD, where there has been
reason for both celebration and caution [27,79,84–93]. A recent review by Manfredsson
et al. [94] has highlighted that the therapeutic mechanism of action of GDNF is not fully
well-defined, and that the degenerating brain of PD may be resistant to the neuroprotective
potential of these proteins. The lack of clarity on the mechanism of action of GDNF may
cause problems in appropriate model selection for preclinical therapeutic studies [94].

A second interesting NTF is the ciliary neurotrophic factor (CNTF), which is a member
of the interleukin-6 family of cytokines. It has potent effects on the development and
maintenance of the nervous system, as well as on cardiomyocytes, osteoblasts, immune
cells, adipocytes, and skeletal muscle cells [95,96]. CNTF has been found to affect motor
neuron survival in vitro, during development, after injury to motor neuron systems, and in
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genetic models of motor neuron degeneration [57], providing a rationale to develop CNTF
as a treatment for ALS [56,57,62,66–69] and SCI [49,52], in which ventral motor neuron
degeneration is extensive [57]. A drawback for CNTF administration is that it protects
motor neurons from degenerative disease and injury, but also has some side effects, such as
severe weight loss, hyperalgesia, coughing, muscle cramps, and pain [97]. Therefore, CNTF-
related therapeutics will need to be designed to specifically target receptor mechanisms
that protect motor neurons [98].

Apart from GDNF and CNTF, other known factors are the neurotrophins. This group
consists of four members that share a common ancestral gene and have a similar structure.
In the CNS, brain-derived neurotrophic factor (BDNF) is the major neurotrophin because of
its abundant expression of tropomyosin receptor kinase B, also known as tyrosine receptor
kinase B (TrkB) [99]. Studies of disease models of AD, in which BDNF was increased by
using, for example, a lentivirus that expressed BDNF, showed that this factor is essential
for multiple functions during adulthood, such as proper memory acquisition, memory re-
tention, and cholinergic innervation [100,101]. BDNF is decreased within the brains, serum,
and cerebro-spinal fluid (CSF) of patients with mild cognitive impairment and AD [101].
Also, low BDNF secretion in the serum of MS patients may be related to reduced neuropro-
tection [102,103]. As a result, low BDNF levels are expected to diminish the potential for
remission in MS patients and induce the progressive phase of the disease [104]. To date,
the potential beneficial effect of BDNF has been explored in several neurodegenerative and
inflammatory diseases, such as animal models of AD, SCI, MS, and HD [21,54,99,105–108].

In the peripheral nervous system (PNS), nerve growth factor (NGF) is the domi-
nant neurotrophin, which interacts on sympathetic and sensory neurons. In the CNS,
NGF specifically provides trophic support to cholinergic neurons of the basal forebrain
(BFCNs) that express TrkA (Figure 1), which would make it specifically interesting for
AD [63–65,109,110]. NGF and its receptors, TrkA and p75, are known to play a bidirectional
role between the immune and nervous systems. Recently, it has been extensively discussed
that NGF plays a dual role in both anti- and pro-inflammatory response [111]. Moreover,
cytokines, such as IL-1β, TNF-α, and IL-6, induce the overexpression of NGF [112].

Finally, neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5) also have promising
potential, albeit less studied than their counterparts. NT-3 is the third neurotrophic factor of
the neurotrophin family, and, through activation of its tropomyosin-related kinase receptor
C (TrkC) (Figure 1), it can modulate neuronal survival, support the differentiation of neu-
rons, and stimulate the growth [113] and differentiation of new neurons and synapses [45].
Although this neurotrophin seems less popular, interesting in vivo studies have been done
in various neurodegenerative diseases [39,45].

NT-4, also known as neurotrophin-5 (NT-5), is a neurotrophin that primarily signals via
the TrkB receptor tyrosine kinase (Figure 1). The neurotrophins BDNF and NT-4 both bind
to and activate TrkB receptors; however, they mediate different neuronal functions. The
molecular mechanism of how TrkB activation by BDNF and NT-4 results in different outputs
is not yet known. NT-4 is the least studied member of the neurotrophin family [53,114–117].

Unfortunately, the exact mechanism of NTFs is not yet fully understood. Nevertheless,
research already reported the different NTF receptors and unravelled the pathways they
activate to ensure the maintenance of cell growth, survival, development, and differen-
tiation. BDNF, NGF, NT-3, and NT-4/5 bind to two families of receptors, namely, the
tropomyosin kinase (Trk) receptors with high affinity, and with low affinity to the p75 re-
ceptor (Figure 1) [74,75,118]. Their actions are dependent on binding to the transmembrane
receptor systems. Neurotrophins preferentially bind to specific receptors: NGF binds to
TrkA, BDNF and NT-4 to TrkB, and NT-3 to TrkC [119]. However, there are a number of
promiscuous interactions. All four neurotrophins can bind to the p75 receptor, and the
association of p75 with Trk receptors can regulate the affinity of Trk receptors for each
respective neurotrophin, allowing more control over ligand-receptor interactions within
this system [120]. The Trk receptor binds with high affinity with NTFs to promote cell
survival via phospholipase C-γ (PLC-γ), phosphoinositide-3-kinase (PI3K), and mitogen-
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activated protein kinase (MAPK) pathways that induce differentiation and survival via
transcriptional events (Figure 1, green arrows). The MAPK pathway may be involved in
ureteric branching during nephrogenesis and neurite outgrowth in the nervous system,
but it also contributes to neuronal survival. The PI3K pathway is crucial for both neuronal
survival and neurite outgrowth. The PLC-γ pathway regulates the intracellular level of
Ca2+ ions by increasing the level of inositol (1,4,5) trisphosphate. Binding of NTFs to the
low-affinity p75 receptor activates cell death via the JNK pathway. Activation of the JNK
pathway similarly controls activation of several genes, some of which promote neuronal
apoptosis. Neurotrophins are known to have a wide range of roles in the development and
function of the nervous system. The characterisation of their receptors—the Trk receptor
and p75 receptor—has significantly advanced research and enabled the characterisation of
signalling pathways and the first steps to relate individual signalling pathways to specific
developmental or functional roles of neurotrophins [119].
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Today, we have learned to which receptors the various NTFs bind and what sig-
nalling pathways they activate. For instance, binding of CNTF to the CNTFRα receptor
and two subunits, GP130 and leukaemia inhibitory factor (LIFRβ), activates the Janus
kinase/signal transducer, an activator of transcription (JAK-STAT), MAPK, and PI3K path-
ways. The JAK-STAT pathway is associated with cell growth, survival, development, and
differentiation (Figure 1, violet and blue arrows). Binding of GDNF to the GFRα receptor
and tyrosine kinase RET receptor stimulates PLC-γ, MAPK, and PI3K (Figure 1, yellow
arrows). RET activates various intracellular signalling cascades, which control cell survival,
differentiation, proliferation, migration, chemotaxis, branching morphogenesis, neurite
outgrowth, and synaptic plasticity [120]. Akt controls the activities of several proteins
important for promoting cell survival, including substrates that directly regulate the cas-
pase cascade, such as Bcl-2 agonist of cell death (BAD). Phosphorylated BAD prevents its
pro-apoptotic activity (Figure 1, red inhibitory arrow). These different signaling pathways,
which are activated by NTFs, work together to ensure normal neuronal function and to
prevent neuronal cellular death (Figure 1).

3. Delivery of NTFs’ and Associated Challenges
3.1. Administration of NTF by Direct Infusion in the CNS

Various techniques have been used to get NTFs into the brain. The best known tech-
nique is direct intracerebroventricular (ICV) infusion. In particular, recombinant human (rh)
GDNF and 125Iodine-labelled GDNF (125I-GDNF) have been shown to diffuse into the deep
brain structures of rats [79,86], not only to significantly increase striatal and nigral dopamine
(DA) levels, but also to increase hypothalamic DA levels, which could explain the decreased
food and water consumption and body weight observed in in vivo experiments [87,88]. ICV
injection of GDNF into 6-hydroxydopamine (6-OHDA)-treated rats, an animal model of PD,
also appears to result in improved locomotor performance [87,88]. Furthermore, the ICV
delivery route seems suitable for therapies that need to reach the BFCNs. Early and progres-
sive degeneration of BFCNs contributes substantially to cognitive impairments of AD. Since
BFCNs extend their axons through the hippocampus and neocortex, NGF administered
in the lateral ventricle can act on the TrkA receptor to transmit trophic support signals to
BFCNs. This approach has been shown to be particularly effective in preventing loss of
BFCNs in rodents associated with injury and ageing [110,122,123]. However, the small
volume of the rodent brain compared to the human brain raises important questions about
the applicability of this technique in clinical studies. Therefore, ICV injections were also
performed in non-human primates [90–92]. GDNF has been shown to produce significant
improvements in motor activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-
treated rhesus monkeys, a model of PD [89,90], and improvements in motor impairment
and reductions in l-dopa-induced dyskinesia in marmosets [91]. In an autoradiographic
study of the distribution of 125I-GDNF administered in the lateral ventricles of rhesus
monkeys with a MPTP lesion, GDNF was not found to diffuse readily into the putamen.
This finding contrasts with similar studies in rodents [79,86], suggesting that the success
of ICV infusion in rodents might be a product of the smaller diffusion distance within
their brain [87,88]. Moreover, the ICV delivery route was associated with serious side ef-
fects [110], such as hyperinnervation of cerebral blood vessels [123], hypophagia [110,122],
Schwann cell hyperplasia with sprouting of sensory and sympathetic neurons [124], neuro-
pathic pain [110], and dyskinesia [89–91], providing profound contra-indications for the
applicability in clinical trials.

Because of these ICV-related side effects, the study by Tuszynski et al. [109] investi-
gated whether intra-parenchymal infusion would be a well-tolerated way to administer
NTFs to degenerating cholinergic neurons. In particular, intraparenchymal NGF infusion
prevented degeneration of BFCNs, whereas glial responses were minimal in adult rats that
underwent complete unilateral fornix transections, followed by intraparenchymal infusions
of recombinant human NGF for a 2-week period. In addition, no apparent toxic effects of
the infusions were observed, according to the researchers [109]. Other studies aimed to
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administer NTFs by a less invasive method. The group of Braschi et al. [21] tested whether
intranasal (IN) administration of different concentrations of BDNF in AD11 transgenic
mice, a model of AD, was able to rescue neuropathological and memory deficits. They
found that IN administration of BDNF, but not with PBS, was adequate to completely
rescue the performance of AD11 mice in both the object recognition test and the object
context test. The strong improvement in memory performance in BDNF-treated mice was
not accompanied by an improvement in AD-like pathology, amyloid-β (Aβ) load, tau
hyperphosphorylation, and cholinergic deficiency [21]. Similarly, IN administration of
NGF to Aβ peptide-expressing traumatic brain injury (TBI) rats, which are at risk of AD in
later life, caused a marked reduction in Aβ42 deposits and restored motor and behavioural
function [20]. Features such as non-invasive manipulations, rapid absorption rate, easy
repetitive dosing, and reduction of non-target biodistribution make IN administration
superior to the systemic and ICV routes of administration [19,20].

Finally, studies examined the effects of continuous intraputamenal administration
of GDNF in both aged and MPTP-lesioned non-human primates [84,85,93]. Histological
and biochemical analysis showed an increase in cell size and the number of dopaminergic
neurons within the substantia nigra, as well as increased fibre density in the caudate nucleus,
putamen, and globus pallidus. Primates with MPTP lesions showed improvements in the
primate PD rating scale, whilst aged monkeys demonstrated improvement in general
motor performance at high doses and increases in hand speed [84,85,93]. To assess the
possible side effects of continuous administration of GDNF, a six-month toxicity study
was conducted in rhesus monkeys. The results cast considerable doubt about the neuro-
restorative potential of GDNF for the treatment of PD, given that they identified a number of
pathological markers of toxicity, including reduced food intake and weight loss, meningeal
thickening, and most concerning, multifocal cerebellar Purkinje cell loss [31]. Apart from
the above-mentioned side effects, direct administration of NTFs into the brain also had
some practical problems, such as invasiveness, BBB permeability [7,8,125], poor half-life,
and rapid degradation [126]. This led to studies using cell therapy, where cells were
modified to produce a specific protein.

3.2. Cells Modified to Express Neurotrophic Factors

During the last years, different cell types have been utilized to deliver NTFs to the
injured sites. Mesenchymal stromal cells (MSCs) are described as adherent, fibroblast-like
cells with prominent proliferation capacity [42,50,51,127]. Because of their low immuno-
genicity (low expression levels of major histocompatibility complex (MHC) class II), MSCs
can survive after administration [128]. The existence of such capabilities makes MSCs a
safe, tolerable, and efficient biological vector for the generation and delivery of therapeutic
agents, such as NTFs, to the target sites [42,50,51]. Furthermore, different routes of admin-
istration were used to administer the modified MSCs, resulting in different outcomes. In a
study by Suzuki et al. [51], human MSCs (hMSCs), derived from neonatal bone marrow
aspirates which were modified to express GDNF, were administered intramuscularly as a
"Trojan horse" to superoxide dismutase (SOD1)G93A rats, a rat model of familial ALS, to
deliver GDNF to the terminals of motor neurons and to skeletal muscle. hMSC-GDNF
survived in the muscle, secreted GDNF, and significantly increased the number of neuro-
muscular connections and motor neuron cell bodies in the spinal cord in the mid-stage of
the disease. Moreover, hMSC-GDNF significantly slowed down disease progression [51].
In addition, several improvements have been reported when CNTF- [52], NT-3- [53], and
BDNF-modified [54] MSCs were administered directly into the spinal cord of SCI rats, such
as improvement in behavioural scores, motor function, axonal regeneration, and neuronal
survival [52,53], and restoration of diaphragm muscle function [54]. Positive results with
MSCs expressing NTFs were also observed after intravenous (iv) administration. A re-
markable recovery of neuronal function was observed and demyelination was significantly
reduced in EAE mice: the cumulative clinical scores were significantly decreased, and the
disease onset was statistically delayed, after iv MSC-CNTF [55] and MSC-BDNF admin-



Int. J. Mol. Sci. 2023, 24, 3866 7 of 24

istration [105]. Moreover, BDNF-expressing MSCs can also reduce striatum atrophy and
increase neurogenesis in HD mouse models [22]. In summary, MSCs represent a promising
tool for cell therapy. There is currently much interest in the use of MSCs for the treatment of
neurodegenerative diseases. There are several studies using the innate trophic support of
MSCs or increased support by NTFs, such as the administration of BDNF, CNTF NTF-3, or
GDNF to the CNS to support damaged neurons, using genetically engineered MSCs as de-
livery tools. Biosafety could be a potential difficulty in cell therapies when using genetically
engineered MSCs. The random integration of vectors with genes for neurotrophic or other
factors may pose the risk of insertional integration. However, homologous recombination
and targeted gene transfer are advancing rapidly.

Neural stem cells (NSCs) are also used as a NTF vector, resulting in several positive
effects. NSCs are characterised as multipotent and self-renewing cells with the capacity
to differentiate into mature neurons and neuroglia cells [23–26]. In a rodent model of
cervical SCI, it was shown that GDNF-expressing human induced pluripotent stem cell-
derived NSCs (hiPSC-NSCs) showed greater differentiation into a neuronal phenotype
than unmodified hiPSC-NSCs [27]. Furthermore, several improvements were seen with
NSCs expressing GDNF in SOD1G93A ALS rats, when administered in the motor cortex [24]
and in the spinal cord [25]. The results show improved survival, as well as enhanced
proliferative and neuroprotective properties [24,25]. Moreover, human GDNF-expressing
NSCs duly migrated to the disease site and integrated into the CNS after administration
into the spinal cord of SOD1G93A ALS rats [25]. In addition, it has been shown that GDNF-
expressing NSCs administration in the lateral ventricle promotes axonal regeneration and
remyelination in chronic EAE rats [26].

A number of studies have indicated that immune cells are also useful as therapeutic
biosystems to deliver various molecules into target areas [28,29]. Among the subsets of
immune cells, macrophages are the most suitable target cells, as they are activated soon after
the onset of the inflammatory response, can cross the BBB, and move to sites of neuronal
degeneration [28,29]. In this regard, the monocyte-macrophage lineage could represent an
efficient cellular system to deliver NTFs at the site of injury within the CNS. To support
this hypothesis, Biju et al. used ex vivo transduced bone marrow-derived macrophages
to deliver GDNF [28]. Axonal regeneration and retention of tyrosine hydroxylase (TH+)
neurons were observed in both the striatum and substantia nigra regions [28]. Moreover,
GDNF-expressing macrophages could successfully cross the BBB and deliver GDNF into
the neuro-generated DA neurons after systemic administration [29].

Finally, other cells, such as fibroblasts, were also used as vectors to deliver NTFs.
Specifically, fibroblasts modified to express BDNF were inoculated into SCI sites in rats,
and these caused regenerative and sprouting responses at the sites of injury [106–108]. Sim-
ilarly, genetically modified baby hamster kidney (BHK) cells and primary cells expressing
NGF showed that they were able to rescue cholinergic function in damaged neurons in
ageing models of both rodents and non-human primates [129–131]. More interestingly, the
implanted cells maintained NGF secretion for at least 8 months in primate brains and did
not cause the adverse side effects observed in studies with direct administration [132–134].

To date, research advances in cell-based therapies offer promising methods for treating
neurodegenerative diseases. Although much work remains to be done, the increasing focus
on preclinical studies and the recent translation of some of these therapies into clinical trials
have paved the way for further progress. The use of modified cells expressing NTFs is
likely to play a key role in future clinical strategies to treat neurodegenerative diseases by
replacing dysfunctional neurons and providing neuroprotective functions. As mentioned
earlier, a potential drawback that remains today is the biosafety.

3.3. Viral Delivery of Neurotrophic Factors

Viral vector-mediated gene delivery might be a more optimal approach instead of the
techniques that have been previously described. Virus administration would permanently
alter the cells’ ability to make its own NTF, requiring a single injection at the site of admin-
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istration, rather than multiple injections [82,83,135,136], and eliminating the cumbersome
cell preparation associated with the cell transfer technique [30,32–34,36,82,83,135–137].

Nakajima et al. [30] reported that injection of adenovirus (AV)-BDNF into bilateral
sternomastoid muscles transferred vectors to the damaged sites, via retrograde transport
using spinal accessory motor neurons, in SCI rats. The AV-BDNF was able to reach the
spinal cord and reduce apoptotic signalling in neurons and oligodendrocytes [30]. Likewise,
the application of retrograde AV-BDNF in bilateral sternomastoid muscles of chronically
compressed SCI mice led to the recovery of oligodendrocyte progenitors and neurofilament
expression via the axons of spinal accessory nerves [32]. However, there are some draw-
backs using AV vectors, including immunogenicity, replicability, and the small insertion
size of the vectors [30,32].

To date, adeno-associated virus (AAV)-mediated gene transfer of GDNF has been used
and evaluated in a number of studies in rodents and primates, particularly for PD [136],
HD [82,83], and SCI [33]. Eslamboli et al. [136] showed that unilateral intrastriatal injection
of AAV-GDNF, resulting in the expression of high levels of GDNF in the striatum, induced
a significant bilateral increase in tyrosine hydroxylase protein levels and DA turnover
in a 6-OHDA lesion in marmosets. In addition, AAV-GDNF-treated rats scored better
on a blinded semi-quantitative neurological scale compared to rats receiving the control
AAV- Green Fluorescent Protein (GFP), which was supported by histological analyses [83].
Interestingly, Fouad et al. [33] reported that rats, with complete thoracic SCI, that received
combined treatment, including self-complementary AAV-BDNF and NT-3 administration
in the spinal cord, showed not only improved axonal regeneration, but also improved
motor function of the hind limbs [33]. AAV vectors offer many of the same advantages as
AV vectors, including a wide host-cell range and a relatively high transduction efficiency.
In addition, AAV vectors do not express their own proteins and, therefore, would not elicit
an immune response, making the technique even more attractive. However, the major
drawback is the limited cloning capacity of the vector, which restricts its use in the gene
delivery of large genes [33,82,83,136].

Next to AV- and AAV- mediated NTF delivery, viral delivery of GDNF by lentivirus
(LV) reversed motor deficits and prevented nigrostriatal degeneration in MPTP-treated
monkeys [137]. The delivery of LV expressing GDNF to AD mice models enhanced learn-
ing and memory function, while simultaneously improving the cognition capacity [34].
In addition, the group of Pereira de Almeida et al. [138,139] conducted two studies us-
ing tetracycline-regulated LV-mediated delivery of CNTF in a quinolinic acid (QA) rat
model of HD. The 2001 study [138] showed that the extent of striatal damage was signif-
icantly reduced in the CNTF-treated rats, and the volume of the lesion was significantly
reduced [138]. In 2002, they reported CNTF′s dose-dependent effects [139]. Remarkably, LV-
based administration has numerous advantages, such as long-term transgene expression,
low inflammation rate, and large-size gene insertion [35,36,140]. Despite these advantages,
in some cases, oncogenic mutation may occur after integration of the LV gene into the host
cell genome. This is cited as the main concern of safety in in vivo conditions.

3.4. Biomaterials to Deliver Neurotrophic Factors

Several of the above-mentioned strategies to deliver NTF to the site of injury in
the spinal cord or brain, such as direct delivery, genetically engineered cells, and viral
vectors, have a number of drawbacks, including viral vector spread beyond the target area,
uncontrolled transgene expression, and immune rejection of transplanted cells. Therefore,
there is a growing interest in using biomaterials as vehicles to deliver NTFs. Natural
biomaterials are biocompatible, biodegradable, have remodelling advantages and a lower
toxicity rate [141], while synthetic biomaterials have a more favourable mechanical and
thermal resistance, no immune response capacity, and can be produced on large scales [37,38].

A recent study by Zhijiang et al. [141] used the natural biomaterial methylcellulose
(MC), combined with hyaluronic acid (HAMC) hydrogel modified with the peptide KAFAK-
LAARLYRKALARQLGVAA (KAFAK) and BDNF. They injected these into a lesion area of
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SCI rats and showed that locomotor function and axonal regeneration improved 8 weeks
after SCI [141]. A similar study with NT-3 also showed that HAMC could release NT-3
for 28 days. The persistence of NT-3 in the target areas confirmed the regeneration and
expansion of axons, without induction of the astroglial response, which can cause an in-
flammatory reaction [39]. Furthermore studies have used other natural bio-materials, such
as bioactive scaffolds, to create a microenvironment conducive to endogenous regeneration
of neuronal tissue in the SCI site. In particular, gelatin sponge scaffold, silk fibroin, chitosan,
or a more developed multichannel nanofibrous gelatin scaffold have been used. These
scaffolds were integrated into NT-3, with or without NSCs [44], adipose-derived stem
cells [43], or MSCs [45,142]. The in vivo experiments have significantly improved neuronal
differentiation, synaptic connection, and axonal remyelination, with reduced local inflam-
mation at the SCI sites following bioactive scaffold implantation with NT-3. In addition the
treatment has shown significant improvement in locomotor functionality [40,43–45,142].

Poly-lactide-co-glycolide (PLG) is one of the most frequently used synthetic biomateri-
als for drug delivery, due to its controlled and sustained release properties, low toxicity,
and biocompatibility with tissue and cells [46,47]. PLG has been widely used as a material
for spinal cord repair or peripheral nerve conduits [47]. Khalin et al. found that iv injection
of poloxamer 188 (PX)-coated PLG nanoparticles with BDNF (PLG-BDNF) in TBI mice
restored cognition and showed that this system is eligible to cross the BBB and deliver
BDNF into the brain of the TBI model [38]. Furthermore, several studies with PLG-BDNF in
animal models of SCI observed robust axon growth and remyelination 6 months after initial
injury [39,47,48]. These positive findings of PLG-BDNF were not confirmed with CNTF.
The latter would not be sufficient in vivo to promote oligodendrocyte remyelination in the
glial-depleted environment of unilateral ethidium bromide lesions [49]. Similar to the PLG-
BDNF results in SCI rats, poly N-isopropylacrylamide (PNIPAAm) with BDNF improved
the axonal regeneration in SCI rats [37]. Finally, intrathecal infusion of N-terminal pegy-
lated (PEG) BDNF (PEG-BDNF) was also used in an attempt to increase NTF release [143].
The authors showed that the PEG-BDNF was able to reach the spinal cord and that its
expression was induced in that area. However, they could not observe an improved axonal
response or recovery of motor function, which suggests that the amount of BDNF was
insufficient [143].

As mentioned earlier, most NTFs have difficulties passing through the BBB and are,
therefore, delivered directly into the brain in animal models and some clinical trials with
patients using expensive and risky intracranial surgery [70–72]. The efficiency of delivery
and the poor distribution of some NTFs in the brain are considered the main problems
behind their modest effects in clinical trials. There is a great need for NTFs that can be
administered systemically to avoid intracranial surgery. Nanoparticles (NPs) can be used to
stabilise NTFs and facilitate their transport through the BBB [144]. For example, one study
used plasmid DNA NPs encoding human GDNF (pGDNF) that were administered IN to
a rat model of PD [145]. The amphetamine-induced rotational behaviour was reduced,
and dopaminergic fibre density and cell counts in the lesioned substantia nigra and nerve
terminal density in the lesioned striatum were significantly preserved in rats given IN
pGDNF [145].

4. Clinical Trials with Neurotrophic Factors

In addition to studies in animal models, there were also studies in humans, in which
NTFs were used for the purpose of regeneration. The first clinical trials with NTFs in
ALS patients applied systemic administration of CNTF, while the protein did not readily
cross the BBB and consequently did not reach a detectable concentration in the central
parenchyma [56,57,66–69]. Side effects, including inflammation and cachexia, have been
recorded after systemic administration, which were severe enough to terminate phase II/III
clinical trials with CNTF in ALS patients [56,57,66–69] (Figure 2). This led to the NTFs being
administered directly into the brain in subsequent clinical studies. In particular, GDNF was
administered by monthly bolus injections into the cerebral ventricles of PD patients. No
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beneficial clinical effects were seen, whereas side effects, such as nausea, loss of appetite,
tingling, Lhermitte sign, intermittent hallucinations, and depression, were reported. In
addition, there was no evidence of the restoration of dopamine fibers in the striatum [70,71].
Bolus injection into the parenchyma exposed the patient to a higher risk of tissue trauma
and denied the clinician the means to finetune and optimize dose delivery (Figure 2). The
clinical phase I safety trial of Nikunj et al. delivered GDNF directly into the putamen of
five patients with PD [72]. Afterwards, they continued to follow these patients for two
years and concluded that direct intraputamenal GDNF infusion in patients with PD is safe,
can be tolerated for two years, and leads to significant symptomatic improvement [73].
Interestingly, the same group performed another randomized, controlled, blinded clinical
trial in order to confirm the initial clinical benefits. However, this trial did not confer
the predetermined level of clinical benefit to patients with PD, despite increased (18)F-
dopamine uptake [58].
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Figure 2. A summary of the current status of clinical trials applying neurotrophic factors. Several
studies with NTFs for neurodegenerative diseases are still in the preclinical phase, whereas some of
the clinical trials already initiated were terminated due to side effects or no clinical improvement. The
different colours of the boxes correlate with the colours given to the NTF. Abbreviations used: glial
cell-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF), nerve growth factor
(NGF), Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic
lateral sclerosis (ALS), blood-brain barrier (BBB), Mini-Mental Status Examination (MMSE) scores,
and N= enrolled patients (Created with BioRender.com) [59–61,63–67,69,70].

The macro-encapsulation technique was a more sophisticated method. This technique
was first conducted with CNTF in rats and non-human primate models of HD [59,60].
In brief, BHK cells engineered to synthesize and release large amounts of NTF, such as
CNTF, have been introduced into a tube formed by a semipermeable membrane. The
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pores of this membrane are sized so that proteins can cross freely, whereas larger proteins
(e.g., antibodies) and cells cannot. Due to the positive results of this technique, reduced side
effects, and the ability of BHK-hCNTF to protect neurons from degeneration and restore
neostriatal function in animal models [59,60], the group of Bachoud-Le Âvi et al. [61]
and Aebischer et al. [62] used this macro-encapsulation technique in a phase I study in
ALS and HD patients (Figure 2). In particular, a capsule was introduced into the lateral
ventricle of six patients with HD [61] and ALS [62], using stereotactic neurosurgery. No
signs of CNTF-induced toxicity were observed. According to the results, this phase I study
demonstrated the safety, feasibility, and tolerability of this gene therapy procedure, but
the heterogeneous cell survival indicates the need to improve a more uniform response.
Furthermore, no clinical benefit was observed in any of the treated subjects, which could
partly be due to the limited diffusion of CNTF through the ventricular wall to the adjacent
putamen [61,62], similar to the limited diffusion of GDNF after ICV injection in non-human
primates [89–92].

Finally, some clinical studies have used cells or viral vectors to bring the NTFs into the
brain. Mark Tuszynski′s team [63] surgically implanted autologous fibroblasts, which were
modified to secrete mature human NGF, into the basal forebrain of eight early stage AD
patients. The mean Mini-Mental Status Examination (MMSE) scores showed an average
decrease of 51% over a 22-month period, and an even greater decrease over 6 to 18 months.
Moreover, there were cognitive improvements, and post-mortem analysis confirmed that
there was NGF expression in the cell grafts and that cholinergic axons showed outgrowth.
Overall, this study presented the first clinical evidence that NGF administration can provide
therapeutic benefit, without side effects usually associated with NTF administration, such
as nausea, loss of appetite, tingling, hallucinations, and depression [63]. Because AAV
serotype 2 (AAV2)-NGF vectors represent a more convenient and less expensive method of
gene delivery and resulted in long-term gene expression in non-human primate brains [64],
Tuszynski et al. conducted a second phase 1 clinical trial on 10 patients with AD (Figure 2).
Here, AAV2-NGF was injected in vivo into the basal forebrain region, genetically modifying
cells of the brain itself, rather than employing grafts of autologous cells, as employed in
the phase 1 ex vivo study [65]. This study showed that responses to NGF persist for up to
10 years after gene transfer. No adverse pathological effects were observed over a 7-year
period, supporting the safety and rationale for the expanded clinical programs underway
in AD, PD, and other neurological indications [65].

5. Challenges and Future Perspective of the Use of NTFs in Neurodegenerative Diseases

Neurodegenerative diseases that cause acute or chronic damage to neurons and glial
cells represent a major socio-economic burden and loss of quality of life for millions of
patients and their families worldwide [3]. With an ageing population, the number of
patients will further increase [4], creating an urgent need for therapeutic strategies that can
reverse or stop the degenerative process. NTFs, as discussed in this review, are important
factors in both development and adulthood, and each is required by certain subsets of
neurons for optimal function. From the results, GDNF would be of particular interest
for PD, due to its high specificity for dopaminergic neurons [84,85,91,93,124]. In addition,
CNTF seems important, especially for ALS [56,57,62,66–69] and SCI [49,52], due to its
potent effects on motor neuron survival, after injury to motor neuron systems and in
genetic models of motor neuron degeneration. NGF specifically provides trophic support
to cholinergic neurons of the BFCNs that express TrkA, which would make it of particular
interest for AD [63–65,109,110]. The potential beneficial effect of BDNF has been studied
in several neurodegenerative and inflammatory diseases, including animal models of AD,
SCI, MS and HD [21,54,99,105–108]. As well, neurotrophin-3 (NT-3) and neurotrophin-
4/5 (NT-4/5) also have promising potential, however, they have been less studied than
their counterparts. Decreased levels of one or more of these proteins may be responsible
for at least some of the symptoms of AD, PD, ALS, HD, and MS [78,101,103,104,146,147].
Therefore, these factors have been investigated as a potential neuro-healing therapy in
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preclinical and/or clinical studies (Figure 2). In particular, NTFs can be delivered via
direct infusion, cells modified to (over)express these factors, viral delivery, or biomaterials
(Figure 2).

There are strong arguments showing that an increase of NTFs-delivery to degenerating
neurons could be a powerful way to restore neuronal function, but the delivery of these
NTFs into the brain seems challenging [148]. In particular, diseases of the CNS are known to
be difficult to treat because of the presence of the BBB, which makes it virtually impossible
for large proteins and complex connections to enter the brain from the blood [149–151].
The possibility that NTFs can cross the BBB is quite controversial [148]. For example, some
authors state that it is not clear whether BDNF can easily pass the BBB [152], whereas others
indicate that BDNF is able to do so [153]. Molinari et al. [153] published a recent paper on
the possibility of using exogenous BDNF as a therapeutic approach in neurodegenerative
diseases. His work showed, in in vitro experimental models, that a low BDNF dose can
cross both the intestinal and BBB barrier [153]. An alternative way and more recent
technique in the neuroscience to get large molecules across the BBB would be the use of
low-frequency focused ultrasound combined with microbubbles. This non-invasive and
reversible technique [154,155] can achieve a transient safe opening of the BBB [155,156].
Successful preclinical studies have already been performed with growth factors, antibodies,
genes, viral vectors, and nanoparticles in rodent models of AD and PD [154,156,157]. Recent
small clinical studies support the safety and feasibility of this strategy in patients [158].
Further research is needed to determine the safety when the MRI-guided BBB opening is
used to improve the delivery of newly developed molecular therapies [156,157].

Furthermore, an upcoming way to improve BBB penetration after parenteral systemic
administration is the use of chemical modification or antibody conjugation of native NTFs.
Specifically, a covalent modification of NGF with the polyamine putrescine resulted in
improved plasma pharmacokinetics and BBB permeability in rats, as compared with
native NGF [159]. Moreover, a study by Wu and Pardridge [160] attached biotinylated
polyethylene glycol-modified-BDNF to a monoclonal antibody against the transferrin
receptor that was linked to streptavidin. This resulted in the ability of the chimeric molecule
to bind to the transferrin receptor, which is abundant on brain endothelial cells, and
subsequently to undergo receptor-mediated transcytosis through the BBB [160]. Although
modification/conjugation strategies are promising for the CNS delivery of peripherally
administered NTFs, a major challenge to the clinical implementation of such strategies is the
anticipated difficulty in producing large quantities of pharmaceutical-grade preparations
and in targeting the products to specific CNS areas [161].

Beyond the BBB permeability, it should be taken into account that, in general, trans-
planted cells manipulated to (over)express proteins may differentiate into undesirable
cell types, with the possibility of tumour formation, risks of host rejection, and inflam-
mation [162–164], limiting the widespread use of these manipulated cells, despite their
advantages [164]. Viral vector-mediated delivery may already overcome some of the above-
mentioned challenges. In particular, virus administration could permanently alter the cells′

ability to make their own NTFs, consequently requiring only a single injection and, thereby,
decreasing the invasiveness of the treatment [165]. However, controlling the production
of NTF proteins and terminating their expression warrants further research, since cyto-
toxic effects on host cells and inflammatory responses were seen after the development of
self-inactivating viral vectors for in vivo applications [166].

The last delivery method discussed in this review is the application of biomateri-
als. In general, this method requires a less invasive manipulation with delivery of large
amounts of NTFs to the damaged sites. When selecting the delivery method, a number of
properties, such as degradability, safety, non-toxicity, and adaptability to release, must be
taken into account [167]. Furthermore, biomaterials used for CNS regeneration should be
injectable. It should be remembered that natural biomaterials can be immunogenic, but not
toxic [167,168]. Synthetic components, on the other hand, do not cause inflammation, but
may provoke cytotoxicity [167,169]. A recent technique, which is successfully developed
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for clinical use in neurodegenerative diseases, includes targeted nano-carriers for recombi-
nant growth factors, therapeutic antibodies, enzymes, synthetic peptides, cell-penetrating
peptide-drug conjugates, and RNAi sequences [170]. To enable challenging applications
of nano-medicine and precision medicine in the treatment of neurodegenerative diseases,
more in-depth research into bio-molecular delivery via nano-carriers for neuronal targeting
and repair is needed. According to a recent review by Yu Wu et al., the successful use of
macromolecular bio-therapeutics in clinical developments for neuronal regeneration will
be aided by recent strategies to improve their bioavailability [170].

It is worth mentioning that many of the challenges discussed above may be overcome
by small molecules that target the receptor for the NTF, instead of introducing the NTF
itself. The development of small molecule mimetics, with an intrinsic neurotrophic activity
and an improved pharmacokinetic profile, is a promising research area. This would allow
for specific activation of only one type of receptor, such as TrkA or TrkB and not p75, or
vice versa, potentially alleviating the side effects. Interestingly, it has recently been shown
that neuro-inflammatory cytokines, such as TNF-α, downregulate both the mRNA and
protein levels of TrkA, together with an increase of p75 mRNA expression [171]. This could
shift NGF signalling from a neuroprotective to a neurotoxic role, showing that a specific
binding of a certain receptor is interesting, especially during pathological (inflammatory)
conditions [171]. The use of NTF therapy or NTF mimetics in combination with a TNF-α
inhibitor could also be an interesting option. Because several synthetic TNF- α inhibitors
induce serious adverse effects in various inflammatory diseases, patients and researchers
have recently turned their attention to natural medicines, especially phytochemicals. Phyto-
chemicals targeting TNF- α can significantly improve disease states with fewer side effects,
according to the review by Subedi et al. [172]. Several experimental studies have also
shown that the administration of bioactive molecules in low doses is effective to obtain
pure biological effects with low risk of side effects [153,173].

The discovery and use of peptide mimetics [174] and small molecule ligands for the
Trk receptors [175] have attracted considerable interest. Therefore, relatively stable peptide
mimetics of NGF have, amongst others, been produced [176]. These analogues may be less
immunogenic, more resistant to proteolytic degradation, and able to cross blood–tissue
barriers, as compared with their parent molecules. These ligands may be more stable
and less expensive to produce than recombinant proteins, and may eventually provide
acceptable oral bio-availabilities unattainable with native NTFs. The use of a potent peptide
BDNF mimetic that activates TrkB was shown to promote neuronal survival in embryonic
sensory neurons of the dorsal root ganglion [177]. Small-molecule BDNF mimetics also
have high potency and specificity against TrkB, and can promote neuronal survival, while
also inducing differentiation and synaptic function in cultured hippocampal neurons [178].
When administered to mouse models of AD, HD, and PD, the small molecule could rescue
cell death to the same extent as the full-length protein BDNF [178]. A number of clinical
trials are also currently being conducted with NTF mimetics [175]. Results from these
trials, especially in terms of side effects and efficacy, will broaden and improve NTF-based
therapy for the treatment of neurodegenerative diseases with acute or chronic neuronal
and glial damage.

Although NTF-based therapy has great potential, the greatest uncertainty is whether
such an approach by itself is sufficient to halt and reverse the progression of neurodegener-
ative diseases. Due to the failures of monotherapy in the past, it may be interesting to use
combination therapy, instead of the ′single magic bullet′ approach, to address the various
disease-causing mechanisms simultaneously. In particular, a combination of several NTFs
could be better than using a single NTF for neurodegenerative diseases. For example,
studies have shown that BDNF and NT-3, when used in combination, are more effective
than either factors alone in increasing the growth of host axons into transplanted spinal
cord tissue following spinal cord hemisection in adult rats [33,179]. These synergistic effects
may allow combinations of factors to be used at smaller doses than those required of any
one factor used alone, diminishing adverse effects and potential for immunogenicity.
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Moreover, combination therapy may be particularly useful in the treatment of CNS
diseases in which there are multiple neuronal types affected, so that a NTF with maximal
activity on a particular cell type can be administered together with another that acts on
another cell type. For example, the capacity of NGF to stimulate cholinergic basal forebrain
cells is also enhanced by BDNF, which can additionally potently stimulate dopaminergic
cells in the midbrain [180]. We can, therefore, envision that a combined use of NTFs may
work synergistically to restore neuronal function.

Besides NTFs, a number of other biological agents have emerged that show regenera-
tive properties in neurodegenerative diseases, such as vascular endothelial growth factor
(VEGF) [181–188], insulin-like growth factors (IGFs) [189–203], the cellular communication
network (CCN) family [204–208], and erythropoietin (EPO) [209–234], with varying, but
also promising results.

6. Conclusions

To date, several NTF distribution vectors and systems have been applied to deliver
exogenous NTFs into the CNS, with variable results. In most cases, the translational capacity
from bench to bedside was limited. The challenges that currently need to be overcome
include the amount of NTFs released, BBB permeability if administered peripherally, the
invasiveness of the delivery route, the half-life of the vehicle, and the occurrence of possible
side effects. The combination of all these challenges is probably the reason why the
application of NTFs has, so far, not been effective for the long-term regeneration of target
tissues, especially in the brain. In addition, beyond the use of a single NTF, combination
therapies, targeting multiple pathways or using smaller molecules, such as NTF mimetics,
would be a more effective treatment option in neurodegenerative diseases. Nevertheless,
it is important to continue research into the optimization of cellular-, viral vector-, and
biomaterial systems to provide standards for clinical applications.
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