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Abstract: The aim of this study was to evaluate the radiotherapy (RT)-pharmacokinetics (PK) effect
of cabozantinib in concurrent or sequential regimens with external beam radiotherapy (EBRT) or
stereotactic body radiation therapy (SBRT). Concurrent and sequential regimens involving RT and
cabozantinib were designed. The RT–drug interactions of cabozantinib under RT were confirmed in a
free-moving rat model. The drugs were separated on an Agilent ZORBAX SB-phenyl column with a
mobile phase consisting of 10 mM potassium dihydrogen phosphate (KH2PO4)–methanol solution
(27:73, v/v) for cabozantinib. There were no statistically significant differences in the concentration
versus time curve of cabozantinib (AUCcabozantinib) between the control group and the RT2Gy×3 f’x

and RT9Gy×3 f’x groups in the concurrent and the sequential regimens. However, compared to those
in the control group, the Tmax, T1/2 and MRT decreased by 72.8% (p = 0.04), 49.0% (p = 0.04) and 48.5%
(p = 0.04) with RT2Gy×3 f’x in the concurrent regimen, respectively. Additionally, the T1/2 and MRT
decreased by 58.8% (p = 0.01) and 57.8% (p = 0.01) in the concurrent RT9Gy×3 f’x group when compared
with the control group, respectively. The biodistribution of cabozantinib in the heart increased by
271.4% (p = 0.04) and 120.0% (p = 0.04) with RT2Gy×3 f’x in the concurrent and sequential regimens
compared to the concurrent regimen, respectively. Additionally, the biodistribution of cabozantinib
in the heart increased by 107.1% (p = 0.01) with the RT9Gy×3 f’x sequential regimen. Compared to
the RT9Gy×3 f’x concurrent regimen, the RT9Gy×3 f’x sequential regimen increased the biodistribution
of cabozantinib in the heart (81.3%, p = 0.02), liver (110.5%, p = 0.02), lung (125%, p = 0.004) and
kidneys (87.5%, p = 0.048). No cabozantinib was detected in the brain in any of the groups. The AUC
of cabozantinib is not modulated by irradiation and is not affected by treatment strategies. However,
the biodistribution of cabozantinib in the heart is modulated by off-target irradiation and SBRT doses
simultaneously. The impact of the biodistribution of cabozantinib with RT9Gy×3 f’x is more significant
with the sequential regimen than with the concurrent regimen.
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1. Introduction

Hepatocellular carcinoma (HCC) was the sixth most commonly diagnosed cancer and
the third leading cause of cancer death worldwide in 2020 [1]. The systemic treatment
options available for most cases are limited [2–4]; therefore, additional treatment options
are needed.

Sorafenib inhibits HCC through the inhibition of vascular endothelial growth factor
(VEGF) and partly through the inhibition of the RAS/RAF/MEK/ERK mitogen-activated
protein kinase (MAPK) at the level of RAF [5,6]. In the clinic, sorafenib provides a signifi-
cant improvement in the overall survival of HCC patients [2,3]. Lenvatinib, a multitarget
tyrosine kinase inhibitor (TKI), is noninferior to sorafenib [7]. It targets VEGFR1, 2 and 3;
fibroblast growth factor receptors (FGFR) 1, 2, 3 and 4; platelet-derived growth factor recep-
tor (PDGFR)-alpha (α); the RET proto-oncogene; and c-kit [8,9]. Cabozantinib (Exelixis, Inc.,
South San Francisco, CA, USA), as the second-line treatment for HCC, has been reported
to result in longer overall survival and progression-free survival than placebo in the CE-
LESTIAL trial [10]. Cabozantinib targets mesenchymal-epithelial transition factor (MET);
VEGFR1, 2 and 3; AXL; FLT-3; MER; ROS1; TIE-2; TRKB; TYRO3; RET proto-oncogene; and
c-kit [11].

External beam radiotherapy (EBRT) with conventional techniques or stereotactic body
radiation therapy (SBRT) is an option for patients with unresectable or medically inoper-
able HCC [12]. MET and AXL activate the phosphatidylinositol 3 kinase (PI3K)/protein
kinase B (AKT) and mitogen-activated protein kinase (MAPK) networks [13,14]. Moreover,
cabozantinib targets MET and the TAM family of receptor kinases [11,15]. RT stimulates
the transient activation of nuclear factor kappa B (NF-κB) [16,17], and NF-κB increases the
expression of PDGF and VEGF [18]. Additionally, the expression of cytochrome P450 3A4
(CYP3A4) and P-glycoprotein (P-gp) could be affected by RT [19]. Recently, Dawson et al. [20]
reported that SBRT followed by sorafenib improved the overall survival, progression-free
survival and time to disease progression compared with sorafenib alone for HCC pa-
tient. Moreover, our previous data showed that RT modulated PK of TKIs [19,21,22] and
supported the interaction between RT and TKIs.

Notably, cabozantinib is a substrate for CYP3A4 [23] and belongs to the TKI group.
These data suggest that there may be interactions between RT and cabozantinib. In the
current study, the RT–drug interaction of cabozantinib with different RT doses and time
schedules was evaluated. Furthermore, the biodistribution of cabozantinib with or without
RT was evaluated to provide suggestions for clinical applications.

2. Results
2.1. Method of Validation for Linearity, Recovery, Precision, Accuracy and Stability

In the current study, the LOD of cabozantinib in the plasma was 0.05 µg/mL. The
regression equation for cabozantinib in rat plasma was y = 1.3748x − 0.0599 (r2 = 0.9998)
(Figure 1). The intraday precision (% RSD) and accuracy (% bias) values were within ±15%,
which were considered to be in the acceptable experimental concentration range. This
result indicated that the method was considered acceptable and reproducible. The recovery
rate of cabozantinib for 0.05 to 10 µg/mL ranged from 94.2% to 106.7%.

2.2. Neither RT2Gy nor RT9Gy Modulated the AUC of Cabozantinib in the Plasma of Freely
Moving Rats

There were no statistically significant differences in the concentration versus time curve
of cabozantinib (AUCcabozantinib) between the control group, RT2Gy×3 f’x and RT9Gy×3 f’x
in the concurrent or sequential regimens. However, compared to the control group, the
Tmax, T1/2 and MRT decreased by 72.8% (p = 0.04), 49.0% (p = 0.04) and 48.5% (p = 0.04)
with RT2Gy×3 f’x in the concurrent regimen, respectively. Additionally, the T1/2 and MRT
decreased by 69.2% (p = 0.02) and 66.1% (p = 0.02) with RT2Gy×3 f’x in the sequential regimen,
respectively. Interestingly, the CL increased by 249.0% (p < 0.001) with RT2Gy×3 f’x in the
sequential regimen. Compared to RT2Gy×3 f’x given concurrently or sequentially with
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cabozantinib, the Tmax increased by 404.1% (p < 0.001) with the RT2Gy×3 f’x sequential
regimen when compared with the concurrent regimen (Figure 2A).
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Figure 1. Calibration curve for cabozantinib in the range of 0.05–10 µg/mL.

The T1/2 and MRT decreased by 58.8% (p = 0.01) and 57.8% (p = 0.01) in the RT9Gy×3 f’x
concurrent group compared with the control group, respectively. There were no significant
differences between the RT9Gy×3 f’x concurrent and sequential regimens with cabozantinib
(Figure 2B, Table 1).

Table 1. Pharmacokinetic parameters of cabozantinib in rats after administration for 3 days (6 mg/kg
p.o., q.d.) with or without radiotherapy (RT, 2 Gy and 9 Gy).

RT 2Gy RT 9Gy

PK
Parameters Unit

Cabozantinib
6 mg/kg
(n = 6)

RT
Concurrent with

Cabozantinib
6 mg/kg
(n = 6)

RT
Sequential

with
Cabozantinib

6 mg/kg
(n = 6)

RT
Concurrent

with
Cabozantinib

6 mg/kg
(n = 6)

RT
Sequential

with
Cabozantinib

6 mg/kg
(n = 6)

AUC0-T min*µg/mL 266.6 ± 70.6 306.2 ± 113 233.9 ± 92.5 257.6 ± 76.0 250.9 ± 101
Tmax min 135.0 ± 94.4 36.67 ± 31.7 * 185.0 ± 55.0 a 38.33 ± 70.1 175.0 ± 66.9
Cmax µg/mL 1.444 ± 0.44 1.599 ± 0.47 1.359 ± 0.54 1.372 ± 0.47 1.353 ± 0.49
T1/2 min 1091 ± 362 555.4 ± 351 * 336.5 ± 149 * 449.0 ± 272 * 1578 ± 1196
Vss mL/kg 4831 ± 1307 3942 ± 1303 5668 ± 2220 4204 ± 1272 3153 ± 482
Cl mL/min/kg 3.401 ± 1.54 6.695 ± 5.65 11.87 ± 0.74 ** 8.766 ± 5.30 2.056 ± 1.77

MRT min 1601 ± 517 824.4 ± 507 * 543.3 ± 195 * 674.6 ± 386 * 2312 ± 1736

Data are expressed as the mean ± S.D. (n = 6). * p < 0.05, compared with cabozantinib only. ** p < 0.01, compared
with cabozantinib only. a p < 0.01, compared with RT 2 Gy concurrent with cabozantinib.

2.3. Organ Distribution According to Different RT and Lenvatinib Regimens

The biodistribution of cabozantinib in the heart was increased by 271.4% (p = 0.04) and
120.0% (p = 0.04) with RT2Gy×3 f’x in the concurrent and sequential regimens compared to
the concurrent regimen, respectively. Compared to the control group, sequential RT2Gy×3 f’x
increased the kidney biodistribution by 31.8% (p = 0.02). However, concurrent and sequen-
tial regimens in RT2Gy×3 f’x did not affect the biodistribution in the liver, spleen, lung and
brain. Interestingly, the biodistribution of cabozantinib was increased by the RT9Gy×3 f’x
sequential regimen in the heart and lung by 107.1% (p = 0.01) and 44% (p = 0.02), respec-
tively, but was not affected by the RT9Gy×3 f’x concurrent regimen when compared with the
control group. When compared to the RT9Gy×3 f’x concurrent regimen, the RT9Gy×3 f’x
sequential regimen increased the biodistribution of cabozantinib in the heart (81.3%,
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p = 0.02), liver (110.5%, p = 0.02), lung (125%, p = 0.004) and kidneys (87.5%, p = 0.048). No
cabozantinib was detected in the brain in any of the groups (Figure 3 and Table 2).
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Figure 2. Concentration versus time curves of cabozantinib in the plasma of rats under different time
courses with or without radiotherapy (RT). The treated groups included (A) the sham group, cabozan-
tinib (p.o., q.d. × 3 d) with RT0Gy (cabozantinib×3 d); the concurrent group, cabozantinib×3 d 1 h
after RT2Gy in 3 fractions (RT2Gy×3 f’x); the sequential group, cabozantinib×3 d 24 h after RT2Gy×3 f’x;
(B) the sham group, cabozantinib×3 d; the concurrent group, cabozantinib×3 d 1 h after RT9Gy in
3 fractions (RT9Gy×3 f’x); and the sequential group, cabozantinib×3 d 24 h after RT9Gy×3 f’x. Data are
expressed as the mean ± S.D. (n = 6 per group).
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Figure 3. The concentration of cabozantinib in the heart, liver, spleen, lung, kidney and brain of
rats after the administration of cabozantinib (6 mg/kg p.o., q.d.) with or without radiotherapy. The
cabozantinib concentration units in the organs are expressed as µg/mL or µg/g (n = 6 per group).

Table 2. Concentrations of cabozantinib in the heart, liver, spleen, lung, kidney and brain of rats after
administration (6 mg/kg, p.o.) with or without radiotherapy.

RT 2Gy RT 9Gy

Organ
Cabozantinib

6 mg/kg
(n = 6)

RT Concurrent
with

Cabozantinib
6 mg/kg
(n = 6)

RT Sequential
with

Cabozantinib
6 mg/kg
(n = 6)

RT Concurrent
with

Cabozantinib
6 mg/kg
(n = 6)

RT Sequential
with

Cabozantinib
6 mg/kg
(n = 6)

Heart 0.14 ± 0.06 0.52 ± 0.39 * 0.26 ± 0.11 * 0.16 ± 0.05 0.29 ± 0.09 *b

Liver 0.44 ± 0.19 0.39 ± 0.16 0.47 ± 0.18 0.28 ± 0.14 0.59 ± 0.24 b

Spleen 0.12 ± 0.09 0.16 ± 0.03 0.16 ± 0.05 0.20 ± 0.07 0.16 ± 0.04
Lung 0.25 ± 0.05 0.40 ± 0.34 0.35 ± 0.19 0.16 ± 0.10 0.36 ± 0.08 *b

Kidney 0.22 ± 0.06 0.17 ± 0.06 0.29 ± 0.09 a 0.16 ± 0.07 0.30 ± 0.14 b

Brain 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Data are expressed as the mean ± SD (n = 6). *: compared with cabozantinib 6 mg/kg × 3 d. *: p < 0.05. 1. a: 2 Gy
concurrent with cabozantinib 6 mg/kg compared with 2 Gy sequential with cabozantinib 6 mg/kg. a: p < 0.05.
b: 9 Gy concurrent with cabozantinib 6 mg/kg compared with 9 Gy sequential with cabozantinib 6 mg/kg b: p < 0.05.

3. Discussion

To our knowledge, our study is the first to explore the interaction between RT and
cabozantinib. RT did not modulate the AUC of cabozantinib with off-target and SBRT
doses. However, RT given concurrently or sequentially with different doses impacted the
biodistribution of cabozantinib.

According to the Sorafenib HCC Assessment Randomized Protocol (SHARP) [2] and
Asia-Pacific [3] trials and the REFLECT trial [7], sorafenib and lenvatinib are defined as the
first-line treatments for patients with HCC. After sorafenib failure, positive outcomes were
reported by the RESORCE trial, which confirmed the role of regorafenib as second-line
therapy [4]. Additionally, the phase 3 CELESTIAL trial, a study of cabozantinib for HCC,
confirmed the favorable outcomes for patients with unresectable HCC who received one or
two prior lines of treatment, including sorafenib [10].

Oral TKIs, such as sorafenib, activate VEGFR-2 and VEGFR-3, fms-like tyrosine kinase
(FLT)-3, KIT, PDGFRb, RAF, BRAF WT, and BRAF V600E [5,6]. However, the mechanisms of
resistance to sorafenib have been elucidated as hypoxia-induced factors, overproduction of
VEGF, and inhibition of the RAF/MEK/ERK pathway resulting in the activation of EGFR,
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AKT/TOR, and mesenchymal-epithelial transition proto-oncogene (c-MET)/hepatocyte
growth factor axes [24]. Therefore, overcoming these critical points is crucial in developing
effective therapies. Accordingly, regorafenib blocks the activity of protein kinases involving
VEGFR1-3, TIE-2, c-kit, Raf-1, c-Ret, V600E-mutated B-Raf, PDGFR and fibroblast growth
factor receptor (FGFR) [25,26]. Lenvatinib targets VEGFR1-3, FGFR1-4, PDGFR-α, the
RET proto-oncogene and c-kit [8,9]. In contrast to other multi–tyrosine kinase inhibitors,
cabozantinib targets VEGFR-1–3 as well as MET and the tumor-associated macrophage
(TAM) family (TYRO3, AXL, and MER) of receptor kinases [11,15]. These are induced
by hypoxia, and MET and AXL are involved in resistance to antiangiogenic therapy [27].
Additionally, the MET/HGF pathway is involved in HCC progression by promoting
cellular proliferation, survival and invasion [28]. In other words, cabozantinib inhibits
the development and growth of HCC and resistance to antiangiogenic therapy and may
potentially promote an immune permissive environment.

SBRT has been reported as a safe and effective option for high-risk HCC patients
unsuitable for or refractory to standard local treatment options according to long-term
observation [29]. Recently, Dawson et al. [20] reported that patients with advanced HCC
treated by SBRT plus sorafenib had improved overall survival, progression-free survival
and time to disease progression compared with those of patients treated with sorafenib
alone. The data add to the body of evidence for the role of RT combined with TKIs in
patients with locally advanced HCC. Interestingly, our previous data showed that SBRT
with sorafenib resulted in a 3-fold higher complete recanalization rate than conventional
RT (28% vs. 8%, p = 0.014) [19]. Additionally, when considering off-target and target
effects, the AUC of sorafenib was increased 4-fold and 1.6-fold in the concurrent RT9Gy
groups and the sequential RT9Gy group, respectively [19]. Similarly, the AUC of regorafenib
was increased 1.3-fold in the sequential RT9Gyx3f’x group [21]. The AUC of lenvatinib was
increased 2-fold in the sequential RT9Gyx3f’x group [22]. The lines of evidence support the
interaction between RT and TKIs.

Activation of the PI3K/AKT and MAPK pathways is a well-known trait in cancer.
Compounds or modalities that inhibit signaling pathways provide an attractive approach
to strengthening the effectiveness of antitumor therapy. RT exposure activates the ex-
pression of the MAPK and PI3K pathways [30]. MET and AXL activate the PI3K/AKT
and MAPK networks [13,14]. Cabozantinib targets MET and the TAM family of receptor
kinases [11,15]. Recently, S49076, a MET inhibitor, has been reported to improve the ef-
ficacy of radiotherapy [31]. Moreover, in an in vitro study, the combination of RT with
cabozantinib for triple-negative 4T1 cells inhibited clonogenic survival, and a synergistic
effect was found [32]. These lines of evidence provide the rationale for the combination of
cabozantinib and RT.

In the current study, compared to the control group, the T1/2 and MRT decreased
in both the RT2Gy×3 f’x concurrent and sequential regimens and RT9Gy×3 f’x concurrent
group, respectively. Moreover, the CL increased with RT2Gy×3 f’x in the sequential regimen.
However, the current data supported that there were no significant interactions between
the RT doses and cabozantinib in the AUCcabozantinib or the RT regimens and cabozantinib
in the AUCcabozantinib. According to the report by Abou-Alfa GK et al. [10], the rate of grade
3 or 4 adverse events (AEs) of cabozantinib for HCC treatment was approximately 10–17%,
and the serious adverse events rate was 12%. Interestingly, in patients with metastatic renal
cell carcinoma concurrently treated with cabozantinib and conventional RT or SBRT, the
grade 3–4 AE rates were 6.3% and 3.6% of patients and did not increase by adding RT,
respectively [33]. Additionally, an in vivo study reported that tumor growth control was
not increased by the combination of cabozantinib and irradiation [32]. The study reinforces
the concept that there may be no significant interaction between RT and cabozantinib.

RT causes the production of reactive oxygen species that further activate Toll-like
receptor 4 (TLR4) followed by the NF-κB-based inflammatory pathway [34]. Nevertheless,
cabozantinib inhibits the inflammatory response and apoptosis by inhibiting the activation
of the TLR4/NF-κB and NLRP3 inflammasome pathways [35]. Furthermore, cabozantinib
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is metabolized by cytochrome P450 3A4 (CYP3A4) [23], and the expression of CYP3A4
could be affected by RT [19]. However, cabozantinib has a long half-life of approximately
110 h [36] and high plasma protein binding ability (≥99.7%) [37] that would have required
a long washout period (at least 4–5 half-lives) of cabozantinib to wash out the CYP3A
modulator’s effect. Additionally, plasma concentration–time profiles show a second ab-
sorption peak approximately 24 h after administration, which suggests that cabozantinib
may undergo enterohepatic recirculation [38]. Altogether, these data may implicate the
possibility of an insignificant interaction between RT and cabozantinib. However, more
studies and exploration are needed to confirm this hypothesis.

Numerous preclinical studies have investigated the combination of targeted therapy,
chemotherapy, or radiotherapy with immunotherapy to overcome limited responses for
the treatment of HCC. RT can enhance antigen presentation by increasing major histocom-
patibility complex class 1 (MHCI), but responses can be diminished through increased
PD-L1 expression, thereby providing a rationale for combination therapy [39]. Additionally,
RT can also lead to immunogenic cell death (ICD) through effects that include the release
of tumor antigens, exposure of heat shock proteins (HSPs) on the cell surface, release of
calreticulin, and increased expression of MHCI, intracellular adhesion molecule 1 (ICAM1),
and lymphocyte function–associated antigen 3 [40]. The Gas6/Axl signaling pathway
promotes progression, metastasis, immune evasion, and therapeutic resistance in many
cancer types [41]. Genetic deletion of AXL resulted in sensitization of tumor cells to ra-
diation and checkpoint immunotherapy [42]. Notably, cabozantinib targets MET and the
Tyro3/Axl/Mer family of receptor kinases [11,15], which may promote an immune environ-
ment and make tumor cells more sensitive to immune-mediated killing [43,44]. Moreover,
the current data provided evidence that there was no significant interaction of PKs between
RT and cabozantinib. Accordingly, the combination of RT and cabozantinib decreases the
risk of side effects caused by interaction and represents a potential combination therapy
for HCC.

According to the phase III study of HCC treated by cabozantinib alone, the rate of
grade 3 or 4 AEs was 10–17%, including palmar–plantar erythrodysesthesia (17%), hand-
foot syndrome, hypertension (16%), increased aspartate aminotransferase level (12%),
fatigue (10%), and diarrhea (10%) [10]. The serious AEs included liver failure, bronchoe-
sophageal fistula, portal vein thrombosis, upper gastrointestinal bleeding, pulmonary
embolism, and hepatorenal syndrome [10]. Serious gastrointestinal perforation or fistula
has been observed with cabozantinib with 1.2–3%. The risk of grade 3 or above hemorrhagic
events caused by cabozantinib is 2.1–3%. Additionally, osteonecrosis of jaw caused by
cabozantinib is 1% [38]. Although patients with metastatic renal cell carcinoma are treated
with cabozantinib and conventional RT or SBRT, the AEs do not increase when compared
with those of cabozantinib [33]. When the liver and renal function are impaired, the AUC
of cabozantinib could be increased by 63–81% and 7–30%, respectively [38]. Moreover, it
should be noted that cabozantinib is associated with a higher risk of causing cardiovascular
damage [45]. Cabozantinib use in patients with metastatic renal cell carcinoma caused
significant heart failure [46–48]. However, a patient-derived xenograft model of papillary
renal cell carcinoma carrying an activating mutation of MET treated by cabozantinib caused
striking tumor regression and inhibited lung metastasis [49].

In the current study, the respective biodistribution of cabozantinib in the heart was
increased by 271% and 120% with RT2Gy×3 f’x in the concurrent and sequential regimens
compared to the concurrent regimen. Moreover, sequential RT2Gy×3 f’x increased kidney
biodistribution by 32%. Furthermore, sequential RT9Gy×3 f’x increased the biodistribution
of the heart by 107% and increased that of the lung by 44%. When cabozantinib combined
with RT, the biodistribution of heart, lung and kidney could be modulated. It increases
the chance of shrinking the metastatic tumor in the lung, but the potential risk to the heart
should be considered, especially for patients with impairment of liver and renal function.

The cross-talk between RT and c-Met has suggested that c-Met inhibition such as
cabozantinib could be used as a strategy to increase cellular radiosensitivity [50]. Ac-
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cordingly, during combination therapy, the functions of the heart, lung, kidney and liver
still need to be considered with caution because RT can modulate the biodistribution of
cabozantinib at different doses and regimens. In particular, SBRT delivers highly consistent
dose distributions and extends a larger volume of low-to-moderate doses around the tar-
get than three-dimensional RT [51]. In addition, the SBRT sequential regimen increased
the biodistribution of cabozantinib in the heart, liver, lung and kidneys compared with
the concurrent regimen. Additionally, in future combination strategies and the design of
clinical trials, these unexpected biological enhancements of cabozantinib with RT should
be addressed cautiously to avoid severe toxicity when RT and cabozantinib are used as
collaborative tools in treatment strategies.

Several limitations should be considered in the interpretation of the present study.
First, the current study used a free-moving SD rat model but not orthotopic or heterotopic
models to explore the interaction between RT and cabozantinib. The current data did not
support the interaction between RT and cabozantinib in rats. Coincidently, in an in vivo
study reported by Reppingen, N. et al. [32], tumor growth control was not increased by
cabozantinib plus irradiation. Moreover, the AEs did not increase by adding RT with
cabozantinib for patients with metastatic renal cell carcinoma [33]. Therefore, using a non-
tumor model to evaluate the interaction between RT and cabozantinib appears reasonable.
Second, the current study did not include a disease model treated with cabozantinib and RT
to evaluate the treatment effects of the combination of RT and cabozantinib. However, the
current analysis sheds light on the unexpected biodistribution caused by the combination.
Additionally, no interaction between RT and cabozantinib was noted. All of these are
useful for prospective clinical trial designs. Third, the presence or absence of an interaction
between cabozantinib and RT could not be ensured before the study; therefore, the current
study did not explore the possible mechanism. However, the lines of evidence provide
the rationale for radiosensitization with cabozantinib for RT [11,15,30,32,52,53]. Further
studies to detect the possible mechanism in vivo and in vitro are warranted in the future.

4. Materials and Methods
4.1. Chemicals and Reagents

Cabozantinib was purchased from Sigma-Aldrich (St. Louis, MO, USA). Biochanin A,
as an internal standard, was purchased from Toronto Research Chemicals Inc. (North York,
ON, Canada). Polyethylene glycol 400 (PEG 400) and heparin sodium were purchased
from Sigma-Aldrich. Pentobarbital sodium was obtained from SCI Pharmtech (Taoyuan,
Taiwan). The solvents and reagents for chromatography were purchased from J.T. Baker
(Phillipsburg, NJ, USA) and Merck (Darmstadt, Germany). Standard solutions of lenvatinib
and biochanin A were stored in methanol at −20 ◦C. Triply deionized water from Millipore
(Bedford, MA, USA) was used for all preparations.

4.2. High-Performance Liquid Chromatography-Ultraviolet (HPLC-UV)

The HPLC system consisted of a chromatographic pump (LC-20AT), an online injec-
tor (SIL-20C) equipped with a 10 µL sample loop to inject the sample and an ultraviolet
detector (SPD-M20A). Cabozantinib and samples were separated on an Agilent ZORBAX
SB-phenyl column (150 × 4.6 mm i.d. particle size = 5 µm). The mobile phase for the
cabozantinib group was water and acetonitrile (30:70, v:v) at a flow rate of 1 mL/min. The
optimal photodiode-array detection for cabozantinib was set at a wavelength of 251 nm.
The retention time of cabozantinib was 6.9 min with good separation and no endoge-
nous interference in the rat plasma samples, and the procedure exhibited good selectivity
(Figure 4). Biochanin A was used as the internal standard (IS), and the retention time of
biochanin A was 3.8 min (Figure 4).
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Figure 4. Chromatograms resulting from high-performance liquid chromatography for cabozantinib.
(A) Blank. (B) Blank spiked with cabozantinib (1 µg/mL) and biochanin A (0.75 µg/mL). (C) Plasma
scheme 60 min after cabozantinib administration (6 mg/kg, p.o.). Peak 1: biochanin A (0.75 µg/mL).
Peak 2: cabozantinib (0.8 µg/mL).

4.3. Method Validation: Calibration Curve

The calibration curves covered a concentration range from 0.05 to 10 µg/mL. The
linearity of the assay was determined using the coefficient of determination (r2) for the
calibration curve, which should be greater than 0.995. The limit of detection (LOD) was the
concentration that generated a signal-to-noise ratio of 3, and the lower limit of quantification
(LLOQ) was the lowest concentration of the linear regression that yielded a signal-to-noise
ratio of 10. The 0.05 µg/mL limit of quantification was the lowest concentration on the
calibration curve that could be measured routinely with acceptable bias and relative SD.
Calibration standards of plasma samples were prepared by adding known amounts of
cabozantinib (10 µL) into blank rat plasma (40 µL) to yield a range of 0.05–10 µg/mL. These
mixtures were supplemented with 150 µL of internal standard solution (1 µg/mL).
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4.4. Method validation: Precision, Accuracy and Recovery

The intra-assay variabilities for cabozantinib were determined by quantitating six
replicates at concentrations of 0.05, 0.1, 0.5, 1, 5 and 10 µg/mL using the HPLC method
described above on the same day (intraday) and for six consecutive days (interday). The
accuracy (% bias) was calculated as follows: accuracy (% bias) = [the nominal concen-
tration (Cnom) − the mean value of observed concentrations (Cobs)/Cnom] × 100. The
relative standard deviation (RSD) was calculated as follows: precision (% RSD) = [standard
deviation (SD)/Cobs] × 100. The same data were used to determine both accuracy and
precision. The intraday precision (% RSD) and accuracy (% bias) values were within ± 15%,
which were considered to be in the acceptable experimental concentration range. Recovery
was assessed by comparing the peak areas of the spiked samples post extraction with the
standard solution at 0.05, 0.5 and 10 µg/mL.

4.5. Experimental Animals and Drug Administration
4.5.1. Animals and Sample Preparation

The study protocol was reviewed and approved by the Institutional Animal Experi-
mentation Committee of National Yang Ming Chiao Tung University, Taipei, Taiwan, and
by the Institutional Animal Care and Use Committee (IACUC, approval number 1100322).
Adult male Sprague–Dawley rats (300 ± 20 g body weight) were provided by the Lab-
oratory Animal Center at National Yang Ming Chiao Tung University (Taipei, Taiwan).
All animal experiments followed the guidelines and procedures for the care of laboratory
animals at National Yang Ming Chiao Tung University.

4.5.2. Irradiation Technique

A freely moving rat model was designed for the current study [19]. Briefly, the whole
liver for the EBRT technique or central area 1.5 × 1.5 cm in size for the SBRT technique of
rats was localized by computed tomography. For the whole liver field, the cranial margin
was set 5 mm from the top of the diaphragm, and the caudal margin was set 5 mm lower
than the liver margin. The whole liver was targeted for irradiation. The experimental
animals were randomized to groups receiving sham RT, RT 2 Gy (RT2Gy) and RT 9 Gy
(RT9Gy) with three fractions with concurrent or sequential cabozantinib. The data were
collected from six rats per group.

4.5.3. Drug Delivery with RT under Different Time Schedules and Doses

A radiation dose of 2 Gy was considered the daily conventional dose or the off-target
dose around the target that received an ablation RT dose. Nine Gy was used to simulate
the SBRT dose. The animals were divided into five groups as follows: (A) sham group,
cabozantinib (6 mg/kg) only for 3 days (d) with RT0Gy (cabozatinib×3 d); (B) whole liver
(2 Gy with 3 fractions) RT2Gy×3 f’x concurrent with cabozantinib (6 mg/kg) for 3 days; (C)
whole liver RT2Gy×3 f’x sequential with cabozantinib (6 mg/kg) for 3 days; (D) SBRT (9 Gy
with 3 fractions) RT9Gy×3 f’x concurrent with cabozantinib (6 mg/kg) for 3 days; and (E)
RT9Gy×3 f’x sequential with cabozantinib (6 mg/kg) for 3 days (Figure 5). Rats were initially
anesthetized with pentobarbital (50 mg/kg, i.p.) and remained anesthetized throughout
the experimental period. After the surgery, the rats were placed in an experimental cage
and allowed to recover for 1 day. Cabozatinib was dissolved in triply deionized water and
administered (6 mg/kg, p.o.) to the rats (n = 6 per group).
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Figure 5. Oral cabozantinib (6 mg/kg p.o., q.d.) with radiotherapy (RT) under different time
schedules and RT doses. The rats were divided into (A) a sham group, cabozantinib (p.o., q.d. × 3 d)
with RT0Gy (cabozantinib×3d); (B) a concurrent group, cabozantinib×3d 1 h after RT2Gy in 3 fractions
(RT2Gy×3f’x) and RT9Gy×3f’x; and (C) a sequential group, cabozantinib×3d 24 h after RT2Gy×3f’x and
RT9Gy×3f’x. Data are expressed as the mean ± S.D. (n = 6 per group).

4.5.4. Sample Preparation

Blood samples were collected via polyethylene tubing (PE-50) implanted into the
jugular vein of each rat in a heparin-rinsed vial. An aliquot of 100–120 µL of blood was
collected at time intervals of 0, 5, 15, 30, 45, 60, 90, 120, 150, 180, 210 and 240 min following
drug administration. At each time point, 200 µL of blood was drawn into heparin-rinsed
Eppendorf tubes and then centrifuged at 13,000 rpm for 10 min at 4 ◦C to obtain plasma.
Plasma was stored at −20 ◦C until analysis. Each collected blood sample was transferred to
a heparinized microcentrifuge tube and centrifuged at 13,000 rpm for 10 min. The resulting
plasma (50 µL) was then mixed with 150 µL of internal standard solution (10 µg/mL).
The denatured protein precipitate was separated by vortexing for 20 s and centrifuged at
13,000 rpm for 10 min at 4 ◦C.

4.5.5. Organ Distribution

Six hours after cabozantinib administration for 3 days (6 mg/kg, p.o.), blood samples
were collected as mentioned above. The brain, liver, heart, spleen, lung and kidney were
collected and weighed. These collected samples were stored at −20 ◦C until analysis.

4.5.6. Organ Samples

The thawed organ samples were homogenized in 50% aqueous acetonitrile (the ratio
of sample weight to volume was 1:5), and the homogenate was centrifuged at 13,000× g
for 10 min at 4 ◦C. The supernatant was collected, placed in brown Eppendorf tubes, and
stored at −20 ◦C until analysis. Briefly, each organ sample (50 µL) was combined with
150 µL of IS solution (diethylstilbestrol) for protein precipitation. Finally, 20 µL of filtrate
was subjected to HPLC analysis.

4.6. Pharmacokinetics and Data Analysis

Pharmacokinetic parameters, including the area under the concentration versus time
curve (AUC), clearance (CL), elimination half-life (t1/2), volume of distribution at steady state
(Vss) and mean residence time (MRT), were calculated using the pharmacokinetics calculation
software WinNonlin Standard Edition, Version 1.1 (Scientific Consulting, Apex, NC, USA) by
a compartmental method. Relative bioavailability (RB %) = (AUCirradiated/AUCcontrol) × 100.
The results are presented as the means ± standard deviations.
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4.7. Calculations and Data Analysis

All statistical calculations were performed with Statistical Product and Service So-
lutions (SPSS) for Windows, version 20.0 (SPSS, IBM, USA). All data are expressed as
the mean ± standard deviation (SD). One-way analysis of variance (ANOVA) was used
for comparisons between groups, and statistically significant differences were defined as
* p < 0.05 or ** p < 0.01.

5. Conclusions

Taken together, these data suggest that the PK of cabozantinib cannot be modulated by
irradiation. However, the biodistribution of cabozantinib can be affected by RT, especially
in the heart and kidney. The RT9Gyx3f’x sequential regimen had a greater impact on the
biodistribution of cabozantinib than the concurrent regimen. The current understanding
of the systemic effects of cabozantinib with localized irradiation could be beneficial for
exploring RT as a synergistic tool in HCC treatment strategies.
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