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Abstract: The importance of the prevention and control of non-communicable diseases, including
obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer, is increasing as
a requirement of the aging population in developed countries and the sustainability of healthcare.
Similarly, the 2013–2030 action plan of the WHO for the prevention and control of non-communicable
diseases seeks these achievements. Adequate lifestyle changes, alone or with the necessary treatments,
could reduce the risk of mortality or the deterioration of quality of life. In our recent work, we
summarized the role of two central factors, i.e., appropriate levels of vitamin D and SIRT1, which
are connected to adequate lifestyles with beneficial effects on the prevention and control of non-
communicable diseases. Both of these factors have received increased attention in relation to the
COVID-19 pandemic as they both take part in regulation of the main metabolic processes, i.e.,
lipid/glucose/energy homeostasis, oxidative stress, redox balance, and cell fate, as well as in the
healthy regulation of the immune system. Vitamin D and SIRT1 have direct and indirect influence
of the regulation of transcription and epigenetic changes and are related to cytoplasmic signaling
pathways such as PLC/DAG/IP3/PKC/MAPK, MEK/Erk, insulin/mTOR/cell growth, proliferation;
leptin/PI3K-Akt-mTORC1, Akt/NFκB/COX-2, NFκB/TNFα, IL-6, IL-8, IL-1β, and AMPK/PGC-
1α/GLUT4, among others. Through their proper regulation, they maintain normal body weight, lipid
profile, insulin secretion and sensitivity, balance between the pro- and anti-inflammatory processes
under normal conditions and infections, maintain endothelial health; balance cell differentiation,
proliferation, and fate; and balance the circadian rhythm of the cellular metabolism. The role of these
two molecules is interconnected in the molecular network, and they regulate each other in several
layers of the homeostasis of energy and the cellular metabolism. Both have a central role in the
maintenance of healthy and balanced immune regulation and redox reactions; therefore, they could
constitute promising targets either for prevention or as complementary therapies to achieve a better
quality of life, at any age, for healthy people and patients under chronic conditions.

Keywords: vitamin D; SIRT1; metabolism; epigenetics; signaling pathways; prevention and treatment

1. Introduction

Prevention and control of non-communicable diseases, including obesity, metabolic
syndrome, type 2 diabetes, cardiovascular diseases and cancer, which possess a particular
mutually inclusive relationship, should be as important part of the health care as the
treatment of these diseases. Although it is already well known, from the example of
smoking habits, that people often do not want to effectuate changes in their lives in order to
improve their health, the research and transfer of scientific knowledge into practice and the
education of patients must not be impeded and give up. Older age should not necessarily
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be associated with diseases, as a high percentage of non-communicable diseases could be
preventable or diagnosed in an early state where adequate lifestyle changes, alone or with
necessary treatments, could reduce the risk of mortality or a deterioration in quality of life.
The expressions such as “aging population” and “sustainable health care”, which are used
more often recently, both highlight the necessity to reduce the incidence of unnecessary
disease development. Similarly, the 2013–2030 action plan of the WHO for the prevention
and control of non-communicable diseases seeks these achievements.

In relation to the abovementioned, wide scientific field, in this review we aim to select
and detail the role of only two “molecular participants”: vitamin D and sirtuin 1 (SIRT1).
Both have received increased attention in relation to the COVID-19 pandemic [1,2], as
they take part in the regulation of the main metabolic processes, i.e., lipid/glucose/energy
homeostasis [3–6], oxidative stress [7,8], redox balance [9], and cell fate [10], as well as in
the healthy regulation of the immune system [11,12]. Additionally, they are interconnected
in several layers of cellular mechanisms and in the homeostasis included in the epige-
netic regulation of transcription [13], metabolic and energy homeostasis [14], balance of
inflammatory processes [12,15], or processes which influence cardiovascular health [16,17].

It is already known from several studies that vitamin D supplementation can sig-
nificantly reduce all-cause mortality and cardiovascular disease (CVD) mortality [18–23].
Additionally, it is acknowledged that deficiency of vitamin D is associated with several
diseases, e.g., obesity [24], metabolic syndrome [25], immune dysfunction [26], insulin
resistance [27], cardiovascular disease, renin-angiotensin system/ventricular hypertro-
phy/stroke [28], Crohn’s disease/ulcerative colitis/inflammatory bowel disease [29], sys-
temic sclerosis [30], cancer [31,32], and dementia/depression/schizophrenia/ADHD [33].
Many of these are associated with a reduced level of SIRT1 as well [34,35]. Vitamin D levels
may influence the risk of infections in kidney and liver transplant recipients [36,37] and the
risk of acute rejection [38,39] and of new-onset diabetes after kidney transplantation [40].

As the length of a review is limited, here we aim only to highlight some important
interconnecting fields of the actions of vitamin D and SIRT1. Those who are interested in
greater details and would like to get to know more overlapping areas can find information
in the references.

2. The Role of Vitamin D and SIRT1 in Healthy Metabolic Regulation of Different Tissues

In this section, we will detail the role of vitamin D and, briefly, SIRT1 in healthy
metabolic regulation. Vitamin D is discussed here in more detail and length since the role
of SIRT1 had been already published in our previous work, where it is easily accessible for
those who interested in [34,35].

Vitamin D is a well-known hormone regulating bone metabolism, but there is growing
evidence of its non-classical physiological roles; however, much remains to be learned
about the underlying molecular mechanism of these effects [41,42]. This hormone has
a much wider role in the homeostasis and cellular metabolism of the human body than
simply the regulation of the calcium and phosphate level (Figure 1).

2.1. Modes of Action of Vitamin D

Two different modes of action of vitamin D are known so far. Its genetic effects are
dependent of its nuclear receptor (VDR), which is expressed in many tissues and cell
types and modulates thousands of genomic loci via chromatin changes and expression
of hundreds of primary target genes. It takes a few hours in an in vitro experiment to
observe the physiological consequences after treatments with an amount greater than the
physiological concentration of this nuclear hormone. In contrast, its non-genetic effects
occur within seconds to minutes, with or without a VDR, but without effecting gene
transcription [43]. Of note, a membrane-associated VDR is also recognized; this interacts
with CAV1, SRC, and PDIA3, opens membrane-signaling cascades with PLC, DAG/IP3,
PKC, and MAPK, and may downregulate Wnt, SSh and Notch signaling [44]. However,
the physiology of the two actions largely overlaps [43].
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Figure 1. The main roles of vitamin D and SIRT1 in tissue-specific homeostasis in the human body. 
AMPK: adenosine monophosphate-activated protein kinase, CTCF: chromatin-organizing pro-
tein—CCCTC-binding factor, PPAR-α: adenosine monophosphate-activated protein kinase, PU.1: 
partner pioneer factor, TADs: topologically associated domains, VDR: vitamin D receptor. 
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Figure 1. The main roles of vitamin D and SIRT1 in tissue-specific homeostasis in the human
body. AMPK: adenosine monophosphate-activated protein kinase, CTCF: chromatin-organizing
protein—CCCTC-binding factor, PPAR-α: adenosine monophosphate-activated protein kinase, PU.1:
partner pioneer factor, TADs: topologically associated domains, VDR: vitamin D receptor.

The effects of vitamin D on epigenetic regulation are led by changes in the chromatin
accessibility of VDRs. This is supported by the DNA binding of its enhancers, i.e., partner
pioneer factor (PU.1) [45,46], and via vitamin D-sensitive CTCF sites. These latter affect the
3D structure of chromatin through activation of some 600 of 3000 topologically associated
domains (TADs) [47,48], where vitamin D target genes are located [32].

2.2. Role of Vitamin D in Lipid Metabolism

In relation to lipid metabolism, vitamin D supplementation significantly decreased
body mass index (BMI) and body fat mass in adult patients with type 2 diabetes in a
randomized, placebo-controlled, double-blind trial, while significantly increasing the level
of adiponectin. Vitamin D supplementation also significantly enhanced levels of SIRT1
and SIRT6; however, the enhancement of the latter was more pronounced when vitamin
D was applied with Ca2+ [49]. SIRT6 plays an important role in glucose homeostasis
by increasing insulin secretion parallel with inhibition of gluconeogenesis and lipoge-
nesis and suppression of obesity-induced inflammation and insulin resistance [50,51].
Adiponectin, secreted mainly by adipose tissue, but also by the skeletal muscle, acts as
a hormone taking part in glucose and lipid metabolism as well as insulin sensitivity [52].
Adiponectin decreases the level of triglycerides (TGs) while increasing the level of high-
density lipoprotein (HDL-C) via increased hepatic production of apo-AI and ATP-binding
cassette transporter A1 (ABCA1)—a known player in HDL assembly [53]. Adiponectin
also increases fatty acid oxidation, reduces hepatic glucose production, and increases glu-
cose uptake and utilization in skeletal muscle [49]. These processes, with their activating
effects on adenosine monophosphate-activated protein kinase (AMPK) and peroxisome
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proliferator-activated receptor-α (PPAR-α), improve insulin resistance in the liver and
skeletal muscle [54]. Adiponectin could reduce inflammatory reactions as well, i.e., it
may inhibit NFκB signaling, and decrease CRP level and TNFα secretion from activated
macrophages [55]. Functions and phenotypes of macrophage and dendritic cells are also
modulated by adiponectin via stimulation of IL-10 and IL1-RA as part of adiponectin’s anti-
inflammatory property [56]. It is not surprising, considering all the abovementioned effects,
that adiponectin has an antiatherogenic role. AMPK partly produces nitric oxide (NO),
which supports endothelial health by relaxing endothelial smooth muscle and lowering
blood pressure, and, on the other hand, protects against cardiac hypertrophy as a result of
SIRT1 upregulation, PPAR-α activation, and increased fat oxidation, while simultaneously
reducing levels of inflammation [34,35].

2.3. Role of Vitamin D in Cardiovascular System

Vitamin D plays direct role in the health of the cardiovascular system as well through
its receptor, VDR [57], the expression of which was detected both in endothelial and smooth
muscle cells [58,59] as well as in the human heart [60]. Endothelial cells participate in
the regulation of blood vessel relaxation and contraction by endothelial-derived factors
and by nitric oxide (NO) production. Indeed, both 1,25(OH)2D3 and its analogs are able
to significantly reduce vascular tone by decreased production of contracting factor—as
the result of a reduced calcium influx into the endothelial cells—and by increasing the
amount of endothelial NO [61,62]. Vitamin D regulates myocardial maturation and function,
and downregulates the renin-angiotensin-aldosterone axis, thus contributing to reduction
of hypertrophic cardiovascular remodeling, myocardial fibrosis, and hypertension [63].
Vitamin D affects vasculature by regulating calcium homeostasis as well [57]. In this context,
however, not only vitamin D level, but the dynamic interaction between the parathyroid
gland, kidney, bone, vitamin D metabolites, vitamin D-binding protein (DBP), SIRT1-
Axl, and miR-34a level are all important. In healthy individuals, these interactions control,
minute to minute, the calcium homeostasis and are particularly responsive to vitamin D and
calcium intake [63,64]. Moreover, the optimal physiological parameters of these interactions
change with growth, maturation, and aging. Thus, to prevent ectopic mineralization (i.e.,
vascular calcification or tissue calcinosis), it should not be assumed that calcinosis is merely
a simple consequence of elevated calcium phosphate products due to vitamin D levels,
but should be understood as an actively regulated, complex process where substantial
heterogeneity is observed [65,66]. Additionally, this process is influenced and followed by
local inflammation and oxidative stress [67–69]. However, based on atherosclerosis models,
this can also be prevented by a normal level of vitamin D, which limits foam cell formation
and macrophage activation with vascular inflammation [70], similarly to VDR analogs
which also reduce inflammation [67]. Moreover, in uremic rats, these VDR analogs diminish
cardiovascular oxidative stress [69]. Furthermore, 1,25(OH)2D3 inhibits endothelial cell
proliferation and angiogenesis in a dose-dependent manner, which is assumed by less
vascularized tumors in 1,25(OH)2D3-treated mice [58,71]. However, the active vitamin D
hormone has a promitogenic effect as well, increasing the proliferation rate of aortic smooth
muscle cells, but it is VEGF-dependent, and VEGF receptor antagonists could blunt this
process [72,73].

2.4. Role of Vitamin D in the Immune System

VDR evolved some 550 million years ago in a boneless vertebrate where, at that
time, its evolutionary function was to control the metabolism in order to support the
immune system of ancestral vertebrates with energy [74]. This was confirmed based on
the genome-wide analysis of vitamin D signaling on the most investigated cell types of
the immune system, i.e., THP-1/monocyte/ and PBMCs. It is supposed that VDR and its
ligand first specialized in the modulation of innate and adaptive immunity [75,76] before
they took on the task of regulating bone metabolism [77]. VDR is expressed by a plethora
of immune cells including monocyte/macrophages, dendritic cells, neutrophils, and T and
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B lymphocytes [78,79]. Therefore, these cells are a potential target for the prevention of
immune-related diseases such as multiple sclerosis and rheumatoid arthritis [80–82]. An
amount of 15 [77], 10 [83], or 19 [84] key vitamin D target genes were found and classi-
fied according to their primary functions in immune-related cells depending on selected
datasets and analysis (Table 1). Most of the proteins encoded by these genes are located
in the plasma membrane; some of these are secreted, and few of them act in the nucleus
or in the cytoplasm (Table 1). Their main functions in the immune system were defined
as: 1. autoimmunity, 2. infection in general, 3. acute response to infection [77], or as:
1. immune response, 2. metabolism and transport, 3. proliferation, differentiation, and
apoptosis [83], or as: 1. neutrophil activation, 2. positive regulation of TNF production,
3. inflammatory response, 4. neutrophil degranulation, 5. negative regulation of T cell pro-
liferation, 6. positive regulation of cytokine secretion [84]. Additionally, signaling pathway
impact analysis (SPIA) resulted in the identification of seven common pathways that are
primarily based on the above indicated target genes: (a) Th1 and Th2 cell differentiation,
(b) Th17 cell differentiation, (c) antigen processing and presentation, (d) inflammatory
bowel diseases, (e) tuberculosis, (f) leishmaniasis, and (g) toxoplasmosis [83]. Moreover,
downregulation of HLA-DRA and HLA-DRB1 were prominently involved in all the seven
pathways, while the upregulation of LAMB3 played a role in toxoplasmosis [83]. Vitamin
D reduces chronic inflammation by inhibition of the Akt/NFκB/COX-2 pathway [85,86]
and through Nrf2 activation [87]. Through the action of adiponectin, Vitamin D inhibits
NFκB signaling and decreases inflammatory cytokines, such as TNFα, and CRP level; in ad-
dition, Vitamin D possesses anti-inflammatory properties through stimulation of IL-10 and
IL1-RA [55,56]. Additionally, vitamin D signaling in macrophages induces the catabolism
of the branched-chain-amino acid (BCAA) in a cell-specific manner [42]. The level of BCAA
is an indicator of the metabolic status, the level of protein synthesis and the degree of
autophagy, as well as other metabolic pathways regulated by mTOR in myeloid cells [88].
Downregulation of mTOR leads to the enhancement of autophagy, which plays a role in
controlling intracellular pathogens by macrophages [42]. These data suggest that vitamin
D has a wide range and complex effect on the regulation of a healthy immune system.

Table 1. Key vitamin D target genes, locations, and function of transcribed proteins in immune
cells [77,83,84].

Number Key Vitamin D
Target Genes Location Function Processes Ref

1 ACVRL1 plasma membrane TGF-β receptor//serine/
threonine kinases signaling

[77]

2 CD14 plasma membrane TLR coreceptor innate immunity

3 CD93 plasma membrane intercellular adhesion, clearance of
apoptotic cells innate immunity

4 LILRB4 plasma membrane leukocyte immunglobulin-like
receptor (LIR) inhibiting immune response

5 LRRC25 membrane bound in the
cytoplasm

inhibition of IFN and NFκB
signaling pathways inhibiting immune response

6 NINJ1 plasma membrane adhesion molecule
inflammation, cell death,
axonal growth, cell chemotaxis,
and angiogenesis

7 SEMA6B plasma membrane axon guidance NS development

8 THBD plasma membrane thrombin receptor coagulation

9 TREM1 plasma membrane receptor (Ig superfamily member)
amplifies neutrophil and
monocyte-mediated
inflammatory responses

10 CAMP secreted antimicrobial peptid innate immunity
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Table 1. Cont.

Number Key Vitamin D
Target Genes Location Function Processes Ref

11 FN1

plasma membrane,
extracellular matrix,
secreted into the
plasma (blood)

glycoprotein

cell adhesion and migration
processes (embryogenesis,
wound healing, blood
coagulation, host defense,
and metastasis)

12 SRGN secretory granules in
hemapoetic cells

secretory granule formation, mediator of
cytotoxic cell granule-mediated apoptosis,
regulates MMP2 and TNF-α secretion,
inhibits bone mineralization

innate and adaptive immunity,
Ca2+ homesotasis

13 CEBPB nucleus

transcription factor, regulation of immune
and inflammatory response, adipogenesis,
gluconeogenesis, liver regeneration,
hematopoesis, osteoblast differentiation,
osteoclastogenesis

innate and adaptive immunity,
metabolism, bone hoeostasis

14 THEMIS2 cytoplasm and nucleus

T cell receptor signaling, regulation of B
cell activation, macrophage inflammatory
response, promotes LPS-induced
TLR4-mediated TNF production

innate and adaptive immunity

15 MAPK13
cytoplasm (member of
MAP kinase family, a p38
MAP kinase)

mediates extracellular stimuli;
activating ELK1, ATF2 trascription factors,
prolactin signaling,

innate and adaptive
immunity, proliferation,
differentiation, transcription
regulation, development

1 CYP24A1 mitochondria degradation of 1,25-dihydroxyvitamin D3,
calcium homeostasis, vitamin D endocrine system

[83]

2 G0S2 mitochondria positive regulation of extrinsic apoptotic
pathway, binding to BCL2 regulation of apoptosis

3 HBEGF secreted,
extracellular space growth factor

SMC proliferation, cardiac
valve formation, normal
heart function

4 SEMA6B type I membrane protein cell surface repellent axon guidance

5 THBD endothelial specific type I
membrane receptor receptor of thrombin bind thrombin, conversion of

protein C to activated protein C

6 AQP9 plasma membrane, multi
pass membrane protein water channel

permeable for glyerol and urea,
mediate passage of small,
non-charged solutes
(carbamides, polyols,
purines, pyrimidines)

7 CCL7 secreted
chemotactic factor, attracts moncytes and
eosinophils but not neutrophils, binds
heparin, CCR1/2/3

attracts macrophages during
inflammation and metastasis,
augments monocytes antitumor
activity, induces release of
gelatinase B

8 PVALB cytoplasm, nucleoplasm high-affinity calcium binding
muscle relaxation in muscle
cells, calcium binding in
GABAergic cells

9 CD1E plasma membrane,
MHC-type protein

form heterodimers with
beta-2-microglobulin

presentation of lipid and
glycolipid antigens to T cells

10 NRG1
plasma membrane,
single-pass type I
membrane protein

ligand of ERBB3/4 tyrosine
kinase receptors

growth, differentiation of
epithelial, glial, neuronal and
skeletal muscle cells,
stimulating milk production,
mammary tumor
cell differentiation
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Table 1. Cont.

Number Key Vitamin D
Target Genes Location Function Processes Ref

1 CD14 plasma membrane TLR co-receptor

innate immunity (independent
of the size of the tested target
gene set, gene ontology analysis
indicates that the modulation of
innate immunity is the main
physiological outcome of a
vitamin D stimulation of
human monocytes)

[84]

2 ORM1 vesicles in the cytoplasm acute phase plasma protein

3 CAMP secreted antimicrobial peptid

4 FBP1 mitochondria glucose metabolizing enzyme

5 CYP26B1 endoplasmatic reticulum
Drug- and retinoid metabolism, and
synthesis of cholesterol, steroids and
other lipids

6 TSPAN18 plasma membrane unknown

7–19 +13 other genes

top five biological pathways: neutrophil activation, positive regulation
of TNF production, inflammatory response, neutrophil degranulation,
negative regulation of T cell proliferation, positive regulation of
cytokine secretion

2.5. Role of Vitamin D in Redox Homeostasis

In redox homeostasis, vitamin D and plant polyphenols, i.e., green tea catechins,
hydroxytyrosol (HT), curcumin, and NAD/NADH-SIRT1-inducer resveratrol in a low
dose, can activate antioxidant signaling pathways to maintain cellular redox homeostasis
by the upregulation of cytoprotective genes (i.e., heat shock protein 70/Hsp70/, heme
oxygenase-1/HO-1/, glutathione redox system, SIRT1, NAD(P)H:quinone oxidoreduc-
tase/NQO1/, γ-glutanylcysteine synthetase/γ-GCS, etc.), important players in the redox
stress response and autophagy mechanism [87]. In this context, mutagenic agents, such
as environmental pollutants, radiation, or dietary mutagens [89,90], as well as chronic
metabolic conditions [34,35,91], may result in the formation of reactive oxygen species
(ROS) and reactive nitrogen species (RNS), which then undergo chemical reactions with
cellular proteins, lipids, and DNA contents, inducing carcinogenesis [87,92]. Vitamin D and
polyphenols—in addition to their scavenging effects on ROS/RNS, and similarly to ROS
itself—can activate Nrf2 transcription factor, which regulates the expression of antioxidant
enzymes, detoxifying factors, antiapoptotic proteins, and drug transporters [93]. Through
this process, Vitamin D and polyphenols protect normal cells from carcinogenesis and are
able to suppress the progression of cancer cells and sensitize them to therapy [87,94,95].
The antioxidant effect of vitamin D was demonstrated in hyperglycemia-induced renal in-
jury [95]. These data suggests that plant vitamin D and polyphenols have application potential
in the prevention and treatment of the aforementioned diseases, including cancers [87].

Although there are several other areas where vitamin D acts in the human body, in
relation to SIRT1 action and the possible double action in prevention of non-communicable
diseases, those detailed are the most important processes, as these have a broad influence
on other cellular and metabolic processes and on homeostasis.

2.6. Role of SIRT1 in Healthy Metabolic Regulation

In our previous review, the specific role of SIRT1 in the healthy metabolic regulation
of different tissues was already detailed. We also highlighted the feasibility of lifestyle
modifications (appropriate physical activity, calorie intake, dietary intake, circadian rhythm,
emotional/cognitive states) to achieve higher levels of SIRT1 for optimal tissue-specific
functions [34,35]. Briefly, SIRT1 is significantly increased by calorie restriction, changes in
the composition of one’s diet, appropriate type and intensity of exercises, and by positive
mental function in both healthy and diseased patients. These lifestyle changes, corre-
lated with increased SIRT1, were followed by beneficial physiological changes such as
significantly decreased body weight, visceral fat, BMI, triglicerid, LDL, insulin, glycated
haemoglobin, and leptin level, while significantly increased the levels of NOx, HDL, FFA,
the insulin sensitivity, the level and activity of AMPK, PPARγ and PGC-1α level, and
mitochondrial biogenesis [96,97]. These resulted in significant changes in the function of
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the immune system, namely, a significant decrease in the TLR4 proinflammatory pathway
and in IFNγ, IL-1β, IL-6, IL-8, and TNFα levels [98]. In addition, significant decreases were
observed in oxidative stress level, insulin/mTOR/cell growth and proliferation, and in
leptin/PI3K-Akt-mTORC1 pathways, which are implicated in obesity-related conditions
such as diabetes, cardiovascular diseases, and cancer [99,100]. In addition, these lifestyle
changes significantly reduced activation of the inflammation-related NFκB pathway and
expression of MMP-9 [101,102]. Additionally, resveratrol, a dietary polyphenol, induces SIRT1
expression and, by activating signaling pathways and transcription factors, regulates cell cycle,
apoptosis, and angiogenesis in immune cells [103–105]. This dietary polyphenol reduces the
level of proinflammatory cytokines (TNF-α, IL-1β), enzymes (iNOS, COX-2), and activation
of signaling pathways (NFκB) [106]. The anti-inflammatory effects of resveratrol suggest its
application as a complementary therapy for immune-mediated diseases [104]. Additionally,
resveratrol inhibits initiation, promotion, and progression of cancer development [107,108]. In
redox the mechanism, it shows scavenging capacity, by increasing levels of NOS and SIRT1,
and improves mitochondrial function [109]. Moreover, in cancer cells, resveratrol can promote
ROS production for cell cycle arrest and apoptosis [110,111]. On the other hand, it is protective
to neurons, as demonstrated in Alzheimer’s and Parkinson’s models [112].

2.7. Connection and Importance of Circadian Rhythm in SIRT1-Regulated Metabolism

As we described in our previous review, the circadian rhythm is the basis of all
diurnal behaviors and energy/metabolic processes [34,35,113]. Circadian control of cellular
metabolism has two main clocks: 1. the master or central clock in the suprachiasmatic
nucleus (SCN) receives direct input from the retina (light/dark cycle), and 2. the peripheral
clock includes feeding–fasting cycles, temperature cycles, and chemical inducers such as
dexametasone [114]. The two main clocks can control/influence each other. It has been
reported that circadian alterations are frequent in metabolic syndrome, cancers, and mood
disorders [115]. According to descriptions in the literature, smoking is able to disrupt
circadian rhythm, decreases SIRT1 expression, and is strongly associated with metabolic
imbalances and inflammation [116,117]. SIRT1 deacetylates two central components of the
circadian clock (BMAL1 and PER2) in the liver and, thus, controls liver-specific circadian
regulation of metabolic processes and, through PGC-1α activation, the metabolic and
energy pathways connected to transcriptional output [97,118].

3. Vitamin D and SIRT1 in Relation to Non-Communicable Diseases Including Cancer

In addition to the skin, both the liver and the kidney are key organs in vitamin D
metabolism. The inactive vitamin D3 (cholecalciferol), which is formed in the skin from
7-dehydrocholesterol, undergoes two important modifications. The first takes place in
the liver through 25-hydroxylation (25(OH)D3, calcifediol, or calcidiol). Thereafter, the
final conversion to active autocrine hormone 1,25(OH)2D3 (calcitriol), for the most part,
takes place in renal proximal tubular cells by CYP27B1 1α –hydroxylase, a multicompo-
nent/multifunction enzyme in the mitochondria [85,119]. Several vitamin D metabolites
are generated in the liver, the kidney, and in other tissue types, which are then excreted
in the urine [120–123]. The most investigated and important forms are 24-hydroxylated
(i.e., 24,25-dihydroxyvitamin D3, 1,24,25-trihydroxyvitamin D3); these forms are converted
from 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3, respectively. CYP24A1 24-
hydroxylase enzyme, which is responsible for these conversions [124–127]—similarly to
CYP27B1, a multicomponent enzyme in the mitochondria—is regulated by calcium, phos-
phorus, and 1,25-dihydroxyvitamin D3 through the VDR [125,126]. Long-term imbalance
in this system or an inappropriate amount of cytochrome P450 enzymes—which control the
production, regulation, and degradation of vitamin D—can cause vitamin D insufficiency-
related diseases [128]. Thus, abnormally elevated levels of CYP24A1 can create a deficit in
vitamin D levels, since this enzyme is uniquely responsible for the catabolism of vitamin
D. Elevated levels of CYP24A1 are observed in breast, prostate, esophageal, colon, and
lung cancers [129,130], genetically linked hypophosphatemia [131,132], diabetic nephropa-
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thy [133,134], and CKD [135,136]. Deficiency of vitamin D can also develop due to an
inadequate amount of sun exposure and insufficient nutritional supplementation, or it can
appear as a result of certain diseases, e.g., diabetes, cancer, chronic kidney disease (CKD),
or genetically linked hypophosphatemia [137].

3.1. Effect of Vitamin D and SIRT1 on Metabolic Syndrome

Metabolic syndrome (MetS) is defined with well-determined metabolic alterations [34,35],
which serve as a favorable breeding ground and characteristic indicators for many dis-
eases, e.g., obesity, type 2 diabetes (T2DM), CVD, hypertension, cancers, and mental
disorders [138–143]. It has been shown that vitamin D deficiency is associated with T2DM
development [144,145], and its level is negatively correlated with the disease state and
positively with insulin sensitivity [146]. We detailed above that vitamin D and SIRT1 have a
significant role in a healthy lipid metabolism, as well as in the healthy relationship between
metabolic/energy homeostasis and the immune system, where both are linked to regulatory
molecules. Indeed, decreased vitamin D is associated with MetS as a whole, and with some
components, such as obesity, increased BMI, dyslipidemia, increased blood pressure, and
altered insulin and glucose metabolism [25,147]. Thus, vitamin D and SIRT1 may play a
beneficial role in the prevention and complementary treatment of metabolic syndrome, since
both are key molecules in metabolic/energy sensing and in immune regulation [34,35].

3.2. Effect of Vitamin D and SIRT1 on CVD

Vitamin D has important roles in cardiovascular health, as was mentioned above,
and, in addition to other risk factors, such as smoking, high cholesterol, hypertension,
obesity, and diabetes, vitamin D deficiency is connected to the occurrence of cardiovascular
diseases (CVD) [148–150]. Although observational studies, preclinical studies, and ran-
domized control trials all showed the beneficial effect of vitamin D on vascular and cardiac
functions, linear Mendelian randomization and large clinical trials failed to demonstrate
significant benefits on CKD and high-risk CVD populations [151]. However, the vast
majority of these trials of vitamin D supplementation did not restrict the study populations
to individuals with vitamin D deficiency and did not follow-up the changes of vitamin D
level during the trial, correlating the end points with these changes [152]. Additionally,
nonlinear Mendelian randomization found significant benefits of vitamin D supplemen-
tation on CVD risks [153]. However, the significant positive effect of vitamin D is widely
accepted only on the reduction of CVD-related mortality [19,20,23] and all-cause mortal-
ity [18,21,22]. The micro-RNA mir34a promotes calcification in vascular smooth muscle
cells by downregulation of SIRT1 and Axl [64]. An appropriate level of SIRT1 decelerates
vascular calcification by affecting several osteogenic processes, including the reversal of
osteogenic phenotypic transdifferentiation in vascular smooth muscle cells, upregulation
of eNOS and FoxOs, activation of antioxidant properties, and enhancement of adiponectin
release from perivascular adipose tissue [16]. Resveratrol and SIRT1 activators improve
cardiovascular health by improving systolic blood pressure and mean arterial pressure,
decreasing triglyceride, leptin, inflammation level (Il-6, IL-8, TNFα and CRP) [154], and by
maintaining endothelial function and by ameliorating events related to endothelial dys-
function, e.g., impaired vasorelaxation, eNOS uncoupling, leukocyte adhesion, endothelial
senescence, and endothelial mesenchymal transition [155].

3.3. Effect of Vitamin D and SIRT1 on CKD

Kidney function is indispensable for the synthesis of calcitriol, which allows intesti-
nal calcium absorption in order to maintain extracellular calcium as well as phosphate
levels. Therefore, the loss of kidney function leads to elevation of parathyroid hormone
(PTH) and, eventually, induces hyperplastic parathyroid growth to re-establish calcium
and phosphate balance [156]. The expression, activity, and regulation of 1α-hydroxylase,
which is induced by PTH, hypocalcemia, and hypophosphatemia and repressed by FGF23,
hyperphosphatemia, hypercalcemia, and calcitriol, is impaired in CKD [157]. The com-
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plex of calcidiol and vitamin D-binding protein (25(OH)D3/DBP) is filtered through the
glomerulus from the circulation and is actively endocytosed into the proximal tubular
cells by megalin, a member of the LDL receptor superfamily in the apical membrane [158].
Although PTH is upregulated in CKD, it is insufficient to restore calcitriol synthesis, as
the elevated calcium and phosphate levels induce FGF23, metabolic acidosis, and PTH
fragments directly inhibiting even non-renal 1α-hydroxylase expression and activity [159].
Additionally, normal kidney function is essential in the maintenance of the serum level of
25(OH)D3 for local activation by non-renal 1α-hydroxylase and the autocrine/paracrine
actions of the VDR [156]. Since, in CKD, both the glomerular filtration rate (GFR) and
megalin content are lower, the amount of ultrafiltrated 25(OH)D3/DBP is also lower. How-
ever, a sufficient amount of ultrafiltrated 25(OH)D3/DBP is required both for its recycling
into the circulation to act as a substrate of non-renal conversion and for conversion to
calcitriol in the kidney. Therefore, a vicious cycle develops [160–162]. Consequently, the
correction of the 25(OH)D3 deficiency is necessary and sufficient in hemodialysed, and
more so in anephric patients, to prevent calcitriol deficiency at an early stage of kidney
disease. Moreover, epidemiological studies suggest that vitamin D deficiency is associated
more strongly than calcitriol deficiency with a higher risk of disease progression and death in
CKD [156]. Of note, the age-dependent decline of renal function observed over the age of 60
resulted in impaired postprandial calcium excretion. Therefore, the daily intake of vitamin
D should be considered in light of this physiological decline, in order to prevent vitamin D
toxicity in relation to abnormal serum and vascular calcium and phosphate homeostasis [63].

As the liver and the kidney play crucial roles in the maintenance of the active vi-
tamin D level, liver and kidney transplant recipients more frequently develop vitamin
D deficiency [163,164]. Additionally, these patients have a higher ratio of vitamin D
deficiency-associated comorbidities, such as fractures, diabetes, and infections [165,166].
Since vitamin D regulates the immune system, alteration in its level affects the outcome
of allografts, e.g., acute cellular rejection (ACR) and infection [39]. Similarly, several other
studies reported that transplanted patients have a higher risk of infections [36,37,167–169]
and rejections [38,170]. Thus, vitamin D supplementation and tight follow-up of its level is
important in transplant recipient patients [39].

3.4. Effect of Vitamin D and SIRT1 on Immune System-Related Diseases

1,25(OH)2D3/VDR signaling is implicated in human innate and adaptive immune
response [82,171], but it appears to be species-specific and cell-specific [42]. Based on
mouse models, the beneficial effects of vitamin D are suggested in allergies, autoimmune
and inflammatory diseases such as inflammatory bowel disease (IBD) [172–174], multiple
sclerosis (MS) [175,176], autoimmune encephalomyelitis [177], diabetes [178–180], sys-
temic lupus erythematosus (SLE) [181], rheumatoid arthritis (RA) [82], and asthma [182].
Prospective observational studies have found that higher vitamin D level is associated
with lower rates of T2DM [183], and animal studies suggest that vitamin D promotes
β-cell biosynthetic capacity and conversion of proinsulin to insulin [184]. Additionally,
vitamin D increases insulin sensitivity, possibly through increased Ca2+ influx, stimulated
insulin receptor expression, activation of GLUT-4 glucose transporter, and activation of
peroxisome proliferator-activated receptor delta (PPAR-δ) [183,185]. However, RCTs failed
to prove the positive effect of vitamin D supplementation in risk reduction of T2DM, al-
though patients were not stratified by vitamin D deficiency and the levels of vitamin D
were not continuously monitored during the follow-up, similarly to other RCTs in relation
to other diseases [186,187]. A meta-analysis of observational studies found significantly
decreased vitamin D levels in SLE patients compared to healthy subjects; therefore, vitamin
D supplementation with regular monitoring is suggested as part of the health management
of SLE patients [181]. Vitamin D induces BCAA catabolism in macrophages and leads to
mTOR inhibition; however, parallel to this, it induces the expression of amino acid trans-
porter SLC7A5 in macrophages but not in epithelial cells [42]. SLC7A5 expression level in
macrophages positively correlated with clinical parameters and inflammatory conditions
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in RA patients, and its pharmacological blockade significantly reduced IL-1β level, a down-
stream target of leucin-mediated mTORC1, the signaling contributor of proinflammatory
cytokine production [88]. These findings seem contradictory; however, it is possible that
appropriate vitamin D levels simultaneously increase the uptake of amino acids and inhibit
mTOR while SLC7A5 then fuels normal anabolic pathways. In contrast, vitamin D in a
low level is likely not able to properly coordinate this metabolic network. Additionally, as
synovial T cells are relatively insensitive to 1,25(OH2)D3 compared to circulating blood
immune cells, treatment with vitamin D is more potent for enhancing a localized reaction
in combination with other RA therapies [188,189]. Moreover, these seemingly contradictory
results may have originated in the heterogeneity of this disease; of note, few studies have
addressed the analysis of RA subgroups and stages [82]. Although the specific benefits of
vitamin D supplementation for treatment and prevention of RA are less accepted because of
inconsistent results in randomized clinical trials, conceivable benefits for the improvement
of disease of RA, SLE, and osteoarthritis have been reported in meta-analyses [190]. Thus, it
is advisable for patients with RA to maintain a serum 25(OH)D3 level of at least 30 ng/mL
(75 nmol/mL) to prevent osteomalacia, secondary osteoporosis, and fractures [190]. In
asthmatic patients, a significant reduction of exacerbation was associated with vitamin D
supplementation; this was more pronounced in a subgroup of patients, where vitamin D
insufficiency (<30 ng/mL) was diagnosed [182].

3.5. Effect of Vitamin D and SIRT1 on Cancer Cells

In relation to cancer cells, vitamin D promoted epithelial differentiation [191] and,
consequently, decreased cell proliferation and differentiation in many cancer types, both by
direct and indirect pathways [32,192,193]. Vitamin D induced apoptosis [194] and markedly
modulated methylation, which leaded to gene repression by histone modification of the
DNA [195]. Vitamin D upregulated p21WAF/CIP and p27KIP inhibitors of cell cycle arrest in
colorectal cancer cells, and since the promoter region of p21 contains vitamin D response
elements, calcitriol can directly regulate p21 transcription [196]. The promotion of VDR/β-
catenin binding reduced the amount of β-catenin binding to T cell factor (TCF), which
induces expression of E-cadherin as well as extracellular Wnt inhibitor DKK-1 [197–199].
CYP24A1 mitochondrial protein expression, which determines the half-life of 1,25(OH2)D3,
is regulated both by its methylation status and by vitamin D. Its inhibition facilitates the
antiproliferative effect of vitamin D on the downregulation of the WNT/β-catenin pathway
and on the inhibition of targeted genes, e.g., c-Myc, TCF1, and LEF1 [200]. Vitamin D sup-
pressed antiapoptotic protein expression while inducing proapoptotic protein expression
on colorectal cancer cells, but not in normal colon epithelia, where it inhibited proapoptotic
signaling by the downregulation of PUMA [199]. Vitamin D diminished the expression
of HIF-1, VEGF, as well as IL-8, which are all important angiogenic factors [201]. Vitamin
D-induced Nrf2, at a low level, can protect cells from carcinogenic ROS and inflammation,
but its constitutive activation caused by mutations or pro-oncogenic signaling can protect
cancer cells from cytotoxic effects of chemotherapy, creating chemoresistance [87,199]. Since
there are several vitamin D target genes regulating proliferation, migration, invasiveness,
differentiation, angiogenesis, extracellular matrix, or immunomodulation of cancer cell,
this highlights the possible impact of an appropriate level of vitamin D on its anticancer
role [32]. In a meta-analysis of cohort studies, a highly significant linear dose–response
relationship was found between the overall survival of breast cancer patient and circulating
25(OH)D3 level [21]. Similarly, other prospective and retrospective epidemiological studies
reported an association between a 25(OH)D3 level below 20 ng/mL and a 30–50% increased
risk of colon, prostate, and breast cancer and higher mortality [85]. A systematic review
found that vitamin D supplementation induced a shift in colon microbiome composition
and increased its diversity [191]. In renal cancer, VDR expression is a prognostic marker
and its higher expression predicted a better survival rate [202]. Resveratrol, a natural an-
tioxidant polyphenol and dietary component which upregulates SIRT1, induced apoptosis
through activation of p53 by the PI3K pathway, parallel with the inhibition of S6 ribosomal
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protein in breast cancer cells [203]. This dietary component inhibits estrogen-induced breast
carcinogenesis as well through induction of the Nrf2-mediated pathway [204,205]. More-
over, it reverses doxorubicin-chemoresistance by the upregulation of the SIRT1/β-catenin
signaling pathway [206]. Studies investigating SIRT1/vitamin D/FOXO interaction suggest
a link between VDR, SIRT1, and FOXO3 function, and provide a molecular basis for the
cancer chemoprevention actions of 1,25(OH2)D3 [207–209]. Resveratrol suppressed ovarian
cancer growth and liver metastasis by inhibiting glycolysis and targeting the AMPK/mTOR
pathway [210]. In addition to the beneficial effects of resveratrol on cancer cells, by in-
ducing apoptosis under hypoxia while not affecting normal cells, it also attenuated their
migratory properties through downregulation of hypoxia-induced LPA and subsequent
activation of HIF-1α and VEGF signaling [92]. Resveratrol, in a cell and organ specific
manner, can induce or inhibit hypoxia and ROS production, but both ultimately resulted in
cell death in the cancer cells [92]. Additionally, resveratrol suppressed the production of
extracellular matrix degrading and remodelling of MMP-2 and MMP-9 [211]. Resveratrol
reduces the level of TNF-α, IL-1β, and IL-6 proinflammatory cytokines and suppresses
STAT3 and NFκB signaling [212,213]. Moreover, it modulates non-cancer cells in the tumor
microenvironment (e.g., CAFs, macrophages, T cells, and endothelial cells), facilitating
their tumor-suppressive effects [92]. Resveratrol was suggested as potential alternative
to NSAID and selective COX inhibitor in CRC chemoprevention, demonstrating no obvi-
ous side effects even after daily oral administration of 5 g/day for 14 days, as reported
in a clinical trial [214]. Finally, a dosage ranging from 0–200 µM in combination with
FOLFOX (10 µM) was sufficient to enhance antitelomeric and apoptotic potential through
resensitization to chemotherapy [87,215].

4. Cooperation of Vitamin D and SIRT1 Pathways

Evidence shows a direct and indirect connection of vitamin D and SIRT1, where
direct influence exists, on the one hand, through binding of VDR to SIRT1 promoter or to
SIRT1 and other proteins in a transcription complex [3,7,13,207,209,216–218] and, on the
other hand, through epigenetic modifications, by regulating each other [13,32,219]. The
indirect routes involve activation of signaling pathways by molecules such as adiponectin,
AMPK, resveratrol, methyl-donors, etc., which upregulate/activate either SIRT1 or vitamin
D pathways [8,49,96,220–224]. We briefly summarize the possible interaction of vitamin D and
SIRT1 in relation to the regulation of signaling pathways and targeted molecules in Figure 2.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 26 
 

 

sufficient to enhance antitelomeric and apoptotic potential through resensitization to 
chemotherapy [87,215]. 

4. Cooperation of Vitamin D and SIRT1 Pathways 
Evidence shows a direct and indirect connection of vitamin D and SIRT1, where di-

rect influence exists, on the one hand, through binding of VDR to SIRT1 promoter or to 
SIRT1 and other proteins in a transcription complex [3,7,13,207,209,216–218] and, on the 
other hand, through epigenetic modifications, by regulating each other [13,32,219]. The 
indirect routes involve activation of signaling pathways by molecules such as adiponectin, 
AMPK, resveratrol, methyl-donors, etc., which upregulate/activate either SIRT1 or vita-
min D pathways [8,49,96,220–224]. We briefly summarize the possible interaction of vita-
min D and SIRT1 in relation to the regulation of signaling pathways and targeted mole-
cules in Figure 2. 

 
Figure 2. Cooperation of vitamin D and SIRT1 in the regulation of signaling pathways, transcription, 
and cellular metabolism [3,7,8,12,13,32,43,44,49,87,95–97,199,204,205,207–209,216–219,221–223]. 
VDR: vitamin D receptor, VDRE: vitamin D-responsive elements, CTCF: chromatin organizing pro-
tein—CCCTC-binding factor, TADs: topologically associated domains. 

4.1. Direct Interaction of Vitamin D and SIRT1 
4.1.1. Interaction through Binding of VDR to SIRT1 Promoter Region 

Ligand-bound VDR can directly bind to SIRT1 promoter and induce SIRT1 transcrip-
tion [13]; then, the translated enzyme can activate AMPK [3,7]. This results in reduced fat 
deposition in skeletal muscle and increased mitochondrial biogenesis and oxidative ca-
pacity of muscle fibers [3]. Vitamin D supplementation through SIRT1 upregulation de-
creased NOX4 expression and ROS production and increased Nrf2 and GLUT4 expression 
and glucose uptake in high-glucose-treated adipocytes and diabetic mice on a high-fat 
diet [7]. Additionally, vitamin D supplementation in diabetic mice reduced oxidative 
stress-induced renal damage through upregulation of SIRT1 and subsequent reduction of 
NOX4, a NAPH oxidase, which is a characteristic isoform found in the kidney; a high level 
of NOX4 promotes diabetic nephropathy [95]. Vitamin D deficiency, through decreased 
SIRT1 level, led to increased fat deposition in adipocytes and macrophage infiltration par-
allel with increased proinflammatory cytokine IL-6 and TNFα as well as decreased 

Figure 2. Cooperation of vitamin D and SIRT1 in the regulation of signaling pathways, transcrip-
tion, and cellular metabolism [3,7,8,12,13,32,43,44,49,87,95–97,199,204,205,207–209,216–219,221–223].
VDR: vitamin D receptor, VDRE: vitamin D-responsive elements, CTCF: chromatin organizing
protein—CCCTC-binding factor, TADs: topologically associated domains.



Int. J. Mol. Sci. 2023, 24, 6154 13 of 25

4.1. Direct Interaction of Vitamin D and SIRT1
4.1.1. Interaction through Binding of VDR to SIRT1 Promoter Region

Ligand-bound VDR can directly bind to SIRT1 promoter and induce SIRT1 transcrip-
tion [13]; then, the translated enzyme can activate AMPK [3,7]. This results in reduced
fat deposition in skeletal muscle and increased mitochondrial biogenesis and oxidative
capacity of muscle fibers [3]. Vitamin D supplementation through SIRT1 upregulation de-
creased NOX4 expression and ROS production and increased Nrf2 and GLUT4 expression
and glucose uptake in high-glucose-treated adipocytes and diabetic mice on a high-fat
diet [7]. Additionally, vitamin D supplementation in diabetic mice reduced oxidative stress-
induced renal damage through upregulation of SIRT1 and subsequent reduction of NOX4,
a NAPH oxidase, which is a characteristic isoform found in the kidney; a high level of
NOX4 promotes diabetic nephropathy [95]. Vitamin D deficiency, through decreased SIRT1
level, led to increased fat deposition in adipocytes and macrophage infiltration parallel
with increased proinflammatory cytokine IL-6 and TNFα as well as decreased PGC1α, an
important molecular partner of the SIRT1/PGC1α antioxidant pathway [12,95].

4.1.2. Interaction through Binding of VDR to SIRT1 Protein or via Epigenetic Modifications
of Each Other

VDR can induce expression of both FOXO proteins and SIRT1 and, in a ligand-
independent manner, can interact with FOXOs. Additionally, in a ligand-dependent
manner, VDR recruits SIRT1 to the VDR/FOXO complex and increase FOXO protein
activity and binding to target genes—possibly through deacetylation, similarly to vitamin
D regulated SIRT1-induced β-catenin and NFκB deacetylation [207,208].

Vitamin D-sensitive CTCF sites, in the presence of vitamin D, open TADs, which
contain SIRT1 promoters and, thus, can activate SIRT1 transcription through epigenetic
changes of chromatin and direct binding to the SIRT1 promoter [32,221]. SIRT1 can also
modify the activity and DNA-binding capacity of VDR through deacetylation, similarly to
epigenetic modifications of other transcription factors [13,219,221].

4.2. Indirect Interaction of Vitamin D and SIRT1

Vitamin D can also upregulate SIRT1 protein expression by regulating signaling pathways.
Through the upregulation of adiponectin and consequent activation of AMPK, Vitamin D can
induce SIRT1 expression [34,35,49]. Cytoplasmic membrane-bound VDR, through activation
of SRC, PLA2, PKC, and, consequently, MAPKs, can induce both VDRE and non-VDR
target gene transcription, both of which can induce SIRT1 upregulation [43,44,219,221,223].
The antioxidant and antiapoptotic effect of vitamin D is regulated through the activation
of the MEK/Erk pathway, which upregulates SIRT1 expression, similar to the process
reported in relation to neuronal apoptosis in brain injury, where Erk/SIRT interaction has a
neuroprotective role [8]. Vitamin D supplementation inhibited PARP1, a molecule which
is important, not only in DNA damage repair, but also in the regulation of cellular stress
response, where it blocks SIRT1 function by the depletion of cellular NAD+ level [95].
PARP1 inhibition by vitamin D supplementation had protective effect against diabetic
cardiomyopathy, partly through the PARP1/SIRT1/mTOR pathway [217].

5. Potential Applications of Vitamin D and Induction of SIRT1 in the Prevention,
Treatment, and Reduction of Mortality Risk of Non-Communicable Diseases
5.1. Guidelines for Vitamin D Status and Its Daily Intake

As detailed in Table 2, the Institute of Medicine (IOM) and the Endocrine Society
provide slightly different guidelines for the classification of vitamin D status based on the
blood’s 25(OH)D3 level [183].



Int. J. Mol. Sci. 2023, 24, 6154 14 of 25

Table 2. Recommendations for the classification of vitamin D status based on blood’s 25(OH)D3

level [183]. IOM: Institute of Medicine, ES: Endocrine Society.

25(OH)D3 LevelLevel (ng/mL) Recommendation of IOM Recommendation of ES

lower than 12 deficiency deficiency
12–19 inadequacy deficiency
20–29 sufficiency insufficiency
30–49 sufficiency sufficiency

higher than 50 reason for concern sufficiency

IOM recommendation for daily intake (RDA) is 600 international units (IUs)/day
for individuals 9–70 years of age and 800 IUs/day for those over 70 years of age, with a
note that the upper tolerability limit of intake is 4000 IU/day and above that, toxicity may
increase [225–227]. Although observational studies and meta-analysis reported significant
association between vitamin D deficiency and/or supplementation and health status, the
interpretation of the results of clinical studies and the ability to draw a well-stratified
conclusion is not achievable recently. This is because of the diversity of applied dosage,
dosage form, study duration, missing follow-up of vitamin D levels, and polymorphism
in vitamin D synthesis, catabolism, DBP, and the VDR, and due to the host potential of
epigenetic confounding factors [187]. Additionally, there could be several non-registered
influening factors which could affect the sufficiency of vitamin D. For example, methyl
donor deficiency can inactivate vitamin D signaling via both disruption of VDR-PGC1α
interaction and sequestration of nuclear VDR attributable to HSP90 overexpression [222].
As the determination of the desired serum 25(OH)D3 level for a healthy metabolism is still
a matter of debate, based on related data, it is advisable to preferably maintain a serum
25(OH)D3 level of 30–50 ng/mL (75–125 nmol/L) to achieve the maximum benefits of
vitamin D for immune, metabolic, and overall health [190,228,229].

5.2. Recommendation for Healthy Individuals to Achieve the 30–50 ng/mL of Serum 25(OH)D3 Level

In the temperate zone, a 15 min sunbath, with an uncovered face and four limbs,
without any UVB decreasing cream, is accepted as optimal source of vitamin D from April
to October. The advantage of this source is that there is no risk of vitamin D toxicity, as
the skin stops synthesizing it when the body reaches the desirable level of this hormone.
From October to March, vitamin D supplementation is recommended—of note, the skin
also produces it, but in a smaller amount than in summertime.

For healthy people without any symptoms of vitamin D deficiency, supplementation
is only needed if the serum 25(OH)D3 level is lower than 30–50 ng/mL [228,229]. The
amount and type of vitamin D as well as the length of supplementation should be dis-
cussed and under the control of a physician. However, the daily intake should not exceed
3000–4000 IUs and should allow for complementation by other sources. Of note, the ability
of the human body to alternate between different vitamin D sources (i.e., diet, skin, and
tissue origin) is lost in a case where the entire required quantity of vitamin D is provided
exclusively for long term by dietary supplementation.

5.3. Recommendation for Patients with Diseases to Achieve the 30–50 ng/mL of Serum 25(OH)D3 Level

Patients with vitamin D deficiency-related diseases should follow the protocol provided
by their physicians. There are several guidelines and clinical trials suggesting how to reach
and maintain the serum level of 25(OH)D3, but it is administered by physicians [228–231].
In all cases, one needs to consider all conditions which can affect vitamin D production,
absorption, and metabolism. Treatments of patient with diseases not related to vitamin D
deficiency should consider if the disease affects any areas of vitamin D availability. In all
cases, follow-up of the 25(OH)D3 level is recommended.
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5.4. Recommendation to Maintain an Optimal SIRT1 Level in the Body

In relation to SIRT1, both observational studies and clinical trials agree that an ap-
propriate lifestyle and, if needed, SIRT1 inducers, are both beneficial to increase or reset a
healthy/healthier homeostasis regulated by the SIRT1 level [34,35].

5.5. Recommendation to Preventive and Complementary Treatments

We summarize the potential options for preventive and complementary application of
vitamin D from dietary source or supplementation and SIRT1 “inducer” therapies in Table 3.

Table 3. Possible preventive and complementary treatments of non-communicable diseases by
targeting vitamin D and SIRT1 level.

Vitamin D SIRT1 Tissue/
Organ Type Diseases Signal Pathway/

Targeted Molecules
Prevention/Complementary

Treatment Options

decrease: BMI, body fat,
TGs, CRP, TNFα.
increase: SIRT1/6,
HDL-C, apo-AI, ABCA1,
FFA oxidation

decrease: adipocyte
differentiation-PPARγ,
inflammation, leptin
increase: activates
PPAR-α, lipolysis, FFA
oxidation, PGC-1α,
insulin/mTOR/cell
growth, leptin/
PI3K-Akt-mTORC1

adipose
(white/
brown)

T2DM,
obesity,
insulin
resistance

adiponectin/NFκB,
AMPK, PPAR-α

• weight loss
• exercise/physical activity
• emotional/mental support
• nutrition factors
(vitamin D, polyphenols,
carotinoids, omega-3 FA)

increase: glucose uptake
and utilization

increase: FFA oxidation,
PGC-1α

skeltal
muscle

insulin
resistance

adiponectin/NFκB,
AMPK, PPAR-α

increase: NO production,
fat oxidation
decrease: blood pressure,
cardiac hypertophy, foam
cell formation,
macrophage activation,
vascular inflammation,
oxidative stress

decrease: cardiac
hypertophy,
proinflammatory
macrophage activity
increase: PPAR-α,
eNOS/NO, FOXOs

endothel cardiovascular
abnormalities

adiponectin/NFκB,
AMPK, PPAR-α

decrease: renin-
angiotensin-aldosterone
axis

kidney CKD,
hypertension

decrease: inflammation,
proinflammatory
cytokines, TNFα and
CRP, mTOR, ROS/RNS
increase: IL-10, IL-1RA,
BCAA catabolism,
antioxidant enzymes

decrease: TLR4, IFNγ,
IL-1β, IL-6, IL-8 and
TNFα levels, oxidative
stress, ROS, iNOS, COX-2

immune
system

TLR4
Akt/NFκB/COX-2,
Nrf2

decrease: β-catenin,
WNT/β-catenin pathway,
c-Myc, TCF1, LEF1,
antiapoptotic proteins,
HIF-1, VEGF, IL-8
increase: p21WAF/CIP
and p27KIP, E-cadherin,
DKK-1, proapoptotic
proteins, Nrf2

decrease: NFκB, MMP-9,
insulin/mTOR/cell
growth, leptin/PI3K-Akt-
mTORC1, TNF-α, IL-1β,
iNOS, COX-2; initiation,
promotion, and
progression of cancer
development
increase: ROS, apoptosis,
cell cycle arrest

PC, BC, CRC,
SkinC cancer

insulin/mTOR/cell
growth, proliferation
of leptin/PI3K-Akt-
mTORC1

Prevention has a major role in the maintenance of the well-balanced regulatory net-
work built into the human body. Additionally, there is a possibility, even in imbalanced
states, to reset the original homeostasis by the application of evolutionarily inbuilt regu-
latory mechanisms as complementary treatments; this was summarized in Table 3 from
our recent and previous works [34,35]. Continuous overload of any vitamins, including
vitamin D, is not recommended, either for prevention or for treatment, except for diseases
associated with continuous vitamin deficit. Research and clinical data suggest that vitamin
levels that are too high or too low make the body vulnerable to infections and disease devel-
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opment [232,233]. Each vitamin has an optimal level of interval in which it can effectively
fulfil its role, without extra energy, regulatory and metabolic processes, for maintaining a
healthy homeostasis.

6. Conclusions

In our review, we summarized the non-osteometabolic effects of vitamin D and
SIRT1 in tissue-specific metabolism and highlighted their common regulatory roles in
non-communicable diseases with possible related pathways. We summarized the results of
observational studies and clinical trials in order to investigate their potential application
in prevention and as a complementary therapy of these types of diseases. In the case of
vitamin D, the results of observational studies and clinical trials are not consistent, except in
relation to CVD-related mortality. This highlights the importance of well-designed studies
in the future. However, our review points to the importance of a complex approach in the
prevention and treatment of metabolic alteration- and inflammation-related diseases, as
several studies incompletely documented or followed lifestyle habits, such as diet, physical
activity, and smoking, or investigated circadian rhythm, which all can influence disease
development, progression, and treatment efficacy.
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