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Abstract: Plant growth-promoting bacteria (PGPB) can promote plant growth in various ways,
allowing PGPB to replace chemical fertilizers to avoid environmental pollution. PGPB is also used
for bioremediation and in plant pathogen control. The isolation and evaluation of PGPB are essential
not only for practical applications, but also for basic research. Currently, the known PGPB strains are
limited, and their functions are not fully understood. Therefore, the growth-promoting mechanism
needs to be further explored and improved. The Bacillus paralicheniformis RP01 strain with beneficial
growth-promoting activity was screened from the root surface of Brassica chinensis using a phosphate-
solubilizing medium. RP01 inoculation significantly increased plant root length and brassinosteroid
content and upregulated the expression of growth-related genes. Simultaneously, it increased the
number of beneficial bacteria that promoted plant growth and reduced the number of detrimental
bacteria. The genome annotation findings also revealed that RP01 possesses a variety of growth-
promoting mechanisms and a tremendous growth-promoting potential. This study isolated a highly
potential PGPB and elucidated its possible direct and indirect growth-promoting mechanisms. Our
study results will help enrich the PGPB library and provide a reference for plant–microbe interactions.

Keywords: plant growth-promoting bacteria; Bacillus paralicheniformis RP01 strain; root length; plant
growth; growth-related genes

1. Introduction

Plant growth-promoting bacteria (PGPB) are bacteria found around plant roots (rhizo-
sphere) that can promote plant growth. PGPB can promote plant growth directly by: (a)
fixing nitrogen, solubilizing phosphate and releasing potassium; (b) secreting/inducing the
production and release of phytohormones; and (c) producing siderophores. Additionally,
they can indirectly promote plant growth by: (a) secreting antibiotics to control pathogens;
(b) improving plant resistance to abiotic stresses (drought and salinity); and (c) improving
the rhizosphere environment (recruitment of beneficial microorganisms) [1,2]. For example,
four Streptomyces strains (HM2, HM3, HM8 and HM10) have been reported to enhance
cucumber growth and yield through various mechanisms including indole acetic acid (IAA)
production, siderophore excretion and phosphate solubilization [3]. Sphingomonas sp. Hbc-6
recruits beneficial rhizosphere bacteria to increase maize biomass and drought tolerance [4].
These attributes enable PGPB to supplant synthetic chemical fertilizers, thereby preventing
environmental pollution and further bioremediating and controlling plant pathogens [5].

PGPB isolation and evaluation are critical not only for practical applications, but
also for basic research. Currently, there are fewer known PGPB strains with comprehen-
sive functions, and their growth-promoting mechanisms need further improvement and
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exploration. Hence, PGPB, with excellent growth-promoting activity on various plants
while having the ability to adapt to various environmental conditions, must be investi-
gated thoroughly. The Bacillus paralicheniformis RP01 strain, having a good pro-growth
effect on various plants (cabbage, tobacco and cotton), was screened from the root surface
of Brassica chinensis using a phosphate-solubilizing medium (Figure S1). Recent studies
have found that some B. paralicheniformis strains can promote plant growth and antagonize
pathogens [6,7]. The B. paralicheniformis TRQ65 strain was isolated from the rhizosphere
of durum wheat (Triticum turgidum subsp. durum) [8]. The individual inoculation of
TRQ65 in wheat seedlings showed significant increases in biomass. Further, it inhibited
mycelial growth of the wheat phytopathogen Bipolaris sorokiniana, the causal agent of spot
blotch [8,9]. B. paralicheniformis MDJK30, isolated from the rhizosphere of the peony in
Shandong, China, inhibited the fungi Fusarium solani, which can cause root rot [10]. We
investigated the growth-promoting mechanism of B. paralicheniformis RP01 using upland
cotton (Gossypium hirsutum) Yumian-1 as the host to increase crop yield and improve the
soil conditions for sustainable agriculture. This study may provide added fundamental
knowledge to the PGPB library and serve as a reference for plant–microbe interactions.

2. Results
2.1. RP01 Isolation and Its Physiological and Biochemical Characterization

The RP01 strain with P-solubilizing ability was isolated from purple soil from the root
surface of Brassica chinensis L. using a P-solubilizing Pikovskaya (PKO) agar medium. Com-
pared to the control, the soluble phosphorus content in the fermentation broth inoculated
with RP01 was about 129 ± 11.89 mg/L, which was the highest among the strains isolated
in the same batch (Table S1). The colonies were white, irregular and had slightly convex
edges with a moist, transparent gel on the surface (Figure 1a). The colonies were 2–3 mm in
diameter at 1–2 d of incubation and 5–6 mm in diameter at 3–5 d of incubation. The bacterium
was rod-shaped and approximately 2–3 µm long, and its surface was uneven (Figure 1b).
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Figure 1. Morphological characteristics of Bacillus paralicheniformis RP01. (a) Colony phenotype of
B. paralicheniformis RP01 on LB medium, scale bar represents 1 cm. (b) Cellular morphology under
scanning electron microscope after culture for 16 h at 37 ◦C, scale bar represents 2 µm. (c) Molecular
evolutionary tree for RP01 and other 20 strains in GenBank database. The tree was built using the 16S
rRNA region gene (27F and 1492R) by the neighbor joining method with a bootstrap value of 1000.

RP01 could use citrate and xylose as carbon sources, but not hydrolyze starch, and it
could ferment glucose to produce acid and acetylmethylmethanol, but not gas. Furthermore,
RP01 was able to liquefy gelatin and hydrolyze hydrogen peroxide (Table S2).

Sequencing of 16S rRNA and evolutionary tree analysis revealed that RP01 belongs to
Bacillus paralicheniformis (Figure 1c). The complete taxonomic description was as follows:
Firmicutes, Bacilli, Bacillales, Bacillaceae, Bacillus and B. paralicheniformis RP01.
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2.2. Differences in Hosts after Inoculation with RP01

Our previous tests on various plants showed that inoculation with RP01 had a strong
growth-promoting effect (Figure S1). The results of cotton inoculation showed that the
biomass (plant height, root length, leaf width, etc.) of cotton seedlings inoculated with
104 cfu/mL and 108 cfu/mL RP01 was considerable higher than that of the biomass in
sterile water control after 30 d of growth and did not differ in the concentration gradient;
additionally, the growth-promoting effect was the same for both low and high inoculations
(Figure 2a). Therefore, we compared cotton seedlings inoculated with low concentrations
(104 cfu/mL, inoculation group) of RP01 and sterile water control (mock group) to analyze
the promotion of plant growth.
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Figure 2. Phenotypic changes in cotton 30 days after inoculation with B. paralicheniformis RP01. (a)
The changes in phenotype of the whole plant (A-1), enlarged leaf (A-2) and enlarged root (A-3). Plant
biomass data (A-4). Leaf area is measured as the area of the third leaf from the top bud. Treatment groups
from left to right are the mock, 104 cfu/mL and 108 cfu/mL groups. (b) Hormone content of cotton
leaves. (c) Hormone-related genes by RT-qPCR. Error bars represent standard error (SE). Statistical
significance was calculated using one-way analysis of variance (ANOVA) followed by Bonferroni’s post
hoc test. The asterisk (*) indicates a significant difference at p < 0.05; (**) indicates p < 0.01.
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PGPB often regulates growth by modulating plant hormones [11]; therefore, we
examined hormone levels in plant leaves with an enzyme-linked immunosorbent assay
(ELISA). It was found that brassinosteroids (BRs), which have a pro-growth effect on
plants, considerably increased (43.9%) after inoculation, and auxin (indole acetic acid, IAA)
was slightly higher (5.1% increase) than the control (Figure 2b). Jasmonic acid (JA) and
salicylic acid (SA), which regulate plant defense responses, followed the same trend as IAA,
increasing by 5.5% and 7.5%, respectively (Figure 2c).

The response of cotton roots was more critical because B. paralicheniformis RP01 was
directly inoculated in the rhizosphere. We used root tissues for fluorescence quantification
and found that the IAA biosynthesis gene YUCCA4 (p = 0.0019) [12], signal transduction
gene AUX1 (p = 0.0005) [13], BR positive regulator BES1 (p = 0.0004) [14], and gibberellic
acid (GA) biosynthesis genes GA20ox (p = 0.0054) and GA3ox (p = 0.0004) [15] were signifi-
cantly upregulated (Figure 2d). Meanwhile, disease-related genes such as JA biosynthesis
genes AOC1 (p < 0.0001) [16] and OPR3 (p = 0.0005) [17], the JA biosynthesis gene TCP
(p = 0.0396) [18], JA response genes PDF1.2 (p = 0.0012) [19] and ERF1 (p < 0.0001) [20],
and SA biosynthesis-related genes ICS1 (p = 0.0003) [21] and EDS1 (p < 0.0001) [22] were
significantly upregulated. However, the expression of the SA biosynthesis-related gene
PAD4 [22] remained unchanged (Figure 2e).

2.3. Microbial Diversity inside and outside the Cotton Roots after Inoculation with RP01

The microbial composition inside and outside the roots is critical for plant growth
and development [23–25]. Thirty days after inoculation, rhizosphere soil samples and
cotton seedling root samples from each group were extracted to assess microbial com-
munities based on 16S rDNA amplicon sequencing. Species richness and community
diversity (alpha-diversity) both increased after inoculation, but were not significantly differ-
ent (Table S3A,B).The species composition at the phylum level is shown in Figure 3a: after
inoculation with RP01, Proteobacteria increased from 42.85 to 49.63% outside the root, but
decreased from 95.02 to 81.44% inside the root; Bacteroidota decreased from 21.86 to 13.26%
outside the root, but increased from 1.04 to 3.29% inside the root; and Actinobacteriota in-
creased both inside and outside the roots. The top three dominant genera in the rhizosphere
were WCHB1-32, Streptomyces, and Bradyrhizobium (Figure 3b), while in the roots they were
unclassified_Rhodocyclaceae, Hydrogenophaga, and unclassified_Comamonadaceae (Figure 3c).
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Table S4A,B visualizes the top 10 genera in abundance. In the rhizosphere, the abun-
dance was higher for Candidatus_Solibacter (p = 0.041), Gemmatimonas (p = 0.015), Opitutus
(p = 0.045) and Sphingomonas (p = 0.008). The first two significantly increased after inocu-
lation with RP01, while the last two significantly decreased after inoculation (Figure 4a).
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Within the roots, only the abundance of unclassified_Rhodocyclaceae (p = 0.038) was dom-
inant, which had decreased significantly after inoculation with RP01 (Figure 4b). As
seen in the network association diagram of genera to genera [26], the top 20 genera of
inter-roots were more simply related than those of intra-roots (Figure 4c,d). In the rhi-
zosphere, the most represented genus WCHB1-32 negatively correlated with Caulobacter
and had a weaker positive correlation with Lentimicrobium. The previously screened dif-
ferential genus Candidatus_Solibacter positively correlated with Gemmatimonas, whereas
three other genera negatively correlated with Gemmatimonas. The top dominant genus,
unclassified_Rhodocyclaceae, was negatively correlated within the roots, except for with
unclassified_Burkholderiales. We performed the PICRUSt2 functional prediction [27] of the
microbiome in the rhizosphere and found that at the enzyme level, histidine kinase (2.7.13.3)
and 3-oxoacyl-[acyl-carrier-protein] reductase (1.1.1.100) were upregulated after inoculation
with RP01 (Figure S2A). PICRUSt2 functional predictions within the roots indicated that,
at the enzyme level, NADH: ubiquinone reductase (H(+)-translocating) (1.6.5.3), DNA-
directed DNA polymerase (2.7.7.7), DNA helicase (3.6. 4.12), histidine kinase (2.7.13.3) and
peptidylprolyl isomerase (5.2.1.8) were downregulated (Figure S2B).

1 

 

 

 

 

Figure 4. Important genera in rhizosphere and roots. The difference of top 10 genera when inoculated
with B. paralicheniformis RP01 and without in rhizosphere (a) and in roots (b). Sorted by abundance.
The species-related network reflected interactions between genera based on abundance, showing
top 20 genera-to-genera correlations in rhizosphere (c) and in root. (d). The size of the nodes
indicates the abundance of species, and different colors represent different phyla. The color of the
connection line indicates positive and negative correlation, where red indicates positive correlation,
and green indicates negative correlation. The thickness of the line indicates the size of the correlation
coefficient; the thicker the line, the higher the correlation between species. The more lines, the closer
the connection between that species and other species. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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We also sequenced ITS amplicons of the roots to analyze the changes in fungal diversity
changes. We found no significant difference in fungal species, while the community
diversity was higher than that of the control (Figure S3A; Table S3C). Although more than
95% of the dominant genera were unclassified_fungi and unclassified_Ascomycota, the relative
percentage of unclassified_Ascomycota decreased after inoculation (Figure S3B).

2.4. Genome and Comparative Genome of RP01

To further analyze the growth-promoting mechanism of RP01, we analyzed the RP01
genome in detail. RP01 contains only one chromosome with a total genome length of
4,338,611 bp and a GC content of 45.95%. The summarized results from the six major
databases (NR, Swiss-Prot, Pfam, EggNOG, GO and KEGG) are listed in Table S5A,B.
Finally, a closed-loop circle map was obtained using Circos analysis [28] to fully characterize
the genome (Figure 5).
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ocins, lanthipeptides, terpenes, lasso peptides and siderophores. Metabolites with di-
verse biological activities are mostly antibacterial in nature. Five of these were compared 
to the database: lichenysin, butirosin A/butirosin B, fengycin, bacitracin and bacillibactin 
(Figure 6b). Based on the CARD database annotation [31], the RP01 genome contains a 
total of 209 drug resistance genes (Figure 6c), which mainly includes 29 types of macro-
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Figure 5. Schematic of the complete B. paralicheniformis RP01 genome. Rings represent the following
features labeled from the outside to the center: The outermost circle represents the scale in bp. The
second ring represents positive strand genes and the third ring represents negative strand genes. Each
color patch represents a COG functional classification. The fourth ring represents rRNA and tRNA.
The fifth ring represents the GC content (red indicates GC content above the mean, blue indicates
GC content below the mean). The innermost ring shows the GC skew (GC skew = (G − C)/(G + C);
green means greater than 0, orange means less than 0).

The RP01 genome contains 159 CAZymes [29] (Figure 6a and Table S6A,B), including
genes encoding cellulase, chitinase, α- and β-glucosidase, α-amylase, and xylosidase, indi-
cating its ability to utilize multiple carbon sources. Simultaneously, a large number of genes
involved in the glycolysis, pentose phosphate and tricarboxylic acid cycles were predicted.
The cation transporter, H+-transporting ATPase (F-ATPase) and Na+/H+ transporters were
also encoded in the RP01 genome. Among them, two K+ transporter systems, the Kdp and
Trk systems, are present in RP01. Moreover, we also identified Na+/H+ reverse transporters
(Cpa1, Cpa2 and NhaC). In terms of motility, RP01 possesses genes related to flagellar biosyn-
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thesis and assembly, such as fliDEGJMSTPW, flhABF and flgBCGL, and a carbon storage
regulator gene (csrA). In addition, genes involved in chemotaxis, such as cheABCDRWY,
are protein-coding genes of a two-component system of methyl-accepting chemotaxis. The
two-component system is helpful for signal recognition of exudates and adaptation to the
environment. The presence of these genes indicates that RP01 can respond to stimuli and
move toward the plant roots.

Secondary metabolite analysis of the RP01 genome using anti-SMASH [30] predicted
12 clusters of secondary metabolite genes (Table S7A,B), including NRPS, bacteriocins, lan-
thipeptides, terpenes, lasso peptides and siderophores. Metabolites with diverse biological
activities are mostly antibacterial in nature. Five of these were compared to the database:
lichenysin, butirosin A/butirosin B, fengycin, bacitracin and bacillibactin (Figure 6b). Based
on the CARD database annotation [31], the RP01 genome contains a total of 209 drug resis-
tance genes (Figure 6c), which mainly includes 29 types of macrolide antibiotics, polypep-
tide antibiotics, glycopeptide antibiotics, aminoglycoside antibiotics, etc. (Table S8A,B). The
RP01 genome also has protein quality control system-related genes (htpG, htpX, dnaK, dnaJ
and groEL) and genes related to adaptation for survival in extreme environments, such as
genes involved in glycine betaine synthesis and transport (betB, proVWX and opuAD) and
the trehalose operon repressor gene. RP01 encodes numerous genes related to heavy metal
transport and detoxification, such as various heavy metal transport proteins, including
the magnesium transporter protein (mgtE), zinc transporter protein and arsenite efflux
transporter protein (arsB), which transport metal ions from the cytoplasm to the outside of
the cell. The arsR gene encoding the ArsR/SmtB family of trans-acting blocking proteins
and arsenate reductase (arsC) was also identified in the genome.

The RP01 genome also contains alkaline phosphatase and phosphate transporters (phoADE
and pstABCS), nitrogen assimilation genes and their regulatory elements (glnABKLRT), ni-
trate reduction and transporter clusters (narHGKI and nasABCDEF), the urease gene cluster
(ureABCDEFG), sulfate reduction-related enzymes (cysCHJI), and ionophores (IucA and IucC)
that promote plant growth and development. L-tryptophan (L-TRP) is a critical residue
required for normal plant growth and development, and it acts as a precursor for plant growth
regulators [32,33]. We identified the complete biosynthetic pathway (trpABCDEF) of L-TRP,
agmatinase (speB) and spermine synthase (speE), which can catalyze the conversion of
amino acids into plant growth-promoting compounds [34].

In addition, we selected three B. paralicheniformis strains with different functions for
comparative genomic analysis with RP01. The basic annotation information is presented
in Table 1. Among these, strain BIK4, which was isolated from the rice rhizosphere, could
promote rice growth and inhibit pathogens [35]. KJ-16T was isolated from a soybean
fermentation paste [36]. ES-1 was isolated from saline-sodic soil and showed salt tolerance
and antibacterial activity against various pathogens [37]. From the phylogenetic tree
of housekeeping genes, it was found that RP01 had the highest similarity with BIK4
(Figure 7a), and BIK4 happens to be the rhizosphere growth-promoting bacteria. Based on
the Venn diagram (Figure 7b), we found that 3750 genes were shared by the 4 bacteria with
KEGG functional enrichment, as shown in Figure 7c (Table S9A), and metabolic pathways
were significantly enriched. RP01 was found to contain 91 unique genes, including the
phosphatase RapE regulator, thioredoxin reductase, Fe-S cluster biogenesis protein NfuA
and tellurite resistance membrane protein TerC (Table S9B).

Table 1. General information on Bacillus paralicheniformis RP01 and other three B. paralicheni-
formis strains.

Strain B. paralicheniformis
RP01

B. paralicheniformis
KJ-16

B. paralicheniformis
BIK4

B. paralicheniformis
ES-1

Genome size (bp) 4,338,611 4,520,660 4,422,539 4,397,844
GC content 45.95% 45.76% 45.48% 45.75%
Gene No. 4222 4540 4511 4378
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Table 1. Cont.

Strain B. paralicheniformis
RP01

B. paralicheniformis
KJ-16

B. paralicheniformis
BIK4

B. paralicheniformis
ES-1

tRNA No. 81 77 80 81
5S rRNA No. 8 6 3 8
16S rRNA No. 8 2 1 1
23S rRNA No. 8 1 1 1
G + C% 45.9546 45.4788 45.7614 45.7472
GI No. 8 14 8 7
Prophage No. 1 5 2 3
CAZyme 159 165 160 160
Secondary metabolite 12 13 14 12
Antibiotic resistance 268 270 269 273
Reference This paper [36] [35] [37]
accession No. CP118744 LBMN01 GCA_019336205.1 CP083398

Characteristic Rhizobacteria; promote
plant growth

Fermented soybean
product

Rhizobacteria; promote
plant growth

Salt mine sodic soil;
broad-spectrum
antimicrobial and
halotolerant
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Figure 7. Comparative analysis of the B. paralicheniformis RP01 genome. (a) Molecular evolutionary
tree for the four strains. The tree was built using housekeeping genes (dnaG, frr, infC, nusA, pgk, pyrG,
rplA, rplB, rplC, rplD, rplE, rplF, rplK, rplL, rplM, rplN, rplP, rplS, rplT, rpmA, rpoB, rpsB, rpsC, rpsE, rpsI,
rpsJ, rpsK, rpsM, rpsS, smpB and tsf ) by maximum likelihood method with a bootstrap value of 1000.
(b) Venn diagram shows the number of genes in all four strains. (c) KEGG enrichment analysis of
homologous genes in four strains. The X-axis represents rich rate (refers to the ratio of the number
of genes enriched in the pathway to the number of annotated genes; a larger ratio indicates greater
enrichment). The size of the point indicates the number of genes in this pathway and the color of the
point indicates the significance of enrichment.

3. Discussion
3.1. Plant Growth-Promoting Function of RP01

Through the assessment of RP01, it was found that RP01 has strong viability: it can
decompose a variety of macromolecular carbons, has a variety of respiratory modes to
obtain energy, has broad-spectrum drug resistance, can secrete antibacterial substances,
and can adapt to extreme environments and a variety of stress strategies. For example, the
RP01 genome contains a fengycin gene cluster. Fengycin has broad-spectrum antibacterial
activity, low toxicity and low drug resistance [38]. Carbon storage regulator A (csrA) is
an RNA-binding protein that plays an important regulatory role in various physiological
processes such as bacterial carbon metabolism [39], biofilm formation [40], motility [41],
quorum sensing [42] and stress response [43]. In addition, the motility and chemotaxis of
RP01 contribute to its colonization of the rhizosphere of plants, which plays a vital role in
promoting plant growth.

RP01 has a phosphate-solubilizing function (phoADE) that can convert inorganic phos-
phorus/organic phosphorus into phosphorus that can be directly absorbed and utilized
by plants. At the same time, RP01 has a nitrate transporter (narHGKI) and nitrate reduc-
tase (nasABCDEF) involved in nitrate transport and reduction, which were previously
found in the plant growth-promoting Bacillus subtilis MBI 600 [44]. Additionally, a ure-
ase (ureABCDEFG) gene cluster in the RP01 genome can hydrolyze urea into ammonia.
Subsequently, glutamine synthetase (glnA) converts NH4

+ produced during nitrate assimi-
lation into glutamine; at the same time, glutamate dehydrogenase (gdhA) can also produce
NH4

+ to produce glutamate. Glutamine and glutamic acid are the sources of amino acids
in biosynthesis that ultimately participate in synthesizing microbial nucleic acids and
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proteins. Thus, RP01 has an ammonium assimilation enzyme system with glutamine syn-
thetase/glutamate synthase (GS/GOGAT) and glutamate dehydrogenase (GDH) activities
to regulate nitrogen absorption and transformation, thereby providing nitrogen for plant
growth. RP01 also contains sulfate reduction and transport-related genes (cysCHJI) that
promote plant growth and seed germination [45].

The genome of strain RP01 contains the spermidine synthase-related gene (speAGE),
which is related to spermine biosynthesis. Spermidine is essential for plant cell viability
and is associated with lateral root expansion, plant pathogen resistance and alleviating
osmotic, oxidative and acidic stress [34]. We identified the complete synthesis pathway
of L-TRP (trpABCDEF). Studies have found that spraying L-TRP onto maize leaves can
promote plant growth [46]. PGPB also synthesizes chitinase, a secondary metabolite that
protects plants against disease. RP01 encodes chitinase to hydrolyze the cell wall of disease-
causing fungi to help plants protect against diseases. In addition, the genes gabD and gabR,
which are involved in synthesizing γ-aminobutyric acid for disease/pest suppression [34],
were identified. However, opuC, opuA, proX, proV and proW may also protect plants from
oxidative stress [33].

3.2. RP01 Affects Inter-Root and Intra-Root Microorganisms

Bacillus contains a variety of antagonistic bacteria that can be widely used in the
prevention and treatment of plant pathogens. Competition is a common antagonistic
mechanism of Bacillus. RP01 has broad-spectrum resistance and bacteriostatic effects that
can affect the growth of rhizosphere microorganisms. Therefore, RP01 competes with
the original rhizosphere microorganisms after inoculation, affecting the composition and
changes in microorganisms and regulating plant growth.

Actinobacteriota in the rhizosphere and roots increased significantly after inoculation
with RP01 (Figure 3a). Crop root diseases are greatly reduced or eliminated after inocu-
lating Actinobacteriota into the soil. In addition, it can also significantly increase the crop
root, stem and leaf biomass yield and enhance crop disease resistance [47,48]. Streptomyces
produces 90% of the antibiotics of Actinobacteriota. It produces antibiotics and enzymes
related to carbohydrate hydrolysis, which can inhibit the growth of pathogenic bacte-
ria [49]. Streptomyces albidoflavus St-220 can promote the growth of alfalfa by solubilizing
phosphorus, fixing nitrogen, producing auxin and antagonizing Rhizoctonia solani [50].
Streptomyces hygroscopicus OsiSh-2 can improve resistance against rice blast pathogens
and enhance chloroplast development to promote rice growth [51]. The results showed
that Streptomyces increased significantly in the rhizosphere after inoculation with RP01
(Figure 3b). Bradyrhizobium, which can expand and form nodules in the roots of host plants
and fix atmospheric nitrogen to bound nitrogen (ammonia) for use by host plants, was also
significantly upregulated after inoculation (Figure 3b). In the Atractylodes lancea–maize in-
tercropping system, intercropping can promote the enrichment of plant growth-promoting
bacteria, including Streptomyces, Bradyrhizobium, Candidatus_Solibacter and Gemmatirosa,
thereby promoting the growth of A. lancea [52]. After inoculation with RP01, Candida-
tus_Solibacter and Gemmatirosa increased significantly in the rhizosphere, indicating that
RP01 contributed to the enrichment of growth-promoting bacteria. (Figure 4a). In addition,
Acinetobacter and Actinoplanes in the roots increased after inoculation with RP01 (Figure 3c).
Acinetobacter sp. SuKIC24 promotes plant growth through phosphorus solubilization and
IAA production [53]. Actinoplanes can produce IAA, indole-3-pyruvic acid (IPyA) and GA3,
increase plant disease resistance, and promote plant growth [54]. In summary, some plant
growth-promoting bacteria were increased and detrimental bacteria were inhibited after
inoculation with RP01.

3.3. Interaction of RP01 with Cotton

After 30 d of inoculation with RP01, the biomass indicators of cotton significantly
increased (Figure 2a). The same pro-growth effect was observed at high and low concen-
trations, indicating that a low concentration (104 cfu/mL) achieved an excellent growth-
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promoting effect. The levels of BR and IAA, which promoted plant growth, were increased
after inoculation, and BR had the most significant increase of 43.9% (Figure 2b). Similarly,
root hormone-related genes were also upregulated. Interestingly, the root length of RP01
cotton increased most significantly after inoculation (Figures S1 and 2), and the significant
increase in plant root length was more conducive to nutrient acquisition. The levels of the
hormones SA and JA, which regulate plant defense responses, also increased after inocula-
tion with RP01 (Figure 2c), but not significantly. Together with the increase in rhizosphere
microorganisms after inoculation (Figure 3), the activation of SA and JA pathways in cotton
can also be elucidated. However, this is because of the limited number of pathogens and
the protective mechanisms of probiotics (Actinoplanes, Bradyrhizobium and Acinetobacter)
and RP01. Therefore, the responses of the plant hormones SA and JA were not obvious.

We described the possible direct and indirect growth-promoting mechanisms of RP01
by analyzing the genome and microbiome. In summary, RP01 had a growth-promoting
effect on various crops (Figure S1). The genome also showed that RP01 has various growth-
promoting methods and tremendous growth-promoting potential. Simultaneously, RP01
can also produce fengycin and other secondary metabolites with unknown functions, which
may play a role in agricultural and pharmaceutical applications.

4. Materials and Methods
4.1. Bacterial Strain

According to the method of Shen et al. [55], P-solubilizing Pikovskaya (PKO) agar
medium was used to isolate RP01 from the root surface of Brassica chinensis L. grown in
the Beibei District (30◦26′12′′ N, 106◦26′25′′ E), Chongqing, China. Bacterial suspensions
were prepared by culturing cells in 50 mL of LB medium (10 g/L of tryptone, 5 g/L of
yeast extract and 10 g/L of NaCl) in 300 mL flasks on a rotary shaker (150 rpm) at 37 ◦C
for 12 h. Scanning electron microscopy was used for morphological observations [56].
The phenotypical, physiological and biochemical characteristics of RP01 were determined
using the methods described by Samina et al. [57]. These characteristics included gelatin
liquefaction, glucose-produced acid and gas, xylose-produced acid, the methyl red test, the
presence of catalase and oxidase, phenylalaninase, starch hydrolysis, the use of citrate, and
the Voges–Proskauer test (Supplementary Table S2).

4.2. Molecular Identification

After culturing RP01 in LB medium for 48 h (37 ◦C, 150 rpm), bacterial cells were
collected by centrifugation (4500× g for 5 min at 4 ◦C). For preliminary confirmation of the
isolated bacterial strain, a polymerase chain reaction (94 ◦C for 10 min, followed by 34 cycles
at 94 ◦C for 30 s, 56 ◦C for 30 s and 72 ◦C for 90 s, with a final extension at 72 ◦C for 10 min)
was performed with universal 16S primers 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and
1492R (5′-TACGGTTACCTTGTTACGACTT-3′). The PCR products were sequenced by BGI
(Shenzhen, China), and the resulting sequences were compared with those of 20 strains in
the GenBank database using MEGA 11.0 [58], based on the neighbor-joining method.

4.3. Evaluation of Growth Promotion in Cotton Seedlings

The bacteria were resuspended and diluted in deionized water (0 cfu/mL for the mock
group, and 104 cfu/mL and 108 cfu/mL for the test group). Upland cotton (G. hirsutum)
Yumian-1 seeds were subjected to surface sterilization with 20% (v/v) H2O2 for 2 min, and
then were individually sown in plastic pots (12 cm diameter and 16 cm height). The soil
was collected at a depth of 0–15 cm from the campus (30◦36′45′′ N, 106◦17′59′′ E; altitude
261 m) of Chongqing Normal University, China. After being sieved (<1 mm) and air-dried,
the soil contained 17.19 ± 0.62 g/kg of organic matter; 40.76 ± 2.86, 70.19 ± 2.01 and
93.84 ± 10.91 mg/kg of available nitrogen, phosphorus and potassium, respectively; and
0.78 ± 0.05, 1.02 ± 0.12 and 17.21 ± 0.38 g/kg of total nitrogen, phosphorus and potassium,
respectively. When the two cotyledons started to unfold, 1 mL of RP01 or an equal volume
of deionized water was inoculated into the rhizosphere.
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Throughout the experimental period, cotton seedlings were randomly placed under
greenhouse conditions, where the average day/night period, daytime light intensity, tem-
perature and humidity were 12.5/11.5 h, 2000–4000 lx, 16–30 ◦C and 50–80%, respectively.
Thirty days after inoculation, indicators, including phenotypic data, hormone levels, gene
expression and microbial diversity, were measured. Three independent experiments were
performed, with 30 plants per replicate.

4.4. Expression of Hormones, Growth and Disease Resistance-Related Genes

The levels of auxin (indole acetic acid (IAA)), brassinosteroids (BRs), salicylic acid
(SA), and jasmonic acid (JA) in cotton leaves were measured using the corresponding ELISA
Kits (Shanghai Preferred Biotechnology, China), with a minimum detection concentration
of less than 0.1 nM and an accuracy of more than 99%. To determine the expression of
genes related to growth and disease resistance, RNA was extracted from cotton roots
using the MiniBEST Plant RNA Extraction Kit (TaKaRa, Maebashi, Japan). cDNA was
obtained using the RT Reagent Kit for Perfect Real Time (TaKaRa). Ghhistone3 (the gene
encoding G. hirsutum histone 3) was used as the reference gene in quantitative reverse
transcription-PCR (RT-qPCR). The expression of growth-promoting genes in the cotton
root was measured in 10 µL PCR reactions containing 5 µL of SYBR Green Real-time PCR
Master Mix (Bio-Rad, Hercules, CA, USA), 1 µL of root cDNA, 2 µL of ultrapure water and
1 µL each of the 10 µM forward and reverse primers (Supplementary Table S10). RT-qPCR
was performed on a CFX96 instrument (Bio-Rad) using the following protocol: 94 ◦C for
2 min, followed by 39 cycles of 94 ◦C for 5 s and 60 ◦C for 30 s, then 95 ◦C for 5 s, 65 ◦C for 5 s
and 95 ◦C for 5 s.

4.5. Assessing the Rhizosphere and Endophytic Microbiota

The cotton roots in rhizosphere soils were placed in 0.02 M of phosphate-buffered
saline (pH 6.8) and incubated at 180 rpm for 20 min. After removing the roots, the sus-
pension was centrifuged at 12,000× g for 10 min to collect the sediment containing the
rhizosphere soil samples. The sediment was rinsed with 70% ethanol for 2 min and then
with sterile water (five times). The cotton roots removed from the previous step were
analyzed for endophytic microorganism content. According to the manufacturer’s instruc-
tions, total microbial genomic DNA was extracted from the cotton root and rhizosphere
soil samples using the DNeasy PowerSoil Kit (Qiagen, Hilden, Germany). The DNA was
stored at −20 ◦C for further analysis.

PCR amplification of the V3-V4 region of the bacterial 16S rRNA gene was performed
using the forward primer 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and the reverse primer
806R (5′-GGACTACHVGGGTWTCTAAT-3′) [59], and PCR amplification of the ITS region
was performed using the forward primer ITS3F (5′-GCATCGATGAAGAACGCAGC-3′) and
the reverse primer ITS4R (5′-TCCTCCGCTTATTGATATGC-3′) [60].

The PCR amplicons were purified using Agencourt AMPure Beads (Beckman Coulter,
Brea, CA, USA) and quantified using the PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad,
CA, USA). After individual quantification steps, equal volumes of amplicons were pooled,
and paired-end 2 × 300 bp sequencing was performed on the Illumina MiSeq platform
(Illumina, San Diego, CA, USA) using the MiSeq Reagent Kit v3 from Shanghai Personal
Biotechnology (Shanghai, China). Data were analyzed using the free online Majorbio Cloud
Platform (www.majorbio.com, accessed on 2 February 2023). Operational taxonomic units
(OTUs) were clustered at a 97% similarity. Rarefaction curves [61] were generated using a
reasonable amount of sequencing data (Supplementary Figure S4), which resulted in a flat
curve, indicating that the amount of sequencing data was large enough to reflect the vast
majority of microbial diversity information in the sample. In addition, reads representing
chloroplasts and mitochondria were removed prior to further analysis, as chloroplasts and
mitochondria are abundant in cotton roots.

www.majorbio.com
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4.6. Whole-Genome Sequencing and Comparative Genome Analysis

The genome was sequenced by Genedenovo Biotechnology Co. (Guangzhou, China)
using a PacBio RS II system (Pacific Bioscience, Menlo Park, CA, USA). To evaluate the com-
plexity of the genome and correct the PacBio long reads, the RP01 genome was sequenced
by Biozeron Co. (Shanghai, China) using the Illumina HiSeq platform (PE150 mode, Illu-
mina, San Diego, CA, USA). RP01-coding genes were predicted using Glimmer v3.02 [62].
Then, all genes were blasted against the non-redundant (NR) (https://ftp.ncbi.nih.gov/
blast/db/, accessed on 26 January 2023), Swiss-Prot (https://web.expasy.org/docs/swiss-
prot_guideline.html, accessed on 26 January 2023), Pfam (http://pfam.xfam.org/, accessed
on 26 January 2023), KEGG (http://www.genome.jp/kegg/, accessed on 26 January 2023),
GO (http://www.geneontology.org/, accessed on 26 January 2023) and EggNOG (http:
//eggnog.embl.de/, accessed on 26 January 2023) databases for functional annotation
using the BLASTp module. In addition, tRNAs were identified using tRNAscan-SE
(v2) [63], rRNAs were identified using RNAmmer (v1.27) [64] and gene islands were
predicted using IslandPath-DIMOB (v1.0.0) [65]. Comparative genomic analysis was per-
formed by comparing the genome sequence of the RP01 strain with that of three other
B. paralicheniformis strains.

4.7. Statistical Analysis

Biochemical and physiological measurements were presented as mean ± standard
error (SE). Values were compared using a one-way analysis of variance (ANOVA), followed
by Bonferroni’s post hoc test using the Statistical Package for the Social Sciences, v22.0
(SPSS, Chicago, IL, USA). Means among treatments were considered significantly different
when the probability (p-value) was less than 0.05.

For the statistical analyses of 16S rRNA gene amplicon data, alpha-diversity (includ-
ing the Sob, Shannon, Ace, Chao1, Simpson, coverage and others indexes) was calcu-
lated using Mothur (version v.1.30.2; https://mothur.org/wiki/calculators/, accessed on
03 February 2023). Significant differences were assessed by Student’s t-test. Community
composition analysis (bar and pie diagrams), the Venn diagram and the heatmap were
created using R version 3.3.1. The species-related network (one-way network analysis)
reflected interactions between genera based on genera-to-genera correlations and was
performed in Python version 2.7 using the Networkx package. Microbiome functions were
predicted using PICRUSt2 from the 16S rRNA data. A non-parametric Kruskal–Wallis
test was used when the data were not normally distributed. The Bray–Curtis dissimilarity
metric and analysis of similarities (ANOSIM) with 999 permutations was performed when
comparing groups. Those analyses were performed using the Majorbio Cloud Platform
(www.majorbio.com, accessed on 13 February 2023) [65]. Unless otherwise noted, default
parameters were used for all of the software.

5. Conclusions

The Bacillus paralicheniformis RP01 strain with beneficial growth-promoting activity
was screened from the root surface of Brassica chinensis using a phosphate-solubilizing
medium. RP01 inoculation significantly increased plant root length and BR content and up-
regulated the expression of growth-related genes. Simultaneously, it increased the number
of beneficial bacteria that promoted plant growth and reduced the number of detrimental
bacteria. The genome annotation findings also revealed that RP01 possesses a variety of
growth-promoting mechanisms and a tremendous growth-promoting potential. This study
isolated a highly potential PGPB and elucidated its possible direct and indirect growth-
promoting mechanisms. Moreover, RP01 can also produce many secondary metabolites
with unknown functions, which may play a role in agricultural and pharmaceutical appli-
cations. Our study results will help enrich the PGPB library and provide a reference for
plant–microbe interactions.
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