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Abstract: During their life cycle, apicomplexan parasites pass through different microenvironments
and encounter a range of ion concentrations. The discovery that the GPCR-like SR25 in Plasmodium
falciparum is activated by a shift in potassium concentration indicates that the parasite can take advan-
tage of its development by sensing different ionic concentrations in the external milieu. This pathway
involves the activation of phospholipase C and an increase in cytosolic calcium. In the present report,
we summarize the information available in the literature regarding the role of potassium ions during
parasite development. A deeper understanding of the mechanisms that allow the parasite to cope
with ionic potassium changes contributes to our knowledge about the cell cycle of Plasmodium spp.
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1. Introduction

The parasite that causes malaria (Plasmodium genus) is a unicellular eukaryote belong-
ing to the phylum Apicomplexa and the family Plasmodiidae. It has a complex biological
cycle consisting of different development stages comprising two phases: (i) asexual, where
the parasites are found in the vertebrate host; and (ii) sexual, which occurs in the anophe-
line invertebrate host. During its biological cycle, the parasite undergoes morphological
and biochemical changes, which make it possible to distinguish between the different
stages [1,2].

Transmission occurs as a by-product of feeding, with infected female anopheline
mosquitoes injecting sporozoites into the dermis of the vertebrate host, from where they
eventually enter the bloodstream. Sporozoites in the bloodstream migrate to the liver and
invade liver cells (hepatocytes), where they multiply asexually; this asymptomatic period
lasts, on average, between six and fifteen days. At the end of the hepatic phase, the mero-
zoites are released by rupture of the hepatocytes and subsequent invasion of erythrocytes.
The erythrocytic cycle consists of parasites passing through the ring, trophozoite, and
schizont stages [3–7].

Throughout its life cycle in the vertebrate host, the malaria parasite is exposed to
extreme environmental changes, including the host’s immunological defenses, temperature,
and ion concentrations, as it moves between microenvironments. Ions were shown to play
an essential role in several biological processes of parasite development [8]. Regarding
the concentration of potassium ions (K+), the parasite is exposed to a variation of 5 mM
when outside the blood cells to 140 mM inside the parasitized cell [9]. Several studies have
demonstrated the importance of the K+ ion as a regulator of events during the develop-
ment of various Apicomplexan parasites, including the malaria parasite. In this present
contribution, we summarize the primary information available in the literature about the
essential role of K+ in the infectivity, development, and survival of Plasmodium spp.
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2. Differences in Ion Concentrations in the Microenvironment Activate Signaling
Pathways Required for Infection

After the mosquito injects sporozoites into the vertebrate host, infection of the hepato-
cytes is the next step in the parasite’s development. When in contact with the intracellular
environment of these cells, the parasite initially migrates without forming a parasitophorous
vacuole until it eventually reaches a cell in which it develops [5]. During this process, the
parasite moves from the intracellular to the extracellular environments, and it is exposed
to different [K+], from [5 mM] in the extracellular environment to [140 mM] when the
parasite resides inside the host cells [10]. By studying the process of sporozoite motility
to and through liver cells, Mota and coworkers suggested that this process of motility
and cell-crossing is essential for the parasite to activate the signaling pathways necessary
for its subsequent development in the hepatocytes. Incubation of sporozoites with host
cell extracts increases the secretion of proteins involved in the invasion. Thus, parasite
migration through cells induces exocytosis of apical organelles required for infection and
represents an essential step in the parasite lifecycle [5,11].

Using murine malaria parasites (Plasmodium berghei), Kumar et al. (2007) observed
that sporozoites incubated in a high [K+] buffer (142 mM) and subsequently placed in liver
cell culture (HepG2) showed an increase in infectivity and reduced cell passage activity
compared to sporozoites incubated in Na+-rich buffer [10]. When similar experiments were
carried out in the presence of K+ channel blockers (20 mM tetraethylammonium chloride
and 0.5 mM quinine), there was a decrease in infectivity compared to sporozoites treated
with K+-rich buffer [10]. We interpret these data to suggest that: (i) the detection of K+ ions
by the parasite inside cells and in the extracellular environment regulates cell infectivity,
and thus, it is necessary for the progression of the parasite life cycle; (ii) the passage of
sporozoites through hepatocytes may trigger the activation of signaling pathways induced
by migration through host cells [5,10–13].

In T. gondii, Moudy et al. (2001) evaluated the ionic environment in the parasite egress
process by investigating the influence of [Ca2+], [Na+], [Cl−], and [K+] from intracellular
to extracellular levels in HFF cells. The authors showed that the only ion that plays a
role in this process is K+; when [K+] is similar to cytoplasmic levels, the egress does
not occur, but under low [K+] or total absence of this ion, the exit is more efficient [14].
Secretion of the microneme is critical for the successful infection of new cells and the
progression of the life cycle. The environment in which the parasites find themselves has
been shown to correlate directly with the activation of this process, which requires Ca2+ as
an intracellular second messenger [15–17]. An increase in Ca2+ concentration is associated
with significant changes in parasite morphology, in addition to promoting the secretion
of proteins involved in invasion and egress from the host cell [18]. An increase in Ca2+cyt
initiates a Ca2+ signaling cascade that promotes parasite motility and egress from the cell.
Recent findings have shown that intracellular T. gondii tachyzoites are able to capture Ca2+

from the host cytoplasm to reach a cytosolic Ca2+ threshold required for successful egress;
furthermore, this exit process is favored by decreasing [K+], indicating that the reduction of
[K+] around the parasite is one of the factors involved in the egress rate [19].

Undoubtedly, the activation of the parasite’s motility machinery is a crucial point
for the successful infection of new cells; behind this process, Ca2+ acts as an irreplaceable
messenger transmitting to the intracellular medium the external stimuli from the environ-
ment [20,21]. Similar to Plasmodium, Toxoplasma also benefits from information coming from
the extracellular environment to complete its life cycle, and the detection of [K+] is one of
these mechanisms. One of the pieces in the K+ signaling in T. gondii is the apical protein
Guanylate Cyclase (TgGC). Conditional knockdown of TgGC presents parasites defective in
motility, adhesion, invasion, and egress of the host cell and is a critical protein for capturing
changes in external pH and extracellular [K+] to activate the Ca2+cyt increase [22]. From
this point, we draw attention to K+, an ion that is present in different concentrations in the
microenvironments that parasites pass through during their development.
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3. K+ in the Invasion of Erythrocytes and Progression of the Erythrocytic Cycle

After the hepatocyte cycle, the parasite reaches the bloodstream, beginning its intraery-
throcytic cycle, where they reproduce asexually within the erythrocytes of its vertebrate
host. Studies from the Kirk group indicate that considerable changes in cell membrane
permeability occur in erythrocytes infected by P. falciparum ±15 h after the invasion and
that these are detrimental to the normal ion balance. The loss of K+ and Na+ across the
membrane increases, and the activity of the Na+/K+ pump decreases; these processes result
in the replacement of K+ ions by Na+ ions in the erythrocyte cytosol [23–27]. The Na+

concentration in the cytosol of the infected cell is high, while the parasite maintains a low
cytosolic Na+ concentration [27,28].

In 2016, Spillman reported a mechanism by which, via a Na+-ATPase from P. falciparum,
PfATP4 expels Na+ from its cytosol into that of the host cell. In addition, the authors
described PfATP4 as a target for spiroindolones, as spiroindolones disrupt the Na+ home-
ostasis of the parasite. Furthermore, it has been shown that mutations in PfATP4 confer
resistance to antimalarial spiroindolones [29]. In another study by the group, Winterberg
and Kirk (2016) reported a correlation between the intracellular concentrations of Na+ and
K+ in red blood cells infected with P. falciparum. Using a high-sensitivity HPLC assay
to measure intracellular Na+ and K+, the authors showed that a new spiroindolone anti-
malarial candidate, KAE609, can promote the disruption of parasite ion homeostasis by
increasing [Na+] and decreasing [K+] after 30 min of 50 nM treatment [30].

Proteins on the surface of merozoites and proteins secreted by apical membrane-
associated organelles, rhoptries, and micronemes actively participate in the erythrocyte
invasion process. In 2010, Singh and colleagues found that exposure of merozoites to low
[K+] (5 mM), as seen in blood plasma, promotes a PLC-dependent increase in cytosolic
calcium levels (Ca2+cyt) [31]. This increase in Ca2+cyt would be associated with the
release of microneme proteins, such as erythrocyte-binding antigen (EBA175) and apical
membrane antigen-1 (AMA-1), to the merozoite surface [26]. The interaction of EBA175
with its receptor on erythrocytes, glycophorin A (glyA), restores basal Ca2+cyt levels
and triggers the release of rhoptry proteins [31]. The authors identify for the first time
an external signal responsible for the sequential release of micronemes and rhoptries
proteins during erythrocyte invasion, this signal being the changes in [K+] in the parasite’s
microenvironment.

In a very elegant study from the Chitins’ lab, the authors treated P. falciparum mero-
zoites, isolated in [140 mM K+], with the calcineurin inhibitors FK506 and cyclosporin A,
before transferring the parasites to an environment with low K+ concentration (5 mM). The
shift of exposure of merozoites to [K+] from 140 to 5 mM triggered the release of microneme
proteins, mainly the apical membrane antigen 1 (AMA1) protein. The use of calcineurin
inhibitors resulted in the inhibition of AMA1 secretion to the merozoite membrane, pre-
venting the process of erythrocytes invasion by the parasite [32,33]. This seminal work
allows the authors to propose the involvement of a [K+]-dependent and calcium pathway
in the erythrocyte invasion process.

4. Plasmodium falciparum Serpentine Receptor 25 (PfSR25), a GPCR-like Receptor
Responsible for the Transmission of the K+ Stimulus to the Interior of the Parasite

The complex signaling pathways present in P. falciparum led Madeira et al. (2008) to
search for G protein-coupled receptors (GPCRs) in the P. falciparum genome. Through a
robust bioinformatic analysis of the parasite genome, the authors identified four candidates
for GPCR receptors, namely, PfSR1, PfSR10, PfSR12, and PfSR25 [34]. In 2017, the P.
falciparum serpentine receptor 25 (PfSR25) was identified as responsible for sensing the [K+]
shift stimulus [35] (Figure 1).
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K+/high Na+ (5.4 mM KCl, 140 mM NaCl) buffer supplemented with 2 mM CaCl2. They 
observed an increase in the cytosolic calcium concentration when parasites were trans-
ferred from high K+ to low K+ buffer, but no difference in the cytosolic calcium concentra-
tion was found in the opposite condition, i.e., low K+ to high K+ for wild-type parasites 
[35]. 

The activation of PfSR25 by shifts in [K+] increases cytosolic calcium in P. falciparum. 
The increase in Ca2+ is blocked by the inhibition of phospholipase C (PLC) or depletion of 
internal Ca2+ pools of the parasite by thapsigargin. However, PfSR25 knockout parasites 
did not show an increase in cytoplasmic Ca2+ when subjected to changes in [K+] from 140 
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cellular Ca2+ and cannot be elicited by other ions such as Na+, Mg2+, or Ca2+ [35]. 

Figure 1. Schematic representation of the signaling pathway involving K+ in Plasmodium spp. during
its asexual developmental phases. In the erythrocytic stage, the exposure of P. falciparum to variations
in [K+] is perceived by the GPCR-like PfSR25, which transmits the signal through the activation of
phospholipase C (PLC). After PLC activation, inositol 1,4,5-triphosphate (IP3) and diacylglycerol
(DAG) are formed. IP3 activates an IP3 receptor (hypothetical IP3R) to release calcium (Ca2+) from
the endoplasmic reticulum (ER). The increase in cytosolic levels of Ca2+ activates the Ca2+-dependent
protein kinases CDPK1 and PKB, leading to the release of microneme proteins essential for the
infection of new erythrocytes. Created with BioRender.com.

In the work of Moraes and colleagues (2017), the authors generated a knockout of the
GPCR candidate PfSR25 (PfSR25−). This tool showed that this serpentine receptor acts
to sense the stimuli resulting from [K+] changes in the microenvironment, in which the
parasite travels during its erythrocytic cycle. The authors investigated whether SR25 could
modulate the calcium signaling in parasites at mature trophozoite stages isolated from red
blood cells and incubated with high K+/low Na+ (140 mM KCl, 5.4 mM NaCl) and low
K+/high Na+ (5.4 mM KCl, 140 mM NaCl) buffer supplemented with 2 mM CaCl2. They
observed an increase in the cytosolic calcium concentration when parasites were transferred
from high K+ to low K+ buffer, but no difference in the cytosolic calcium concentration was
found in the opposite condition, i.e., low K+ to high K+ for wild-type parasites [35].

The activation of PfSR25 by shifts in [K+] increases cytosolic calcium in P. falciparum.
The increase in Ca2+ is blocked by the inhibition of phospholipase C (PLC) or depletion of
internal Ca2+ pools of the parasite by thapsigargin. However, PfSR25 knockout parasites
did not show an increase in cytoplasmic Ca2+ when subjected to changes in [K+] from
140 mM (intracellular) to 5.4 mM (extracellular) [35]. The authors concluded that PfSR25 is
a K+ sensor capable of modulating Ca2+ signaling in P. falciparum, resulting in consequent
PLC activation and increased [Ca2+] cyt. This response persists in the absence of free
extracellular Ca2+ and cannot be elicited by other ions such as Na+, Mg2+, or Ca2+ [35].

Interestingly, the authors found that the knockout for the PfSR25 protein is more
sensitive to oxidative stress promoted by sodium nitroprusside (SNP), a nitric oxide donor.
When parasites were treated with SNP, a significant decrease in parasitemia was observed,
and the knockout (PfSR25-) parasites showed a 72% increase in metacaspase gene expres-
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sion after exposure to SNP 0.5 mM for 3 h compared to wild-type (3D7) parasites. The
wild-type parasites also showed an improved ability to survive under amino acid depriva-
tion conditions with the lack of Albumax as supplementation to media compared to the
knockout parasites [35]. This data set highlights the involvement of PfSR25 in the other
mechanisms during the erythrocyte cycle.

In a recent paper, Santos and colleagues reported that PfSR25 knockout parasites
show increased susceptibility to synthetic compounds derived from 1H- and 2H-1,2,3-
triazole [36]. The authors identified 31 compounds with potential antimalarial activity at
concentrations in the micromolar (µM) order; then, using the PfSR25− strain showed that
compounds with antimalarial activity against the 3D7 strain (wild-type) showed reduced
IC50 values when tested against the knockout strain [36]. In a further recent study, Santos
and colleagues reported that PfSR25− showed increased susceptibility to the antimalarial
drugs lumefantrine and piperaquine, which target hemozoin metabolism [37]. The authors
tested different antimalarial drugs used for treating malaria with varying mechanisms
of action on the 3D7 and PfSR25− strains. Among them are atovaquone (mitochondria),
dihydroartemisinin and pyrimethamine (cytosol), chloroquine, mefloquine, lumefantrine,
and piperaquine (digestive vacuole). As a result, they observed that the knockout parasites
were more sensitive to the antimalarial activity of piperaquine and lumefantrine, presenting
44.38% and 58.12% lower IC50 values in the PfSR25− strain when compared to the 3D7
strain [37].

In the erythrocytic cycle, malaria parasites digest hemoglobin within the digestive
vacuole to obtain amino acids, releasing the toxic product heme from hemoglobin. During
detoxification, the heme is converted into an insoluble crystal called hemozoin by the heme
detoxification protein [38]. This detoxification process is essential for the parasite’s survival
and is, thus, the target of some antimalarial drugs. Interestingly, the knockout strain
(PfSR25−) shows greater susceptibility to some of these compounds, such as chloroquine,
piperaquine, and lumefantrine [35,37]. These compounds can reduce PfSR25 expression in
the ring phase [37,39]. In an assay, Moraes and colleagues treated PfSR25− and wild-type
3D7 trophozoites (32–34 h post-infection) with piperaquine (10 µM) for 2 h and measured
hemozoin formation, noting that PfSR25− parasites were more susceptible to treatment.
After 2 h, the knockout inhibited hemozoin size formation by approximately 69.9 ± 2.1%
compared to the wild-type parasites [35]. Thus, besides acting in detecting the K+ shift,
PfSR25 can play other functions related to parasite survival.

Signaling triggered by K+ shift is one of the mechanisms involved in the invasion of
new cells. Moreover, other molecular factors act in this complex event, such as the activation
of signaling pathways and specific proteins during the mechanical steps of invasion [40–44].
In addition to the involvement of PfSR25 in the detection of K+ shift, the data found with
the study of antimalarial compounds in this strain demonstrate a relationship between the
action of antimalarial drugs and this GPCR-like receptor. Therefore, PfSR25 is a promising
candidate for studies of the development of new antimalarial.

5. Other Apicomplexans Encode Proteins Homologous to GPCR-like PfSR25

In Toxoplasma gondii, a similar mechanism for sensing [K+] has also been described,
where the decrease of [K+] from intracellular to extracellular levels in the parasitized host
cell results in a PLC-dependent increase of cytoplasmic Ca2+ [14]. According to the study,
this increase in Ca2+ triggers a signal to activate the parasite egress machinery [14]. It is im-
portant to note that PfSR25, as well as having a conserved structure in Plasmodium spp., also
appears to have homologs in other parasites. A BLASTP (protein–protein BLAST) search
using PF3D7_0713400 as an input demonstrates that other species of apicomplexan para-
sites, such as Hepatocystis sp., Besnoitia besnoiti, Toxoplasma gondii, Neospora caninum Liverpool,
Cardiosporidium cinoae, Babesia sp., and Theileria sp., as well as the unicellular algae Vitrella
brassicaformis (belonging to the eukaryotic supergroup alveolata), showed sequences that
produced significant alignments with PfSR25 and may represent true functional homologs
in these other organisms (Figure 2).
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Figure 2. Dendrogram showing amino acid sequence comparison of PfSR25 (PF3D7_0713400) with
other sequences from the US National Library of Medicine database—National Center for Biotechnol-
ogy Information (NCBI—https://blast.ncbi.nlm.nih.gov/Blast.cgi accessed on 6 February 2023). A
search was performed on the BLAST platform that resulted in significant alignment sequences; these
data were later used to build a distance tree from the results performed on the platform itself [45,46].
(Scale bar 0.7 amino acid substitutions).

These findings lead us to propose the hypothesis that parasite detection of [K+] shifts
in the ionic environment may be conserved amongst different species of apicomplexan
parasites. Active invasion of host cells is a characteristic of the apicomplexan, and it is
tempting to suggest that this process may be regulated by sensing K+ shifts. In P. falciparum,
this perception of K+ shift may be one of the mechanisms that ensure that the parasite
remains in the host cell during intracellular replication and later becomes active; the
increase in Ca2+cyt may be associated with the requirement for parasite activation of
CDPKs (calcium-dependent kinases) in the release of microneme proteins essential for
infection of new erythrocytes. At this time of egress/invasion, K+ displacement occurs,
which promotes an intracellular Ca2+ increase by PLC action, which is sensed by the
GPCR-like PfSR25.

6. Calcium Acts as the Second Messenger Resulting from the Signaling Triggered by
[K+] Shift

Calcium is an essential ion for apicomplexan parasites, as it is involved in critical
biological processes during the parasite life cycle. Classical mechanisms have been de-
scribed for the uptake and release of calcium, which acts as a second messenger in signaling
pathways. Some of these mechanisms are essential at different stages of the parasite life
cycle [38,47,48]. Several processes, such as egress, invasion, motility, protein secretion, and
cell cycle regulation, are controlled by Ca2+ signaling in the parasites [49,50]. The invasion
of new red blood cells by the parasite is influenced by the extracellular ATP levels, which
trigger an increase of Ca2+cyt in the parasite. Levano-Garcia and collaborators reported that
the addition of ATP leads to an increase in Ca2+ in trophozoites and segmented schizonts.
The presence of purinergic inhibitors KN62 and Ip5I was able to block the release of Ca2+

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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when ATP was added. In addition, it promoted a drastic reduction in the infection of new
red blood cells [51].

It is worth emphasizing that Plasmodium can create a high Ca2+ microenvironment
during its intraerythrocytic cycle [52]. Efforts by our group and others reported the host hor-
mone, melatonin, as active in the synchronization of P. falciparum (in vitro) and P. chabaudi
(in vivo) [52]. We also showed that melatonin and its precursors could mobilize Ca2+ from
intracellular storage [52,53]. The signaling acting in the melatonin pathway involves the
activation of the PLC-IP3 pathway that leads to the cytosolic increase of calcium and cAMP.
Recently, Alves et al., 2022, identified PfMDR1 as a promising IP3 receptor candidate
in P. falciparum, combining an IP3 affinity column chromatography with further bioinfor-
matics meta-analysis. The analyses show that PfMDR1 is a potential target for binding
IP3 [54]. Thus, we show that Ca2+ acts as a second messenger in several signaling pathways
activated at different stages of development, essential for cycle progression and parasite
survival [55].

Calcium-dependent protein kinases (CDPKs) play significant roles in the Ca2+ sig-
naling pathways in parasites. Through crystallography, it was shown that CDPKS from
T. gondii and Cryptosporidium parvum, in their self-inhibited forms (not bound to Ca2+),
resembles a calmodulin protein with a long helix at the N-terminus that inhibits the pro-
tein’s kinase domain [56]. Lourido et al. (2010) used a knockdown of T. gondii, CDPK1, to
demonstrate the essentiality of this kinase in the signaling that leads to the secretion of mi-
cronemes [57]. CDPK1 is a Ca2+-dependent kinase that is conserved among apicomplexan
parasites. Its conditional deletion showed that CDPK1 controls Ca2+-dependent secretion
from organelles called micronemes. As a result, the knockdown parasite was impaired
in terms of motility, invasion, and egress from host cells. That is, in the stages where
the release of the microneme is essential for the continuity of the parasite’s life cycle [57].
TgCDPK1 inhibitors (1NM-PP1) block microneme secretion and motility, promoting a
blockade in invasion and parasitic development [58].

As it occurs in T. gondii, CDPK1 is also involved in the motility and invasion of new
cells in P. falciparum. Green and collaborators showed that this Ca2+-dependent kinase is
responsible for the phosphorylation of proteins MTIP (myosin A tail domain interaction
protein) and GAP45 (glideosome-associated protein 45), both components of the motor
complex that generates the necessary force to invade host cells [59]. Another relevant kinase
in P. falciparum is PKB. This is an enzyme similar to protein kinase B, whose regulation
is controlled by calmodulin, which in a Ca2+-dependent manner, associates with the N-
terminal region of PfPKB and regulates activity [60]. The study of the Ca2+/Calmodulin-
PfPKB signaling pathway showed that it might be necessary for erythrocyte invasion.
Through the development of an inhibitory peptide for PfPKB, a drastic reduction in the
ability of the parasite to invade new erythrocytes has been shown. This same result
was also obtained when inhibitors of the activators of this pathway, calmodulin, and
PLC, were used [61]. Thus, Ca2+-dependent kinases CDPK1 and PKB are highlighted as
critical mediators of the signaling that leads to the secretion of micronemes, motility, and
invasion in the parasite. Therefore, this set of data points to a likely conserved mechanism
among parasites.

Exposure of P. falciparum merozoites to a low [K+] (5 mM), similar to that present in the
bloodstream, induces the activation of phospholipase C, resulting in increased intracellular
Ca2+ and activation of erythrocyte invasion mechanisms. Moraes et al. (2017) demonstrated
that changing the KCl concentration from 140 mM to 5.4 mM induces an increase in cy-
tosolic Ca2+ concentration in P. falciparum trophozoites, even in the absence of extracellular
Ca2+ [35]. In T. gondii, a mechanism similar to the one mentioned above has also been
described [14]. However, the GPCR-like 25 of P. falciparum presenting a representative
homologous protein in the genome of T. gondii, the receptor responsible for the uptake of
K+ levels and subsequent release of Ca2+cyt, was not characterized. In any case, it is vital
to highlight the fundamental role of Ca2+ at the time of the invasion of new host cells, not
only in P. falciparum and T. gondii, since studies show that in Trypanosoma cruzi elevations
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in Ca2+cyt levels are also present at the time of the invasion of new cells [62]. Another
study showed that Ca2+ signaling during the invasion, as well as an increase in intracellular
calcium levels, are linked to the virulence of Leishmania mexicana amazonensis [63].

There are still significant gaps to be filled in the events behind the parasite–host cell
interaction processes (egress and invasion). However, Ca2+ is shown to be a ubiquitous
intracellular messenger in different parasites. Although there are still many unanswered
questions on this subject, identifying the SR25 protein in P. falciparum sheds light on new
mechanisms by which parasites can capture information from the surrounding microenvi-
ronment and prepare themselves to initiate further steps in their life cycle.

7. Conclusions

In this present contribution, we review the importance of K+ ions in intracellular
parasites, focusing on the human malaria parasite P. falciparum and the related parasite
Toxoplasma gondii. Alterations in the concentration of this ion can be sensed by the GPCR-
like PfSR25 and transduced to the parasite cytosol through Ca2+, a ubiquitous second
messenger. This signaling performs different functions depending on the stage of the
parasite’s development. However, it proves to be extremely important for the hepatic and
intraerythrocytic stages of Plasmodium and other parasites. The [K+] detection mechanism
is slowly unveiled and still has gaps to explore. Complete knowledge of this mechanism
will contribute to our understanding of parasite cell biology and may also lead to new
targets for the development of antimalarial drugs.
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